Early stages of oxidation of Ti$_3$AlC$_2$ ceramics

G.M. Songa,b,*, Y.T. Peic, W.G. Sloofa, S.B. Lid, J.Th.M. De Hossonc, S. van der Zwaaga

a Department of Materials Science and Engineering, Delft University of Technology, Meikleweg 2, 2628 CD Delft, The Netherlands
b Fundamentals of Advanced Materials, Faculty of Aerospace Engineering, Delft University of Technology, Kluivertweg 1, 2629 SH Delft, The Netherlands
c Department of Applied Physics, The Netherlands Materials Innovation Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
d Materials Engineer Center, Beijing Jiaotong University, Beijing 100044, PR China

Abstract

The nucleation and growth of oxide scale at the early stages of oxidation of Ti$_3$AlC$_2$ ceramics was studied via oxidizing at 1100°C in air for short times (≥ 900 s). The nucleation of nanosized Al$_2$O$_3$ particles mainly occurs at the ledges of the fractured lamellar Ti$_3$AlC$_2$ grains as well as on the (0 0 0 1) basal surfaces. The Al$_2$O$_3$ nuclei mainly grow along these ledges to form oxide strings, and then spread on the terraces and the (0 0 0 1) basal surfaces. An oxide layer consisting predominantly of nanosized α-Al$_2$O$_3$ forms after oxidizing for 180 s. The formation of lenticular hexagonal pores in Ti$_3$AlC$_2$ grains is attributed to the faster consumption of Ti, Al and C atoms along (1 1 2 0) direction than along (0 0 0 1) direction. With further oxidation, rutile-TiO$_2$ particles form on top of the α-Al$_2$O$_3$ layer, and grow to form a rutile-TiO$_2$ layer. Further oxidation leads to the formation of pores underneath the primary α-Al$_2$O$_3$ layer. In this porous layer both Al$_2$O$_3$ and TiO$_2$ were present with a preference for Al$_2$O$_3$ to stay adjacent to the inward moving interface of Ti$_3$AlC$_2$ substrate.

Keywords: Ti$_3$AlC$_2$, Oxidation, Al$_2$O$_3$, TiO$_2$

Article info

Article history:
Received 26 February 2008
Received in revised form 5 May 2008
Accepted 15 June 2008

1. Introduction

Ternary carbide Ti$_3$AlC$_2$, belonging to the family of layered ternary compounds notated as M$_{n+1}$AX$_n$ with n = 1–3, where M is an early transition metal, A is an A-group element and X is C or N, has recently received extensive attention because it has a remarkable early transition metal, A is an A-group element and X is C or N, has also an excellent crack healing ability at high temperatures [9].

The oxidation behavior of Ti$_3$AlC$_2$ as such has been studied in the past few years [2,10–14] as the moderate oxidation resistance is a major obstacle for many applications. The results of Barsoum et al. [10,11] about the oxidation of Ti$_3$AlC$_2$ revealed the formation of an Al$_2$O$_3$-rich striated layer adjacent to the Ti$_3$AlC$_2$ substrate. This striation was attributed to the demixing of a rutile-based (Ti$_{1-y}$Al$_y$O$_2$-y/2) layer [10,11] formed on the surface suggesting that the formation of the rutile-based (Ti$_{1-y}$Al$_y$O$_2$-y/2) layer preceded the formation of Al$_2$O$_3$ layer. The experimental validation for this hypothesis is lacking. Wang et al. [2,12] found that the oxide scale of Ti$_3$AlC$_2$ had a two-layer structure: an α-Al$_2$O$_3$ inner layer and a rutile-TiO$_2$ outer layer. The inner layer did adhere to the substrate and was more or less continuous, which accounted for an adequate oxidation resistance of Ti$_3$AlC$_2$. It was suggested that the formation of the α-Al$_2$O$_3$ layer was caused by the inward diffusion of oxygen through the outer TiO$_2$ layer rather than outward flow of Al [11]. However, as of to date no experimental evidence has been provided for this hypothesis. Detailed information about the early stages of the oxidation of Ti$_3$AlC$_2$ is lacking.

