Increasing the mass accuracy of high-resolution LC-MS data using background ions - a case study on the LTQ-Orbitrap
Scheltema, Richard A.; Kamleh, Anas; Wildridge, David; Ebikeme, Charles; Watson, David G.; Barrett, Michael R.; Jansen, Ritsert; Breitling, Rainer; Barrett, Michael P.

Published in:
Proteomics

DOI:
10.1002/pmic.200800314

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-12-2018
Supporting Information
for Proteomics
DOI 10.1002/pmic.200800314

Richard A. Scheltema, Anas Kamleh, David Wildridge, Charles Ebikeme,
David G. Watson, Michael P. Barrett, Ritsert C. Jansen and Rainer Breitling

Increasing the mass accuracy of high-resolution
LC-MS data using background ions – a case study
on the LTQ-Orbitrap
Supporting Information Figure 1

Figure 1 | Detected background ion. The graph shows all peaks (mass-over-charge value against scan number) assigning to a single background ion from an Orbitrap LTQ measurement. A window size of 2 ppm and a threshold of 18% were used for the collection of the peaks. The discrete distance between groups of mass-values can be attributed to the discrete Fourier Transform that is used for deconvoluting the signal into mass values.
Supporting Information Figure 2

Figure 2 | Use of weighted mean for mass estimation. For the mass estimation a weighted mean is calculated, which exploits the fact that the accuracy of the mass measurement decreases for less intense peaks. The top graph shows a typical mass chromatogram from the Orbitrap LTQ data, which has a retention time of 141 (most intense peak). The bottom graph shows the associated mass values. It can clearly be seen that the highly intense peaks have a mass close to the mean and show little variation. The less intense peaks in the tail of the elution profile scatter far more around the mean.
Supporting Information Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Mass</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetonitrile</td>
<td>41.0265491</td>
<td>(M+H)+; M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>58.0530982</td>
<td>(M+Na)+; M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>63.00849335</td>
<td>(M+Na)+; M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>102.948323</td>
<td>(M+Cu)+; M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>104.965156</td>
<td>(M+Cu)+ (isotope); M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>104.0350425</td>
<td>(2M+Na)+; M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>145.9748721</td>
<td>(2M+Cu)+; M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>146.9808919</td>
<td>(2M+Cu)+ (isotope); M='C2H3N'</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>145.0615916</td>
<td>(3M+Na)+; M='C2H3N'</td>
</tr>
<tr>
<td>dimethyl sulfoxide</td>
<td>78.0139355</td>
<td>(M+H)+; M='C2H6OS'</td>
</tr>
<tr>
<td>dimethyl sulfoxide</td>
<td>80.0516</td>
<td>(M+H)+; M='C2H6OS'</td>
</tr>
<tr>
<td>dimethyl sulfoxide</td>
<td>99.9587975</td>
<td>(M+Na)+; M='C2H6OS'</td>
</tr>
<tr>
<td>dimethyl sulfoxide</td>
<td>156.027871</td>
<td>(2M+H)+; M='C2H6OS'</td>
</tr>
<tr>
<td>d6-dimethyl sulfoxide</td>
<td>168.1032</td>
<td>(2M+H)+; M='C2H6OS'</td>
</tr>
<tr>
<td>dimethyl sulfoxide</td>
<td>178.0098153</td>
<td>(2M+Na)+; M='C2H6OS'</td>
</tr>
<tr>
<td>dimethyl sulfoxide</td>
<td>256.0237508</td>
<td>(3M+Na)+; M='C2H6OS'</td>
</tr>
<tr>
<td>triethylamine</td>
<td>101.1204495</td>
<td>(M+H)+; M='C6H15N'</td>
</tr>
<tr>
<td>tris(hydroxymethyl)aminomethane</td>
<td>121.079832</td>
<td>(M+H)+; M='C4H11NO3'</td>
</tr>
<tr>
<td>diethylaminopropynitrile</td>
<td>122.0843983</td>
<td>(M+H)+; M='C7H10N2'</td>
</tr>
<tr>
<td>diisopropylethylene</td>
<td>129.9571406</td>
<td>(M+H)+; M='C8H19N'</td>
</tr>
<tr>
<td>tripropyamine</td>
<td>143.1673997</td>
