Lattice effects in HoVo3 single crystal

M. Sikoraa,b, C. Marquinaa,*, M.R. Ibarraa, A.A. Nugrohoc,d, T.T.M. Palstrac

aInstituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Facultad de Ciencias, Zaragoza 50009, Spain
bSolid State Physics Department, AGH University of Science and Technology, 30-059 Krakow, Poland
cSolid State Chemistry Laboratory, Materials Science Center, University of Groningen, Nijenborgh 4 9747 AG Groningen, The Netherlands
dFaculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia

Available online 12 March 2007

Abstract

We report the study of lattice effects in the Mott insulator HoVO\textsubscript{3} performed by means of linear thermal expansion on a single crystal in the temperature range 10–290 K. The holmium orthovanadate HoVO\textsubscript{3} reveals gradual orbital ordering (OO) below \(T_{\text{OO}} \approx 200 \) K and orders antiferromagnetically at \(T_N = 113 \) K. A first-order structural phase transition takes place at \(T_S \approx 38 \) K, which is probably accompanied by change of the OO type and hence the type of antiferromagnetic spin ordering.

\(r \) 2007 Elsevier B.V. All rights reserved.

PACS: 65.40.De; 75.80.+q

Keywords: Thermal expansion; Mott localisation; Phase transitions—structural

The transition-metal oxides with the perovskite structure ABO\textsubscript{3} have been intensively studied during the last years because of their intriguing properties, as colossal magnetoresistance, high-temperature superconductivity, etc. Among them, vanadium oxides display a very rich phenomenology related to the spin, orbital and lattice degrees of freedom. HoVO\textsubscript{3} belong to the family of V3+ oxides derived from YVO\textsubscript{3}. Since the Ho3+ and Y3+ ions have very similar ionic radius, the structural and electronic properties of both compounds are supposed to be similar. Indeed HoVO\textsubscript{3} reveals, similarly to YVO\textsubscript{3}, a distorted perovskite structure (space group Pbnm) at room temperature and exhibits similar sequence of magnetic and structural phase transitions as observed in YVO\textsubscript{3} [1]. Yttrium orthovanadate YVO\textsubscript{3} presents a distorted perovskite structure. It is a Mott insulator where the 3d V3+ magnetic moments order antiferromagnetically (AF) below \(T_N = 116 \) K. At temperatures higher than \(T_S = 77 \) K the spin order (SO) is C-type AF (ferromagnetic coupling along c-axis and AF within the ab-planes) whereas below \(T_S \) a change to a G-type AF structure (antiferromagnetic coupling in all directions) takes place through a first-order structural phase transition accompanied by a change in the unit cell volume [2]. A Jahn–Teller-ordered state at low temperature evidences the existence of orbital ordering (OO) which symmetry changes at \(T_S \) from G-type (all d\textsubscript{xy} orbitals occupied and alternatively occupied d\textsubscript{yz} and d\textsubscript{zx} ones) to C-type (alternative occupation within ab-planes and the same along c-axis) while cooling. In spite of the lack of SO above \(T_N \) the OO remains up to \(T_{\text{OO}} = 196 \) K, where a next structural phase transition takes place [3,4]. The changes of the OO structure of the YVO\textsubscript{3} have been proposed as the origin of the observed multiple temperature-induced magnetisation reversal processes [5].

Similar OO transitions as well as the magnetic transitions are the common feature of whole family of the RVO\textsubscript{3} orthovanadates (R being a rare-earth ion), whereas the first-order structural phase transition has been observed only in the compounds where \(R = \) Lu, Yb, Er, Dy [6]. In the latter work the phase transitions temperatures were reported for all the rare-earth orthovanadates except the HoVO\textsubscript{3} one.

In order to complete the phase transition diagram and have a deeper insight into the lattice and volume changes associated with the mentioned structural, magnetic and OO
transitions we have performed linear thermal expansion (LTE) measurements on a single-crystalline HoVO$_3$ synthesised using floating zone method [1]. The relative length change due to thermal expansion has been measured using the strain gauge technique: the relative resistance change of a gauge fixed on the sample (in this case parallel to each of the three crystallographic axes), is proportional to the relative length change $\Delta L/L$ [7]. The measurements have been performed from 290 K down to 10 K.

