Increasing the mass accuracy of high-resolution LC-MS data using background ions - a case study on the LTQ-Orbitrap
Scheltema, Richard A.; Kamleh, Anas; Wildridge, David; Ebikeme, Charles; Watson, David G.; Barrett, Michael R.; Jansen, Ritsert C.; Breitling, Rainer; Barrett, Michael P.

Published in:
Proteomics

DOI:
10.1002/pmic.200800314

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 23-04-2020
Increasing the mass accuracy of high-resolution LC-MS data using background ions – a case study on the LTQ-Orbitrap

Richard A. Scheltema1*, Anas Kamleh2*, David Wildridge3*, Charles Ebikeme3*, David G. Watson2*, Michael P. Barrett3*, Ritsert C. Jansen1* and Rainer Breitling1*

1 Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
2 Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
3 Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK

With the advent of a new generation of high-resolution mass spectrometers, the fields of proteomics and metabolomics have gained powerful new tools. In this paper, we demonstrate a novel computational method that improves the mass accuracy of the LTQ-Orbitrap mass spectrometer from an initial \(\pm 1-2 \) ppm, obtained by the standard software, to an absolute median of 0.21 ppm (SD 0.21 ppm). With the increased mass accuracy it becomes much easier to match mass chromatograms in replicates and different sample types, even if compounds are detected at very low intensities. The proposed method exploits the ubiquitous presence of background ions in LC-MS profiles for accurate alignment and internal mass calibration, making it applicable for all types of MS equipment. The accuracy of this approach will facilitate many downstream systems biology applications, including mass-based molecule identification, ab initio metabolic network reconstruction, and untargeted metabolomics in general.

Keywords:
Alignment and internal mass calibration / High resolution / Mass spectrometry / Metabolomics / Software

1 Introduction

In this paper, we propose a pragmatic method for post-acquisition mass alignment and internal mass calibration, achieving ultra-high mass measurement accuracy (MMA) of high mass resolution LC-MS data. Measurements in the lower mass region of 50–400 amu were underperforming in our data, but this can be corrected with our method, leading to an improvement of MMA that will be instrumental for mass-based metabolite identification [1–7]. The subsequent mass chromatogram matching exploits the high MMA for the robust retrieval of mass chromatograms, even when the shape of the mass chromatogram cannot be defined reliably, as happens when the intensity is close to the noise level. This approach is based on the fact that noise is not likely to occur at the same location repeatedly in multiple profiles. Moreover, as the proposed method is independent of mass range, it is equally suitable for metabolomics and proteomics applications, with some restrictions as discussed below. In our

* R. B. conceived and supervised the study. R. A. S., R. C. J., and R. B. designed, implemented, and statistically evaluated the method. M. P. B., C. E., and D. W. provided the trypanosome and serum samples. D. G. W. and A. K. performed the LTQ-Orbitrap measurements. R. A. S. and R. B. wrote the manuscript.
method, the ubiquitous presence of background ions in LC-MS profiles is exploited for the definition of alignment and internal mass calibration functions, achieving an improvement of at least one order of magnitude compared to the original accuracy. Although background ions present a major problem in traditional MS (masking compounds of interest), in this paper we demonstrate that they are useful in high-resolution measurements. The resolving power of the machine easily separates the background ions from most other compounds, and they can be utilized as free internal lock masses. We focus our discussion on data from the recently introduced LTQ-Orbitrap [3, 8–15], which has been reported to achieve an MMA of below 1 ppm in proteomics experiments under optimized conditions [8, 13–17]. Routine operation, however, generally yields lower performance.