While it is obvious that the continuity of the first α-Al$_2$O$_3$ scale determines the oxidation resistance of Ti$_3$AlC$_2$ ceramics, the formation process of such oxide layer are not very clear because the previous researches mainly focused on the oxidation behaviors of long exposure time [2,10–14]. Especially, knowledge about the nucleation and growth of the initial oxides on the Ti$_3$AlC$_2$ surface is not available due to the absence of solid experimental evidence. Similarly, information about the early oxidation stages of other MAX phases, such as Ti$_3$SiC$_2$ [15], Ti$_2$SnC [16], Zr$_2$Al$_3$C$_5$ [17], etc., is also lacking. Therefore, a thorough understanding of the oxidation reaction and microstructural evolution of the oxide scale at the early stages of oxidation of MAX materials is crucial not only for the improvement of the oxidation resistance of Ti$_3$AlC$_2$ bulk ceramics, but also for the microcrack healing process [9]. In this study, the nucleation and growth process of oxide scale at the early stages of oxidation of Ti$_3$AlC$_2$ ceramic at 1100°C in air have been...
the interface between the octahedral Ti₃C₂ layer and Al layer due to small dimensions of the samples and the good thermal conductivity of the material, a simple way for preparing single crystal with specific crystalline planes. Given the anisotropic characteristics of a crystal for some specific cases. This method provides planes are usually present at fracture surfaces, which is suitable for the study of conventional samples with flat polished surfaces is that some specific crystalline planes are usually present at fracture surfaces, which is suitable for the study of anisotropic characteristics of a crystal for some specific cases. This method provides a simple way for preparing single crystal with specific crystalline planes. Given the small dimensions of the samples and the good thermal conductivity of the material, the samples were expected to reach the furnace temperature of 1100 °C within several seconds. At the end of preset oxidizing times the samples were taken out from the furnace and rapidly cooled in air.

The morphologies of the oxidized fracture surfaces of these samples were studied via a scanning electron microscope (SEM, JSM 6500F and JSM 7500F, Japan) equipped with an energy dispersive spectroscopy (EDS, Noran Pioneer 30 mm² Si(Li) detector) for chemical composition analysis. The operation voltage for EDS was 15 keV. The phases formed at the fracture surface upon oxidation were determined with an X-ray diffractometer (Bruker AXS D5005 XRD, Germany) using Cu Kα radiation under an operation voltage of 45 keV.

3. Results and discussion

3.1. Nucleation and growth of oxides on the fracture surface

No nanosized particles were observed on the fresh fracture surface of Ti₃AlC₂, see Fig. 1a. But after oxidizing the sample at 1100 °C for 20 s, nanosized particles, considered as the nuclei of the oxides form on the fracture surface. Some crystalline faces of the lamellar grains have more particles formed, and the other faces are almost particle free; see Fig. 1b and c. It is noteworthy that the oxide nuclei on the lateral surface of the lamellar grain prefer to align themselves along the ledges (Fig. 1b and c). Fig. 1c shows that the oxidized state of both crack surfaces of a partly cleaved grain is different from each other. The density of the oxide particle of surface A is higher than that of surface B. Cleavage of lamellar Ti₃AlC₂ grains occurs mainly parallel to the hexagonal basal (0001) plane [1,2,9,18], i.e. along the interface between the octahedral Ti₃C₂ layer and Al layer due to the relative weaker cohesive strength between Ti atom layer and Al atom layer governed by the Ti–Al metallic bonding [19,20]. One can envision that one of the cleavage surfaces (i.e. basal (0001) surface) has a terminal layer consisting of Al atoms only, while the other surface is end-capped with a Ti₃C₂ layer. Nuclei of aluminum oxides and titanium oxides perhaps form simultaneously on the two cleavage surfaces. The energy states of Al and Ti in Ti₃AlC₂ are different from those in pure Al and TiC. Nevertheless, we may approximately compare the chemical reactivity of Al and Ti atoms in Ti₃AlC₂ with oxygen using pure Al and TiC, based on the crystal structure of Ti₃AlC₂ that can be described as periodic planar stacking of sheets of edge-sharing Ti₆C octahedral and close-packed Al atoms along the c-axis [1]. The Gibbs energies of the formation of Al₂O₃ with pure Al and the formation of TiO (or TiO₂) with Ti in TiC are negative [21–23]. In detail, the Gibbs energy for Al₂O₃ formation upon the reaction of Al atom with per mole O at 1373 K is −413 kJ, and for TiO₂ formation upon TiC it is −28 kJ [22]. It is thus believed that the cleavage surface with Al terminal layer is more easily oxidized than that with a TiC₂ layer on top. Therefore, more Al₂O₃ nuclei than TiO₂ nuclei may be expected to form. In theory it is possible for Al₂O₃ nuclei to form on the Ti₃C₂ basal plane, although the diffusion of Al atoms through the Ti₂C₃ layer onto the outer surface may be relatively difficult compared to the diffusion of atomic Al along the basal plane. Alternatively, atomic Al can firstly diffuse internally along the basal plane to the ledges of the basal surface, and then diffuse from the ledges to the outside surface.

