Allan variance of frequency fluctuations due to momentum exchange and thermomechanical noises
Palasantzas, Georgios

Published in:
Journal of Applied Physics

DOI:
10.1063/1.2787169

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Allan variance of frequency fluctuations due to momentum exchange and thermomechanical noises

George A. Palasantzas
Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 4 July 2007; accepted 17 August 2007; published online 12 October 2007)

We investigate the Allan variance of nanoresonators with random rough surfaces under the simultaneous influence of thermomechanical and momentum exchange noises. Random roughness is observed in various surface engineering processes, and it is characterized by the roughness amplitude \(w \), the lateral correlation length \(\xi \), and the roughness exponent \(0 < H < 1 \). The roughness influence becomes significant for measurement time \(\tau_A \) so that \(\omega_c \tau_A \sim 1 \), with \(\omega_c \) the fundamental resonance frequency. The Allan variance increases significantly with increasing roughness (decreasing \(H \) and/or increasing ratio \(w/\xi \)) if the quality factor due to gas collisions is smaller than the intrinsic quality factor associated with thermomechanical noise. © 2007 American Institute of Physics. [DOI: 10.1063/1.2787169]

Nanoelectromechanical systems (NEMS) represent an important class of devices that combine the advantages of mechanical systems (e.g., applicability as sensor systems and robustness to electrical shocks) with the speed and large scale integration of silicon based electronics. However, the performance of NEMS is limited by noise related dissipation effects. Indeed, as the fluctuation-dissipation theorem states, systems that dissipate energy are necessarily sources of noise, while the converse is also often true. Therefore, a self-contained formalism for describing the resonance and noise related properties of NEMS is important. Moreover, as the resonator size is reduced to nanoscales, the surface to volume ratio increases making nanoresonators susceptible to a variety of surface related noise mechanisms (e.g., by gas molecules impinging the surface, loss due to defects and impurities, scattering of surface acoustic waves by roughness etc.).

Studies of SiC/Si NEMS have shown that devices operational in the uhf/microwave regime have low surface roughness, while devices with rougher surfaces cannot be operated higher than the VHF regime. Other studies of Si nanowires have shown the quality factor to decrease by an increment of the surface area to volume ratio. Recently, random surface roughness was shown to affect the quality factor, the limit to mass sensitivity of nanoresonators, and their dynamic range. In addition, another important quantity that is very often used to compare frequency standards and thus quantify frequency fluctuations is the dimensionless Allan variance \(\sigma(\tau_A) \). The latter is defined in the time domain as the variance over time in the measured frequency of a source, where each measurement is averaged over a time interval \(\tau_A \) (with zero-dead time between measurement intervals). However, how the influence of the surface morphology manifests on the Allan variance and the associated phase noise still remains unexplored. This will be the topic of study in the present paper.

For more realistic treatment we will consider the presence of thermomechanical noise generated by the internal loss mechanisms in the resonator and momentum exchange noise generated from impinging surrounding gas molecules. This is because both types of noise lead to random displacements of the resonator, which are translated to frequency fluctuations and influence the Allan variance. Thermomechanical noise arises from coupling between a mechanical resonator and its dissipative reservoir. The coupling damps the resonator motion and induces spatial fluctuations in the resonator’s position at nonzero temperature. It could be a dominant source of frequency noise at a given mode of vibration, and it imposes an ultimate limit of detection for a dynamic micromechanical sensor. Notably, due to its small heat capacity, a nanoresonator can be also subject to rather large temperature fluctuations (which induce frequency fluctuations because dimensions and material parameters are both temperature dependent) depending on the thermal coupling strength to the environment. In addition, mass loading of the resonator can also take place due to adsorption and desorption of gas molecules, which is, however, a parametric noise leaving the quality factor unaffected.

Furthermore, the Allan variance, which gives the variance over time in the measured frequency, is defined as

\[
\sigma(\tau_A) = \frac{1}{12} \langle f_c^2 \rangle \sum_{m=2}^{N} \left\langle (f_m)^2 - \langle f_m \rangle^2 \right\rangle^2,
\]

where \(\langle f_m \rangle \) is the average frequency measured over the mth time interval \(\tau_A \) and \(f_c \) is the carrier frequency driving the nanoresonator.