The proposed method (outlined in Fig. 1) starts with the selection of a suitable reference LC-MS profile to which masses of the other profiles will be aligned. Background ions in the reference are detected and identified based on their precise median mass using a list of commonly occurring background ions (see Tables 1 and 2 of Supporting Information available online). This identification can be automated, although some manual intervention is recommended to prevent misidentifications (for example, by removing outliers) and to extrapolate the mass range to areas not covered by identified background ions. Using the difference between the observed and known masses of positively identified background ions allows calculation of an internal mass calibration function. Subsequently, all LC-MS profiles are automatically mass aligned with the reference by using the detected background ions as landmarks, and the calibration function is applied. Finally, mass chromatograms are detected and quantified across LC-MS profiles, exploiting the accuracy of the aligned and calibrated masses. Additional mass accuracy is attained by taking the intensity of mass measurements into account (see Fig. 2 of Supporting Information).

2 Materials and methods

2.1 Dataset

Data were acquired with a ZIC-HILIC HPLC (5 µm 150 × 4.6 mm² acquired from HiChrom, Reading UK) coupled to an LTQ-Orbitrap (Thermo Fisher Scientific) in both positive and negative ionization centroid mode (for more information on the setup of the equipment see ref. [18]). The data were exported to a human readable text format with the File Convertor tool (“Destination data type: Text Files (*.txt)”) supplied with Xcalibur 2.0.5 (Thermo Scientific). Each file is a complete tab-delimited description of the data from the profile and approximately 50 MB in size, containing around 460 000 separate mass measurements in 800 scans (approximately 3 s per scan). Approximately 3000 high-quality mass chromatograms (potential metabolites) were found in each LC-MS profile. Around 100 background ions were detected in each of the LC-MS profiles (background ion detection settings: precision 2 ppm, present in at least 18% of scans). The detected background ions typically cover a mass range of 60–750 amu, and 12 background ions could be molecularly identified in a typical sample (using the list of common background ions supplied in Tables 1 and 2 of Supporting Information online).

Figure 1. Overview of the high-performance preprocessing method. (0) The method selects the LC-MS profile best suited for use as a reference, (1) detects and annotates the background ions in all profiles, and (2) derives an internal mass calibration function for the reference profile using the identified background ions. (3) The other profiles are automatically aligned toward the reference, using all detected background ions as landmarks, and the calibration function is applied. (5) Peaks are detected and (6) matched for further analysis.
2.2 Culture and extraction

Trypanosoma brucei procyclic form (PCF) strain 427 were cultivated in SDM79 [19] and an SDM-derived medium (SDM80), supplemented with either 10 mM glucose or 10 mM proline [20], at 28°C in an atmospheric incubator. SDM79 was supplemented with 10% v/v heat-inactivated FCS (for SDM80, FCS was dialyzed against 0.15 M NaCl with a molecular mass cut-off of 10 000 Da). Initially, cells were grown in SDM79, before being transferred to the glucose and proline enhanced SDM80 media. Cultures were maintained in 150 cm² cell culture flasks (Corning®) to a maximum volume of 150 mL, where they reached typical densities of between 1×10^6 cells/mL (mid-log phase) and 1×10^7 cells/mL (late-log phase). Prior to metabolite extraction, approximate cells numbers (cell density) were determined using an improved Neubauer hemocytometer (Weber Scientific). The flask were pooled and cells were pelleted at 1250 RCF at 4°C for 10 min, resuspended in 1 mL of serum-free medium, and kept on ice whilst an accurate cell density was determined as previously described. The volume was adjusted to a final concentration of 1 $\times 10^6$ cells/mL, and the cells were incubated at 28°C for 30 min to allow them to recover from centrifugation and for ‘normal’ metabolism to continue.

Total metabolites were extracted by adding 200 µL of concentrated cells at 1×10^6 cells/mL to 800 µL of 80% ethanol/20 mM HEPES at 80°C for 2 min. Cells were separated from the serum-free medium by centrifuging at 900 RCF at 4°C for 5 min. The supernatant (approximately 200 µL), containing the extracellular metabolites, was removed and metabolites were extracted for 2 min in 80% ethanol/20 mM HEPES at 80°C. The cell pellets, containing intracellular metabolites, was resuspended for 2 min in 80% ethanol/20 mM HEPES at 80°C. Additionally, metabolites in 200 µL of serum-free medium (SDM80 + glucose, or SDM80 + proline) were extracted for 2 min in 80% ethanol/20 mM HEPES at 80°C. Samples were then chilled on ice for 5 min, vortexed briefly, and the supernatant was recovered by centrifugation at 16 000 RCF at 4°C for 2 min. The recovered supernatant was flash frozen in liquid nitrogen and then stored at −80°C for further analysis.