The oxides nuclei on the lateral faces of lamellar grains are mainly present at the ledges, and consequently form oxide strings,
as indicated by arrows in Fig. 1b. The string-like morphology may be due to three factors: (1) the lateral surface of lamellar grain has a mixture of layered Al atom chains and Ti$_3$C$_2$ chains. The nuclei of Al$_2$O$_3$ certainly prefer to initiate along the Al atom planes; (2) the inner Al atoms easily diffuse to ledges along the basal plane, which makes the ledges be preferential sites for the nucleation by providing sufficient Al atoms; (3) compared with a smooth area, a step edge (rough area) has a high surface energy [24] and more-coordinated sites, which is beneficial for nucleation. These nuclei at the ledges align due to geometrical constraints and grow over the step terraces to form string-like morphology with time, as shown in Fig. 2a and b. The outward raised oxide particles reveal the volume expansion and outgrowth of the oxides at the initial oxidation stage of Ti$_3$AlC$_2$.

3.2. Formation of oxide scale on the fracture surface

The oxide nuclei grow and coalesce as the oxidation progresses, and finally a dense oxide scale forms on the fracture surface in about 180 s. Meanwhile, the fracture surface becomes rougher due to the formation of oxide particles, as shown in Fig. 2c. Ordered oxide particle arrays with an average thickness of 100 nm (see also Fig. 4a) on the basal surfaces of the lamellar grains are frequently observed. These arrays consist of nanosized semi-spherical oxide particles. As indicated by the dotted lines, the ordered arrays initiate mainly at the edges of the basal surfaces, and then spread to the central parts along specific crystalline orientations. XRD measurements do not detect the Al$_2$O$_3$ and TiO$_2$ phases on the surface oxidized for 180 s due to the very thin thickness of the oxide scale (∼100 nm) and the strong influence from the underlying Ti$_3$AlC$_2$ substrate. EDS analysis shows that the Ti/Al atomic ratio is about 2.7 measured on the oxidized surface and slightly lower than the ratio of ∼3 in the base Ti$_3$AlC$_2$. Meanwhile, oxygen is detected on the oxidized surface, which corresponds to a high Al$_2$O$_3$ content in the oxide scale. By using EDS, similar enrichment of Al on the oxidized Ti$_3$AlC$_2$ particles has been identified when Ti$_3$AlC$_2$ particles were exposed to air at 800 °C for 2 h [25]. As mentioned in Section 3.1, the oxide nuclei consist mainly of Al$_2$O$_3$ particles, and the outward diffusion of Al atoms from the sub-surface of Ti$_3$AlC$_2$ grains is faster than that
of Ti atoms because the Ti–C bonding is more directional and strong, whereas the Ti–Al bonding is weaker [19,20]. Therefore, the initial oxide scale should contain predominantly α-Al2O3. Previous works of Wang et al. [2,12] and Lin et al. [26,27] show that the α-Al2O3 was still predominant in the oxide scale of Ti3AlC2 after oxidized at 1100 °C even up for 20 h, and only small amount of TiO2 crystallites were observed at the Al2O3 grain boundaries or within the Al2O3 grains [26].