The LTE along the three crystallographic axes, measured when the temperature is increased, is shown in Fig. 1(a), while Fig. 1(b) presents the temperature dependence of the LTE coefficient α, which is defined as the first derivative of the LTE. The calculated volume thermal expansion and volume expansion coefficient are displayed in Fig. 1(c). The measurements show that the LTE has strong anisotropic character. Nevertheless, the measurements along the three crystallographic directions display some common features. When increasing the temperature an abrupt anomaly is observed at $T_S = 38$ K, which corresponds to a simultaneous contraction along the a- and c-axes ($\Delta L/L \approx 0.20\%$ and 0.23%, respectively), together with an expansion along the b direction ($\Delta L/L \approx 0.57\%$). The contractions and elongations observed in HoVO$_3$ are almost 20% larger than the respective values measured in YVO$_3$ [7], whereas the transition temperature is significantly lower. The comparison of the LTE measurements, performed while heating and cooling, reveals the existence of hysteresis in the structural transition, and therefore confirms the first-order character of this transition. On increasing the temperature, the progressive expansion of the a and c lattice parameters and the simultaneous decrease of the b-axis take place. Very weak anomalies (slope decrease) are detected in the LTE at the magnetic order transition temperature $T_N \approx 113$ K. Nevertheless the magnetic order transition is nicely revealed in the $\alpha(T)$ dependencies, shown in Fig. 1(c), as a decrease of absolute value of volume thermal expansion coefficient by $\alpha \approx -0.5 \times 10^{-5} \text{K}^{-1}$. Moreover, a drastic slope change is observed at $T_{OO} = 200$ K, which coincides with the appearance of a sharp peak in the specific heat measurements, which was associated with the OO transition [1]. This anomaly is specially marked in the LTE measured along the b- and c-axes. Nevertheless the $\alpha(T)$ dependencies show that all three crystal directions are involved in creation of the G-type OO.

The corresponding relative volume change with respect to the initial sample volume, Fig. 1(c), is $\Delta V/V \approx 0.15\%$. The thermal dependence of the volume shows a drastic change at T_S already seen in the LTE. In contrary to the linear expansion the increase of the HoVO$_3$ crystal volume at T_S is smaller than that measured in YVO$_3$ by 25%. Similar to YVO$_3$, HoVO$_3$ also reveals absence of significant volume change at the highest temperatures, which unambiguously indicate that the transition taking place at T_{OO} is really an effect related to the ordering of the electronic orbitals.

In summary, we measured LTE of a HoVO$_3$ single crystal in the temperature range 10–290 K. LTE measurements showed an anisotropic character and gave direct evidence of the creation of the OO state below
$T_{\text{OO}} = 200\, \text{K}$ and of the abrupt change of structure at $T_S = 38\, \text{K}$. The magnetic (spin) ordering was also recognised in the temperature dependence of the LTE coefficient α. The reduction of $T_S = 38\, \text{K}$ for $R = \text{Ho}$ compared with $77\, \text{K}$ for $R = \text{Y}$ is remarkable. The Shannon radius of Ho^{3+} is very similar to the radius of Y^{3+}. Therefore, the difference in spin/orbital reorientation temperatures, T_S, cannot be ascribed to an ionic size effect of the rare earth ion. On the other hand, both neighboring 4f elements Dy and Er, exhibit a $T_S \approx 67\, \text{K}$, which is similar to the value for $R = \text{Y}$. Therefore, the magnetic moment or other differences between yttrium and the rare earth elements can also not easily explain the difference in T_S. Finally, T_S is much larger than the magnetic ordering temperature of the 4f sublattice, which is below 10 K for $R = \text{Ho}$. An explanation of the trends of T_S but also of T_{OO} through the rare earth series, requires further analysis.

Authors acknowledge financial support by the European Project SCOOTMO RTN, (Contract no.: HPRN-CT-2002-00293) and by the Spanish Ministry of Science and Education (MAT2005-05565-C02-02).

References