2.3 Targeted reference selection

This procedure makes up step (0) of the procedure described in Fig. 1. For the alignment and internal mass calibration procedures, the most “central” profile is automatically selected as reference, which minimizes the amount of correction necessary for the other profiles with the alignment procedure. The central profile is defined as the one which on average takes the most central place for the identified background ion in Fig. 2b. This central profile is automatically identified by matching similar background ions of all profiles with the procedure described in the paragraph *Mass alignment* (including background ions with unknown molecular formula). The median mass of each background ion across profiles is calculated and the mean deviation from the median values is obtained for each profile. The profile with the smallest deviation is selected as the reference.

2.4 Detecting background ions

This procedure makes up steps (1) and (2) of the procedure described in Fig. 1. After collecting all the centroid peaks across scans in a single list and ordering this list on mass, near-ubiquitous compounds are found with a sliding window search. Ubiquity is defined by a threshold on the minimum fraction of scans in which a mass is detected within an m/z window of specified precision in ppm (see Fig. 1 of Supporting Information for an example of a detected background ion). No constraint is placed on the spread of the centroid peaks across all scans for a detected background ion. As a result, the algorithm occasionally picks up local stretches of signals which are spread across many scans, but are not background ions in the strict sense (e.g., precipitating compounds). This does not cause problems, as signals labeled as background ions are not removed from the profile and the shorter artifacts can still provide useful information for the automatic alignment procedure. In Fig. 3b, all detected background ions are shown (using a sliding window of 3 ppm and a ubiquity threshold of 18% of the scans). Almost all background ions were detected with this sensitive setting, while leaving the mass chromatograms intact. Eighteen percent equals 144 of 800 scans in our experiments, where a single intense mass chromatogram spans about 30 scans. To improve the subsequent alignment, more stringent settings should be applied. This reduces the number of detected background ions, improving the robustness of the matching procedure employed here. The background ions are however not removed in our method, because they can overlap with compounds of interest. Where background ions overlap in mass with other sample-derived compounds, the sample-derived compounds can still be detected by using the intensity of the matching background ion as their local baseline.

2.5 Internal mass alignment with background ions

This procedure makes up step (3) of the procedure described in Fig. 1. As an automatic precursor to the internal mass calibration we introduce a mass alignment method, which uses background ions of an LC-MS profile as its landmarks. Each background ion in the reference is matched to the closest mass in the profile to be aligned toward the reference, within a certain mass window. Additional filters, based on the number of individual mass measurements and the scan where the background ion starts to be detected, reduce spurious matches and make the technique more robust. The mass difference between matched pairs of background ions is a descriptor of the misalignment between the two profiles. As background ions are found in a large portion of the mass range, they give a complete description of the misalignment.
Figure 2. Overview of the detected and identified background ions. (a) Example of a MS/MS fragmentation pattern confirming the presence of \(2 \times \text{ACN} + \text{Cu}^+\) in the measurement. (b) The mass bias of each identified background ion in all the samples (each vertical cluster corresponds to a single background ion). Each profile displays the same general pattern, but a spread of about 2 ppm is apparent. (c) The mass bias of each identified background ion after alignment. The original spread of 1.69 ppm is reduced to less than 0.57 ppm. The line indicates the internal mass calibration function ultimately used to correct for the mass deviations. (d) The mass accuracy after alignment and internal mass calibration. All compounds are measured with a median accuracy of 0.18 ppm (maximum deviation 0.42 ppm).

An appropriate function can be fitted to the differences between the matched pairs and describes the transformation needed to align the two profiles. For the dataset used for this paper a linear transformation was performing well for the mass alignment; however, more complex functions can also be used with this method.