3.3. Formation of pores on the fracture surface

Small amounts of lenticular-pore chains are observed at the lateral surfaces of the lamellar grains oxidized for 180 s (Fig. 3a). The laminated hexagonal feature of the lenticular pores becomes clearer after oxidizing for 360 s (Fig. 3b). For its formation two hypotheses may be formulated: (1) the consumption rates of Al, Ti and C atoms along ⟨1120⟩ direction of Ti3AlC2 grain are faster than those along the ⟨0001⟩ direction; (2) the consumption of Ti, Al and C atoms occur in a cooperative manner. The later explanation fits with the experimental results of Wang et al. about the absence of an Al depletion layer or Ti-rich layer in the Ti3AlC2 sub-scale area [12]. However, precise composition analysis of the Al2O3/Ti3AlC2 interface zone with transmission electron microscopy combining EDS showed the existence of very thin (50–100 nm) Al depletion layer adjacent to the interface [27]. It means that upon oxidation, first Al atoms diffuse outwards to the substrate surface to react with oxygen. Due to the depletion of Al atoms on the basal plane, the Ti3AlC2 lattices are distorted and become Ti3C2 separated by discontinuous micropores. Al atoms lie on specific planes in the lamellar Ti3AlC2 lattice, and thus the micropores are aligned. These pores provide fast channels for the inward diffusion of oxygen and the release of CO2 or CO gas phase. Oxygen can first enter the vacancy layers to possibly form Ti2C2Oy solid solution and oxidation of Ti2C2Oy proceeds [13,28]. The whole oxidation process could be separated as two steps [13]:

\[
\begin{align*}
4\text{Ti}_3\text{AlC}_2 + (2y + 3)\text{O}_2 & = 4\text{Ti}_3\text{C}_2\text{O}_y + 2\text{Al}_2\text{O}_3 \\
4\text{Ti}_3\text{C}_2\text{O}_y + (20 - 2y)\text{O}_2 & = 12\text{TiO}_2 + 8\text{CO}_2
\end{align*}
\]

Under low oxygen potential, CO rather than CO2 might form. Such a coupled two-step oxidation process is most likely responsible for the formation of the aligned hexagonal pores in the lamellar Ti3AlC2 grains.

Wang and Zhou [13] found that the aligned pores existed at the oxidized surfaces of Ti3AlC2 powders after a thermal cycle treat-
ment from room temperature to 1460 °C in Ar containing 12 ppm oxygen. The oxidation rate of Ti3AlC2 under such a condition with extremely low oxygen content should be very low, and thus the oxidation status is analogous to the oxidation early stages. Our present observation also shows the existence of such micropores at the early stages for bulk Ti3AlC2 samples. The laminated hexagonal morphology of Ti3AlC2 grain itself has already been identified by scanning electron microscopy or transmission electron microscopy [1–3]. It is believed that such a morphology is caused by the relative higher growth rate of (1 1 2 0) lateral plane of Ti3AlC2 grain than that of (0 0 0 1) basal plane. This hypothesis has been confirmed in Ti3SiC2, which has a similar hexagonal structure [29,30]. During the oxidation process (or hot-etching), reversibly, the depletion rate of atoms at (1 1 2 0) lateral plane should be higher, and consequently, hexagonal lamellar pores form, which demonstrate the anisotropy of the oxidation rate of hexagonal Ti3AlC2 grain.