The squared Allan variance is related to the phase noise density \(S_p(\omega) \) by

\[
\sigma(\tau_A)^2 = \frac{2}{\omega_c \tau_A} \int_0^{+\infty} S_p(\omega) \sin^4(\omega \tau_A/2) d\omega,
\]

where \(\omega_c \) is the driven carrier frequency acting perpendicular to the cantilever beam and \(\omega \) is the modulation frequency from the first harmonic \(\omega_m \).

Author to whom correspondence should be addressed. Electronic mail: g.palasantzas@rug.nl
In the presence of both the thermomechanical and momentum exchange noises, the quality factor of the resonator is given by $1/Q = 1/Q_{\text{in}} + 1/Q_{\text{gas,f}}$. Q_{in} is the intrinsic quality factor associated with thermomechanical noise, and $Q_{\text{gas,f}}$ is the quality factor associated with momentum exchange noise. The quality factor due to momentum exchange noise is given by $Q_{\text{gas,f}} = M_{\text{eff}} \omega_o / k_B T/m(\Delta A_{\text{on}})^{-1}$, with m the molecule mass, M_{eff} the effective resonator mass that oscillates, and A_{on} the rough surface area of the resonator.\(^{10}\) For an oscillating cantilever beam of quality factor Q, mass m, length L, and amplitude factor c_1 of the first harmonic mode with frequency ω_o, the frequency modulated phase noise spectrum $S_\phi(\omega)$ has the Lorentzian form\(^{14}\) $S_\phi(\omega) = A_c(\omega_o/[(\omega + \omega_o)^2 - \omega_0^2 + a_o^2/Q^2])$, with $A_c = (k_B T)/|\sigma|^2 L^2 m Q_{\text{in}}$. Substitution in Eq. (1) yields

$$\sigma(\tau) = (16A_o/\lambda_F)^2 (1 + Q_{\text{gas,f}}/Q_{\text{gas}}) \times \int_0^{\infty} \omega_o^2 \sin^2(x) [(4\omega_o\tau_a + 4x^2)^2 + (\omega_o\tau_a)^2] dx.$$

(2)

Our study will be performed for random self-affine rough surfaces observed in a wide range of surface engineering processes.\(^\text{17}\) If we assume for the roughness profile a single valued random function $h(r)$ of the in-plane position $r = (x, y)$ and a Gaussian height distribution, the rough area is given by $A_{\text{out}}/A_{\text{in}} = R_{\text{out}} = \int_0^{\infty} du \left(1 + \rho u e^{-u} \right)$ (Ref. 18), with $\rho = \sqrt{\langle \nabla h \rangle^2}$ the average local surface slope [\(\rho \approx \sqrt{\langle \Delta h(r)^2 \rangle / \langle h(r)^2 \rangle} \)]\(^{19}\), and $A_{\text{flat}} = 2w_r L$ the average flat surface area of the cantilever beam of width w_r. $Q_{\text{in}} = \pi\alpha_w L$ with α_w a lower lateral cutoff. As a result, we obtain $Q_{\text{gas,f}} = R_{\text{out}} Q_{\text{gas,f}}$ with $Q_{\text{gas,f}} = M_{\text{eff}} \omega_o/ k_B T/m(\Delta A_{\text{on}})^{-1}$. $\langle |h(q)|^2 \rangle$ is the roughness spectrum, which is required to calculate $\sigma(\tau)$. A wide variety of surfaces possesses the so-called self-affine roughness,\(^\text{18}\) with a roughness spectrum that scales as $\langle |h(q)|^2 \rangle \sim q^{2-2H}$ if $q \xi \gg 1$, and $\langle |h(q)|^2 \rangle \sim \text{const.}$ if $q \xi \ll 1$.\(^\text{18,20}\) This scaling is satisfied by the analytic model\(^\text{20}\) $\langle |h(q)|^2 \rangle = (2\pi q^2 \xi^2) / (1 + \xi^2 q^2)^{(1+H)}$, with $a = (1/2H)[1 - (1 + aq^2 \xi^2)^{-1/2}]$ if $0 < H < 1$, and $a = 1/2 \ln(1 + aq^2 \xi^2)$ if $H = 0$. Small values of $H (~0)$ characterize jagged or irregular surfaces, while large values of $H (~1)$ characterize surfaces with smooth hills/valleys.\(^\text{17,20}\) For other roughness models see Ref. 21.