2.6 Internal mass calibration with identified background ions

This procedure makes up step (4) of the procedure described in Fig. 1. Because a background ion is, by definition, present almost ubiquitously in a large number of scans, its mass is measured many times in a single LC-MS profile. Taking the median of all observations yields a very precise mass estimate. To calibrate a profile, this observed mass needs to be compared to the expected accurate mass. For the identification of detected background ions we have compiled a comprehensive list of frequently occurring background ions [21, 22] (see Tables 1 and 2 of Supporting Information and http://www.newobjective.com/downloads/technotes/PV-3.pdf). Their accurate mono-isotopic mass was calculated using the most up-to-date atomic weight information available [23]. The match between detected and commonly occurring background ions was made using an initial window of ± 20 ppm. The list of matches can be validated by making MS/MS identifications or by exploiting the isotope patterns, which are available for highly abundant background ions (where each isotopomer is itself a background ion). We identified low-molecular weight polymers (PEG and polypropylene glycol), solvent derivatives (ACN adducts), and phthalate plasticizers from the laboratory equipment as prominent background ions in this dataset. By fitting a function to the found biases, a calibration function is calculated. This function is used to calibrate the masses in all profiles after alignment.

The list of common background ions for the negative ionization mode is much shorter than that for the positive ionization mode (see Tables 1 and 2 of Supporting...
Figure 3. Heatmap representation of LC-MS data containing multiple back-ground ions. (a) An Orbitrap LC-MS measurement of a complex sample (x-axis, chromatographic fraction; y-axis, mass-over-charge value; color, intensity). Ubiquitous background ions are visible as horizontal lines. (b) All identified background ions are shown. The elution profile is fully conserved, because the high resolution of the LC-MS measurements allows the reliable separation of background ions from real metabolites.

Information). This can make identification of suitable ions for calibration more difficult for negative ionization mode data. This is likely to change, once targeted effort is put into identifying additional common background ions, as the number of detected (but still unidentified) background ions is just as high for the negative as for the positive ionization mode. For the time being, however, the iterative calibration strategy discussed below could be used instead.
The calculated mass calibration function is used across all scans and for all intensities. Based on the detected background ions we have found no compelling evidence of a short-term mass drift across scans in our dataset. The supplied example of a background ion (see Fig. 1 of Supporting Information) clearly shows a horizontal pattern on the m/z axis, indicating there is no substantial drift. In order to adapt the method to deal with a drift in m/z across scans, a linear model can be fitted to the detected background ions and the mass information per scan used to correct for scan drift after calculation of the mass calibration function. Additionally, for the LTQ Orbitrap there is an intensity dependency of mass calibration [13]; however, after internal mass calibration as described here this dependency is taken into account by calculation of a weighted mean for each chromatogram (see ref. [14] and below).

2.7 Mass chromatogram detection

This procedure makes up step (5) of the procedure described in Fig. 1. The relevant information of an LC-MS profile consists of mass chromatograms, which correspond to single molecules eluting from the LC across multiple scans. Due to properties of the LC, the mass chromatograms have approximately a log-normal distribution when intensity is plotted versus retention time (see Fig. 2 of Supporting Information). Due to the high mass precision of the LTQ-Orbitrap the following simple procedure can be employed for the detection of mass chromatograms: local maxima are selected (most intense centroid peaks) and additional signals are included from adjacent scans along the retention time dimension, which show the same mass with high precision [14]. To crudely resolve overlapping peaks, which are relatively rare in high-resolution data, a running mean smoothing and a local minima detection method is applied: mass chromatograms are broken up when the intensity of the local minimum lies below the baseline for the detected mass chromatogram. In order to obtain the most accurate mass a weighted mean is calculated, which takes the intensity of a centroid mass as an indicator of precision. Low intensity masses display a greater deviation from the correct mass than highly intense masses (see Fig. 2 of Supporting Information).