Although the fracture surface can be covered by a continuous Al2O3 oxide scale, small amount of pores disrupt the continuity of the scale and undoubtedly provide a faster path for the inward diffusion of oxygen. These pores are undesirable for oxidation resistance of Ti3AlC2 ceramics.

3.4. Growth of oxide scale on the fracture surface

Cross-sectional views of the oxidized fractured surfaces are shown in Fig. 4. After oxidation of 180 s, a thin continuous oxide scale with a thickness of about 100 nm covers the surface of the sample (Fig. 4a). When the oxidation time increases to 360 s, the oxide scale grows with fine faceted particles formed on top, and the thickness increases to about 300 nm (Fig. 4b). The faceted particles further grow and the oxide scale thickens with time. Small amounts of fine pores are observed underneath the oxide scale after oxidation for 600 s. These fine pores are adjacent to the unoxidized Ti3AlC2 substrate, indicated by arrows in Fig. 4c. After oxidation for 900 s, a developed porous layer formed underneath the primary Al2O3 layer. Within the porous layer there are loose particles (TiO2 + Al2O3); see Fig. 4d. The size of the loose particles is about 50–200 nm, which is much smaller than that of the outer TiO2 grains (or particles). Similar porous layers in the oxide scale of the Ti3AlC2 after being oxidized at 1100 °C for 16 h have been also reported [11]. XRD patterns presented in Fig. 5 and the EDS result of the enrichment of Al in the oxidized surface confirm that α-Al2O3 is the dominant phase in the oxide scale when oxidized for 360 s, while rutile-TiO2 can be detected after being oxidized for 900 s in addition to α-Al2O3 and Ti3AlC2 phases.

α-Al2O3 is a fairly stable protective oxide, whose growth rate is about five orders of magnitude lower than that of TiO2 during the oxidation of Ti–Al alloy [31]. As a result, TiO2 outgrows Al2O3 to form a TiO2 outer layer. After the formation of TiO2 outer layer, Ti will diffuse quickly to the TiO2 layer to form a new TiO2 by reacting with the O absorbed at the surface zone of the TiO2 layer. The newly formed TiO2 is located mainly on top of Al2O3 layer rather than beneath the Al2O3 layer because the diffusion coefficient of O is an order of magnitude smaller than that of Ti in TiO2 grain [10], which results in an outward growth of TiO2 layer. Unreacted O finally diffuse to the interface between the Al2O3 layer and Ti3AlC2 substrate and reacts with Ti3AlC2 substrate. With the loss of Ti, Al and C in Ti3AlC2, the Ti3AlC2 surface moves inward. The overall reaction for the oxidation of Ti3AlC2 is,

$$4\text{Ti}_3\text{AlC}_2 + 23\text{O}_2 \rightarrow 12\text{TiO}_2 + 2\text{Al}_2\text{O}_3 + 8\text{CO}_2(g)$$ \hspace{1cm} (3)