<td>(M+H)+; M='C9H21N'</td>
</tr>
<tr>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
<td>152.1313485</td>
<td>(M+H)+; M='C9H16N2'</td>
</tr>
<tr>
<td>N-butyl benzenesulfonamide</td>
<td>213.0823594</td>
<td>(M+H)+; M='C10H15NO2S'</td>
</tr>
<tr>
<td>N-butyl benzenesulfonamide</td>
<td>235.0642937</td>
<td>(M+H)+; M='C10H15NO2S'</td>
</tr>
<tr>
<td>N-(2-hydroxyethyl)urea</td>
<td>224.1888634</td>
<td>(M+H)+; M='C13H22N2O'</td>
</tr>
<tr>
<td>N-(2-hydroxyethyl)urea</td>
<td>448.777268</td>
<td>(2M+H)+; M='C13H24N2O'</td>
</tr>
<tr>
<td>tetraethylammonium</td>
<td>241.2769501</td>
<td>M+; M='C16H36N'</td>
</tr>
<tr>
<td>erucamide</td>
<td>337.334465</td>
<td>(M+H)+; M='C22H43NO'</td>
</tr>
<tr>
<td>erucamide</td>
<td>359.3164093</td>
<td>(M+H)+; M='C22H43NO'</td>
</tr>
<tr>
<td>diisooctyl phthalate</td>
<td>390.2770097</td>
<td>(M+H)+; M='C24H38O4'</td>
</tr>
<tr>
<td>diisooctyl phthalate</td>
<td>412.258954</td>
<td>(M+Na)+; M='C24H38O4'</td>
</tr>
<tr>
<td>diisooctyl phthalate</td>
<td>428.232914</td>
<td>(M+K)+; M='C24H38O4'</td>
</tr>
<tr>
<td>diisooctyl phthalate</td>
<td>453.285031</td>
<td>(M+NaC2H3N); M='C24H38O4'</td>
</tr>
<tr>
<td>diisooctyl phthalate</td>
<td>797.5805685</td>
<td>(2M+NaH)+; M='C24H38O4'</td>
</tr>
<tr>
<td>diisooctyl phthalate</td>
<td>802.559637</td>
<td>(2M+Na)+; M='C24H38O4'</td>
</tr>
<tr>
<td>diisooctyl phthalate</td>
<td>818.509011</td>
<td>(2M+K)+; M='C24H38O4'</td>
</tr>
<tr>
<td>diocetyl phthalate</td>
<td>390.2770097</td>
<td>(M+H)+; M='C22H43NO'</td>
</tr>
<tr>
<td>diocetyl phthalate</td>
<td>412.258954</td>
<td>(M+Na)+; M='C22H43NO'</td>
</tr>
<tr>
<td>triethylamine (TEA)</td>
<td>238.2175767</td>
<td>((M+HCl)2-C)+, M='NC6H15S'</td>
</tr>
<tr>
<td>triethylamine (TEA)</td>
<td>240.2146266</td>
<td>((M+HCl)2-C)+, M='NC6H15S'</td>
</tr>
<tr>
<td>trityl cation</td>
<td>242.1095504</td>
<td>M+ (triphenylmethane-H); M='C19H16'</td>
</tr>
<tr>
<td>phenyldiethyamine</td>
<td>149.1204495</td>
<td>(M+H)+; M='C10H15N'</td>
</tr>
<tr>
<td>sodium trifluoroacetate</td>
<td>157.9567524</td>
<td>(M+Na)+; M='C2F3Na2O2'</td>
</tr>
<tr>
<td>sodium trifluoroacetate</td>
<td>293.9315605</td>
<td>(M+Na)+ + M; M='C2F3Na2O2'</td>
</tr>
<tr>
<td>sodium trifluoroacetate</td>
<td>429.9063687</td>
<td>(M+Na)+ + 2M; M='C2F3Na2O2'</td>
</tr>
<tr>
<td>sodium trifluoroacetate</td>
<td>565.881768</td>
<td>(M+Na)+ + 3M; M='C2F3Na2O2'</td>
</tr>
<tr>
<td>tributylamine</td>
<td>185.2143499</td>
<td>(M+H)+, M='C12H27N'</td>
</tr>
<tr>
<td>tributyl phosphate</td>
<td>266.164959</td>
<td>(M+K)+, M='C12H27O4P'</td>
</tr>
<tr>
<td>dibutyl phthalate</td>
<td>278.1518092</td>
<td>(M+H)+, M='C16H22O4'</td>
</tr>
<tr>
<td>dibutyl phthalate</td>
<td>300.1337534</td>
<td>(M+Na)+, M='C16H22O4'</td>
</tr>
<tr>
<td>dibutyl phthalate</td>
<td>316.1076908</td>
<td>(M+K)+, M='C16H22O4'</td>
</tr>
<tr>
<td>polypropylene glycol</td>
<td>76.0524295</td>
<td>(M+H)+; M='H[OCH(CH3)CH2]nOH'</td>
</tr>
<tr>
<td>polypropylene glycol</td>
<td>134.0942943</td>
<td>(M+H)+; M='H[OCH(CH3)CH2]nOH'</td>
</tr>
<tr>
<td>polypropylene glycol</td>
<td>192.1361591</td>
<td>(M+H)+; M='H[OCH(CH3)CH2]nOH'</td>
</tr>
<tr>
<td>polypropylene glycol</td>
<td>250.1780239</td>
<td>(M+H)+; M='H[OCH(CH3)CH2]nOH'</td>
</tr>
<tr>
<td>polypropylene glycol</td>
<td>308.2198888</td>
<td>(M+H)+; M='H[OCH(CH3)CH2]nOH'</td>
</tr>
<tr>
<td>polypropylene glycol</td>
<td>366.2617536</td>
<td>(M+H)+; M='H[OCH(CH3)CH2]nOH'</td>
</tr>
<tr>
<td>polypropylene glycol</td>
<td>424.3036184</td>
<td>(M+H)+; M='H[OCH(CH3)CH2]nOH'</td>
</tr>
</tbody>
</table>

polyethylene glycol

(M+H)+; M='C(2n)H(4n+2)O(n+1)'

polypropylene glycol

(M+H)+; M='H[OCH(CH3)CH2]nOH'
Supporting Information Table 2

Table 2 | Commonly occurring background ions for negative-mode electrospray ionization.