2.8 Mass chromatogram matching

This procedure makes up step (6) of the procedure described in Fig. 1. After aligning and calibrating the individual LC-MS profiles, a robust method can be applied for matching corresponding mass chromatograms in different LC-MS profiles. With such an approach, replicates can be combined to achieve an even higher MMA and metabolite peak intensities in different sample types can be compared. Our algorithm starts out with the most intense, unprocessed mass chromatogram of all LC-MS profiles and retrieves the best match (based on the mass, intensity, and retention time) for that mass chromatogram from each of the other profiles. The matched mass chromatograms are collected and the procedure is repeated until all mass chromatograms have been matched. This iterative approach yields reliable results even for low-intensity signals, due to the mass alignment across samples.

2.9 Retention time alignment

For the retention time alignment profiles were shifted by a constant amount so as to maximize the Pearson correlation coefficient between the total ion chromatograms. More sophisticated warping was not required as no complex retention time drift was observed.

3 Results

3.1 Mass accuracy of the detected background ions

MS/MS on two blank samples confirmed the identity of several of the detected background ions. In Fig. 2a, the fragmentation pattern is shown of a background ion detected at \(m/z = 144.9811 \), putatively identified as ACN (2M + Cu\(^+\)), caused by the mobile phase (traces of Cu\(^+\) are likely to be derived from brass fittings in the laboratory equipment). The molecule is partly fragmented into masses of \(m/z = 103.9548 \) and \(m/z = 62.9293 \), corresponding to (M + Cu\(^+\)) and Cu\(^+\), confirming the identification.

In Fig. 2b, the mass bias is shown for molecularly identified background ions found in all the available samples. The dots forming vertical clusters in this figure correspond to the same background ion identified in different samples. A clear general trend is observed: small molecules show a larger deviation from their expected mass than the heavier molecules. This deviation approaches 2 ppm in this particular dataset. A systematic mass shift between the samples is also evident, which also is in the range of 2 ppm for each ion background. This indicates a drift in mass precision even within this small batch of 24 samples.

In Fig. 2c, the mass bias is shown for the identified background ions after alignment with the selected reference. The alignment function is derived from matching non-identified detected background ions between samples, making it independent of the identifications. The spread of the masses for each identified background ion is markedly reduced from 1.69 ppm (SD 0.30 ppm) to 0.57 ppm (SD 0.26 ppm).

The MMA for the same molecules after calibrating the aligned spectra using the function indicated is improved to an absolute median of 0.11 ppm, much lower than results reported previously for this type of equipment [9, 12–14]. The use of ubiquitous background ions yields particularly precise mass estimates, hence this value indicates the maximum precision that is currently possible using this instrumentation.
3.2 Mass accuracy of biomolecules in the samples

To further explore the achieved MMA, independently of the background ions, we examined common amino acids, which are abundantly present in our cultured trypanosome samples. In Table 1, we show that all 20 common amino acids are detected using a mass window of ± 30 ppm. The absolute median mass accuracy is an astonishing 0.18 ppm (SD 0.10 ppm). We also extended the analysis to a larger set of 1142 common biochemicals taken from the KEGG database, which are potentially present in our samples. We detected 94 (8%) of them in a mass window of 10 ppm in a calibrated profile, and the MMA remains well within 0.4 ppm, with an absolute median accuracy of 0.21 ppm (SD 0.21 ppm).

3.3 Results of mass chromatogram matching

The excellent MMA, resulting from the described background-based calibration, also facilitates mass chromatogram picking and matching across samples. For example, in the dataset used for this paper two different sample types are compared: trypanosomes grown in either glucose- or proline-enriched medium. These samples should show well-defined differences in abundance for a set of compounds in central carbon and energy metabolism. In Figs. 4a and b, the mass chromatogram comparisons are shown for glucose and proline, after matching based on calibrated mass and retention time. It is clear that both compounds are differentially abundant and that the direction of the difference matches expectations (i.e., the proline samples contain more proline than the glucose samples). In Fig. 4c, it is furthermore shown that the high MMA allows even very low intensity peaks to be robustly found and compared. A peak found in all replicates, within a very narrow mass and time window, can be considered to correspond to a real compound. In Figs. 4d and e, the global metabolic difference profile of glucose- and proline grown samples is shown. Two observations are important here: (i) most metabolites are not differentially abundant (black circles), indicating that the samples are correctly aligned. (ii) On the other hand, the specific differentially abundant compounds are highly informative about the respective metabolic pathways operative in these two sample types. Almost all of the identified metabolites are linked to the two alternative pathways of energy production used by glucose- or proline-grown cells [20].