Under low oxygen potential CO rather than CO2 might form. The mass densities of Ti3AlC2, TiO2, and Al2O3 are 4.25 g cm$^{-3}$ [2], 4.27 g cm$^{-3}$ [32], and 3.99 g cm$^{-3}$ [33], respectively. Thus, with the consumption of one unit volume Ti3AlC2, 0.28 unit volume Al2O3 and 1.22 unit volume TiO2 will be created according to Eq. (3) and the densities of these phases, which results in 50% volume expansion in solid state and mainly outward growth of the oxide scale. Obviously, the consumption of Ti3AlC2 and subsequent formation of oxides will also lead to the withdrawal of the interface between the oxide scale and bulk Ti3AlC2. The cross-section of an oxide scale formed on a polished surface of Ti3AlC2 sample after oxidation at 1100 °C for 900 s was prepared via ion-beam cross-section polishing (JEOL SM-09010 Cross Section Polisher, Japan) and is shown in Fig. 6. The advantage of ion beam polishing is that the microstructure of the sample can be more clearly explored with less mechanical damage and deformation caused by the conventional mechanically polishing. The white flat layer consisting of Al2O3 particles represents the initial Al2O3 layer formed on the well polished flat surface of the Ti3AlC2 sample, indicated by a dashed line box. The thin Al2O3 layer is not very homogenous in thickness. The inhomogeneity in thickness may be caused by anisotropic oxidation characteristics of various grains at the polished surface. It is worth of note that the TiO2 grains in the outer TiO2 layer are large when the Al2O3 layer is thin or less continuous, which demonstrate the importance of a dense and continuous Al2O3 layer on the oxidation resistance. It clearly shows that the thickening direction of the oxide scale after the formation of initial Al2O3 layer is both inwards and outwards. The inward thickening is caused by the consumption of Ti3AlC2 substrate due to oxidation, resulting in an inward movement of the interface.
Fig. 7. Schematic representation of the nucleation, growth and pore formation of oxide scale on Ti₃AlC₂: (a) nucleation of Al₂O₃ on the ledges of the fractured lamellar Ti₃AlC₂ grains; (b) formation of Al₂O₃ layer and nucleation of TiO₂ at Al₂O₃ grain boundaries; (c) thickening of Al₂O₃ layer and outward growth of TiO₂ layer on Al₂O₃ layer; and (d) formation of porous layer once the inward grown Al₂O₃ cannot effectively compensate the volume loss of Ti₃AlC₂ caused by oxidation.

Fig. 8. SEM micrograph and the corresponding element maps of Al, Ti and O acquired on a fracture cross-section of the oxidized Ti₃AlC₂ ceramics at 1100 °C for 900 s. The dashed line shows the position of Al₂O₃ oxide layer initially formed at the early oxidation stage, and the dotted line shows the Al₂O₃-rich band adjacent to the Ti₃AlC₂ substrate.
the competitive nucleation and growth in the restricted area, the TiO\textsubscript{2} grains and Al\textsubscript{2}O\textsubscript{3} grains are small. The outward growth of TiO\textsubscript{2} grains on the inner Al\textsubscript{2}O\textsubscript{3} layer is responsible for the formation of the porous layer beneath the initial Al\textsubscript{2}O\textsubscript{3} layer. The formation and escape of the CO\textsubscript{2} or CO further stimulates the formation of the pore layer.

4. Conclusion

The following conclusions can be drawn based on the findings:

(1) Predominantly \(\alpha - \text{Al}_2\text{O}_3 \) oxide nuclei form at the ledges of the fractured lamellar Ti\textsubscript{3}AlC\textsubscript{2} grains as well as on the basal \{0001\} surfaces. The \(\alpha - \text{Al}_2\text{O}_3 \) nuclei grow rapidly along these ledges and form aligned oxides. Next, they spread on the step terraces, or directly on the \{0001\} basal surfaces to form an initial Al\textsubscript{2}O\textsubscript{3} oxide layer.

(2) The formation of lenticular hexagonal pores in Ti\textsubscript{3}AlC\textsubscript{2} grains is caused by the faster consumption of Ti, Al and C atoms along \(\langle 11 \bar{2}0 \rangle \) direction than along \(\langle 0001 \rangle \) direction.

(3) The thickening direction of the oxide scale after the formation of initial Al\textsubscript{2}O\textsubscript{3} layer is both inwards and outwards. The inward thickening is caused by the consumption of Ti\textsubscript{3}AlC\textsubscript{2} substrate due to the oxidation, resulting in an inward movement of the interface between the oxide scale and Ti\textsubscript{3}AlC\textsubscript{2} substrate. The outward diffusion of Ti leads to the formation and subsequent outward growth of TiO\textsubscript{2} outer layer. When the formed Al\textsubscript{2}O\textsubscript{3} cannot compensate the volume loss of Ti\textsubscript{3}AlC\textsubscript{2} caused by oxidation, a porous layer forms underneath the \(\alpha - \text{Al}_2\text{O}_3 \) layer.

Acknowledgement

Financial support is from the Delft Center for Materials Research Program on Self Healing Materials.

References