<table>
<thead>
<tr>
<th>Name</th>
<th>Mass</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 ethoxylate</td>
<td>44.02621475 (M)-; M='C2OH4'</td>
<td></td>
</tr>
<tr>
<td>58 propoxylate</td>
<td>58.04186481 (M)-; M='C3OH6'</td>
<td></td>
</tr>
<tr>
<td>74 dimethylsiloxane</td>
<td>74.01879135 (M)-; M='SiOC2H6'</td>
<td></td>
</tr>
<tr>
<td>36 chloride</td>
<td>35.97667774 M-; M='Cl'</td>
<td></td>
</tr>
<tr>
<td>38 chloride37</td>
<td>37.97372763 M-; M='Cl'</td>
<td></td>
</tr>
<tr>
<td>80 bromide</td>
<td>79.92616263 M-; M='Br'</td>
<td></td>
</tr>
<tr>
<td>82 bromide81</td>
<td>81.92411603 M-; M='Br'</td>
<td></td>
</tr>
<tr>
<td>46 formic acid</td>
<td>46.00547931 (M-H)-; M='CH2O2'</td>
<td></td>
</tr>
<tr>
<td>60 ethanoic acid</td>
<td>60.02112937 (M-H)-; M='C2H4O2'</td>
<td></td>
</tr>
<tr>
<td>97 phosphoric acid</td>
<td>96.96907006 (M-H)-; M='H3O4P'</td>
<td></td>
</tr>
<tr>
<td>98 sulfuric acid</td>
<td>97.96737924 (M-H)-; M='H2O4S'</td>
<td></td>
</tr>
<tr>
<td>98 phosphate</td>
<td>97.9768951 M-; M='H3O4P'</td>
<td></td>
</tr>
<tr>
<td>213 N-butyl benzencesulfonamide</td>
<td>213.0823494 (M-H)-; M='C10H15NO2S'</td>
<td></td>
</tr>
<tr>
<td>114 trifluoroacetic acid</td>
<td>113.9928639 (M-H)-; M='C2HF3O2'</td>
<td></td>
</tr>
<tr>
<td>228 trifluoroacetic acid</td>
<td>227.9857278 (M-H)- + M</td>
<td></td>
</tr>
<tr>
<td>342 trifluoroacetic acid</td>
<td>341.9785917 (M-H)- + 2M</td>
<td></td>
</tr>
<tr>
<td>456 trifluoroacetic acid</td>
<td>455.9714556 (M-H)- + 3M</td>
<td></td>
</tr>
<tr>
<td>228 trifluoroacetic acid dimer</td>
<td>227.9857278 (2M-H)-; M='C2HF3O2'</td>
<td></td>
</tr>
<tr>
<td>342 trifluoroacetic acid dimer</td>
<td>341.9785917 (2M-H)- + M</td>
<td></td>
</tr>
<tr>
<td>456 trifluoroacetic acid dimer</td>
<td>455.9714556 (2M-H)- + 2M</td>
<td></td>
</tr>
<tr>
<td>570 trifluoroacetic acid dimer</td>
<td>569.9643195 (2M-H)- + 3M</td>
<td></td>
</tr>
<tr>
<td>114 sodium formate</td>
<td>113.9929029 (2M-Na)-; M='CHNaO2'</td>
<td></td>
</tr>
<tr>
<td>182 sodium formate</td>
<td>181.9803264 (2M-Na)- + M; M='CHNaO2'</td>
<td></td>
</tr>
<tr>
<td>250 sodium formate</td>
<td>249.96775 (2M-Na)- + 2M; M='CHNaO2'</td>
<td></td>
</tr>
<tr>
<td>318 sodium formate</td>
<td>317.9551735 (2M-Na)- + 3M; M='CHNaO2'</td>
<td></td>
</tr>
<tr>
<td>250 sodium trifluoroacetate</td>
<td>249.967672 (2M-Na)-; M='C2F3NaO2'</td>
<td></td>
</tr>
<tr>
<td>386 sodium trifluoroacetate</td>
<td>385.9424802 (2M-Na)- + M; M='C2F3NaO2'</td>
<td></td>
</tr>
<tr>
<td>522 sodium trifluoroacetate</td>
<td>521.9172883 (2M-Na)- + 2M; M='C2F3NaO2'</td>
<td></td>
</tr>
<tr>
<td>658 sodium trifluoroacetate</td>
<td>657.8920964 (2M-Na)- + 3M; M='C2F3NaO2'</td>
<td></td>
</tr>
</tbody>
</table>