4 Discussion

In LC-MS experiments, retention time alignment is a well-researched topic [24], while alignment and internal mass calibration on the mass dimension are still largely unexplored, although efforts in this field are currently starting [25]. The dataset used for this paper clearly indicated the
Figure 4. Exploiting accurate mass information for matching mass chromatograms. (a and b) By unambiguously matching mass chromatograms corresponding to the same compound reliable comparisons of mass abundance become possible. In this experiment, the metabolomes of glucose- and proline-grown trypanosomes were compared in three biological replicates. Glucose and proline were found to have a differential abundance in the correct direction. The heatmap representations at the bottom show the raw data, within a mass window of ±20 ppm. These heatmap representations give information about the context of a mass chromatogram. For instance, proline is eluting on top of a background ion. (c) Using the accurate masses it is possible to detect very low intensity signals with high sensitivity and specificity. This example shows a chromatographic peak close to the absolute LOD. As this is found reproducibly in three replicates within a very narrow mass and retention time window, it is certain that it corresponds to a real compound in the samples. (d) The global metabolic difference profile for glucose- and proline-grown samples. The width of the circles indicates the maximum signal. The color gradient indicates the differential abundance (red, enriched in proline-grown samples; green, enriched in glucose-grown samples; black, unchanged). (e) Mapping of differentially abundant mass peaks to their putative identities based on KEGG pathway maps. Concerted changes of the metabolome in response to growth conditions can be clearly seen. (2Ket, 2-ketoglutarate; 4-OH-methyl-Glut, 4-hydroxymethyl glutamate; Fum, fumarate; Glut, glutamate; Glut-P, glutamate phosphate; Lac, lactate; Mal, malate; NAG-P, N-acetyl glucosamine phosphate; Oxac, oxaloacetate; PEP, phosphoenol pyruvate; Pyr, pyruvate; Suc, succinate; Succinate-SA, succinate semialdehyde; TCA, tricarboxylic acid cycle).
need for alignment and internal mass calibration, even though good practices (such as use of internal calibration masses) were applied. For larger datasets, acquired over a longer period, the variation will be even greater. We have shown that the MMA of LC-MS data generated with the LTQ-Orbitrap can be radically improved by applying a calibration function calculated from information provided by the detected background ions. The near-ubiquity of these background ions in all scans provides a large number of measurements allowing for very precise mass estimations and robust landmarks for aligning and calibrating multiple LC-MS profiles. In order to make full use of this method, the list of commonly occurring background ions can be extended with compounds specific for a laboratory, resulting in an extension of the well-calibrated mass range. In addition, iterative calibration based on identified mass chromatograms will further improve the results. This is particularly relevant for proteomics data: background ions, and in particular identified background ions for calibration, become rarer in the higher mass range. This limitation can be overcome by intentionally adding calibrants (e.g., series of high-molecular weight polymers), but is most suitably addressed by using reliably identified peptides for iterative recalibration. The resulting accuracy translates into improved alignment and quantification across spectra, and reproducibly reaches a level that will be suitable for mass-based metabolite identification [5, 6, 26] and metabolic network reconstruction [1, 2, 4].

The authors would like to thank Matthias Mann, Morris Swertz, Martijn Dijkstra, Frans Stellaard, and Andries Bruins for many discussions on mass spectrometry and related topics. This work was funded by the NWO-VICI (RAS) and BBSRC (MPB).

The authors have declared no conflict of interest.

5 References