The calculations of the Allan variance $\sigma(\tau)_{\text{f}}$ were performed for roughness amplitudes observed in real resonators in the range $w \sim 2-8$ nm,\(^\text{8}\) and $\alpha_w = 0.3$ nm. Figure 1 shows calculations of $\sigma(\tau)_{\text{f}}$ for two different values of the ratio $Q_{\text{in}}/Q_{\text{gas,f}}$. It becomes evident that the momentum exchange noise and through it the surface morphology of the resonator has strong influence for $Q_{\text{in}} \approx Q_{\text{gas,f}}$. Under these conditions as Fig. 2 indicates, the influence of the roughness exponent H appears to play significant role for relatively low frequencies $\omega_o\tau_a \ll 10$. This is also shown in Fig. 3 which shows the Allan variance for two different roughness amplitudes. In any case, the Allan variance increases with increasing roughness (decreasing H and/or increasing roughness ratio w/ξ) if the quality factor due to gas collisions is smaller than the intrinsic quality factor associated with thermomechanical noise.

For frequencies well off the peak resonance, but small compared to the resonance frequency or $\omega_o/Q < \omega < \omega_o$, the

FIG. 1. (Color online) $\sigma(\tau_a)$ as a function of $\omega_o\tau_a$ for $w=3$ nm, $\xi = 100$ nm, $H = 0.5$, $Q_{\text{in}} = 1000$, $\alpha_w = (16A_o/\lambda_F)$, and $Q_{\text{in}}/Q_{\text{gas,f}} = 100$.

FIG. 2. (Color online) $\sigma(\tau_a)$ as a function of $\omega_o\tau_a$ for $w=3$ nm, $\xi = 100$ nm, H as indicated, $Q_{\text{in}} = 1000$, $\alpha_w = (16A_o/\lambda_F)$, and $Q_{\text{in}}/Q_{\text{gas,f}} = 100$.

FIG. 3. (Color online) $\sigma(\tau_a)$ as a function of $\omega_o\tau_a$ for w as indicated, $\xi = 100$ nm, $H = 0.5$, $Q_{\text{in}} = 1000$, $\alpha_w = (16A_o/\lambda_F)$, and $Q_{\text{in}}/Q_{\text{gas,f}} = 100$.

Downloaded 12 Dec 2007 to 129.125.25.39. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp
phase noise has the form \(S_\omega(\omega) = (1/4 \pi \nu \nu)(\omega_o/\omega)^2 \) and Eq. (1) gives \(\sigma(\tau_o) = 1/\sqrt{4 \nu \nu \tau_o \nu \nu} \), where \(\nu = \nu_o/\pi A_c \). \(\sigma(\tau_o) \) falls inversely with the square root of the measurement time \(\tau_o \), the quality factor \(\nu \), and the resonator frequency \(\nu_o \). Increment of any of these factors leads to lower Allan variance. Notably, this approximate form applies quite well for \(\tau_o \) sufficiently large so that \(\nu_o \tau_o > 10 \). For the case of thermomechanical and momentum exchange noises, the Allan variance obtains the more intuitive form of

\[
\sigma(\tau_o) = \sigma_{in}(\tau_o) \left[1 + (Q_{in}/Q_{gas.f})R_{ou} \right]^{1/2},
\]

(3)

with \(\sigma_{in} = 1/\sqrt{4 \nu \nu \tau_o \nu \nu Q_{in}} \). Figure 4 shows the calculation using Eq. (3) of the Allan variance as a function of the quality factor ratio \(Q_{in}/Q_{gas.f} \). Significant influence of surface roughness takes place for \(Q_{in} \gg Q_{gas.f} \). In the opposite limit, \(Q_{in} \ll Q_{gas.f} \), we obtain from Eq. (3) \(\sigma(\tau_o) \approx \sigma_{in} \left[1 + (Q_{in}/Q_{gas.f})R_{ou} + \cdots \right] \).

In conclusion, we investigated the simultaneous influence of thermomechanical and momentum exchange noises on the Allan variance of nanoresonators with random rough surfaces. The influence of the roughness is becoming significant for measurement time \(\tau_o \) such that \(\nu_o \tau_o \sim 1 \) with \(\nu_o \) the fundamental resonance frequency of the resonator. The Allan variance increases with increasing roughness (decreasing roughness exponent \(H \)) and/or increasing roughness ratio \(w/\ell \) if the quality factor due to gas collisions is smaller than the intrinsic quality factor associated with thermomechanical noise. The present results are expected to be important in noise studies of NEMS where understanding the influence of surface morphology can be of significant importance.

8X. M. H. Huang, Ph.D. thesis, California Institute of Technology, 2004, Fig. 2-9, p. 36.