Stability estimation of autoregulated genes under Michaelis-Menten type kinetics

Babak M.S. Arani∗
Department of Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47, 6700AA Wageningen, The Netherlands

Mahdi Mahmoudi†
Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen Nijenborgh 9 9747 AG Groningen, The Netherlands

Leo Lahti‡
Department of Mathematics and Statistics, FI-20014 University of Turku, Finland

Javier González§
Department of Mathematics and Statistics, Lancaster University Lancaster, LA1 4YF, UK.

Ernst C. Wit¶
Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen Nijenborgh 9 9747 AG Groningen, The Netherlands

Feedback loops are typical motifs appearing in gene regulatory networks (GRN). In some well-studied model organisms, including Escherichia coli, autoregulated genes, i.e. genes that activate or repress themselves through their protein products, are the only feedback interactions. For these types of interactions, the Michaelis-Menten (MM) formulation is a suitable and widely used approach, which always leads to stable steady-state solutions representative of homeostatic regulation. However, in many other biological phenomena, such as cell differentiation, cancer progression, and catastrophic in ecosystems, one might expect to observe bistable switch-like dynamics in case of strong positive autoregulation. To capture this complex behavior we use the generalized family of MM kinetic models. Here, we give a full analysis regarding the stability of autoregulated genes.

I. INTRODUCTION

Feedback interactions are essential components in a genomic network to shape cellular functions. There are many examples of important feedback loops in every organism. Naturally occurring oscillators, such as Cdc2, have intricate feedback mechanisms that allow a sustained oscillation [1]. The p53 – MDM2 feedback loop, in which the tumor suppressor protein p53 activates the gene MDM2 is negatively regulated by MDM2 [2, 3]. About 40% of the known transcription factors (TFs) in

E. coli regulate their own transcription [4, 5]. Often only noisy data on sparsely spaced time points are available to make sense of such systems.

In this paper, we focus on a special class of feedback loops in GRNs, the so-called autoregulation loops. Autoregulated genes are the genes that are regulated by the TF they encode. Interestingly, in E. coli no transcriptional feedback cycles have been found besides autoregulation loops [6, 7]. In fact, the E. coli transcriptional network is loosely cross-connected; on average, a TF regulates three genes and any gene is regulated by two TFs [6] only. The mean network connectivity gets even less at the level of operon interactions [6]. One reason for low cross-regulation is that it might be less expensive for a gene to control its regulation through its protein product than by another protein.

Both positive and negative autoregulated genes have their own biological functions. Auto-inhibition, which is
more common in *E. coli*, controls homeostatic regulation of the repressor gene and the genes it regulates. This stabilizes the GRN against cellular perturbations. Positive autoregulated genes, on the other hand, can switch between bistable states and lead to cell differentiation. This genetic switch can, therefore, affect other genes controlled by such a gene especially when it has a high degree of connectivity. In *E. coli*, for example, the positive autoregulated gene *CRP*, which regulates catabolic repression, has the highest degree of connectivity despite low mean connectivity of the entire transcriptional network [6, 8]. The effect of a genetic switch can even be stronger if the activator gene jumps into an irreversible state (see section II C and Figure 5).

To model autoregulation, one common approach is to consider linear activation models (e.g. [5]), where exact steady-state solution of an autoregulated gene can be obtained. However, more realistic generalized MM or Hill type of kinetic models produce a wider range of dynamic behavior and fit better to available data. They are able to model a bistable reaction of autoregulated genes in response to changes in cellular conditions. Structural changes in the kinetic parameters of the system can also lead to a hysteretic reaction, when the state of the autoregulated gene depends not only on its current condition but also on its past ones. Moreover, an irreversible genetic switch is possible in some cases, when the transition between the bistable modes of the autoregulated gene is unidirectional.

In Section II of this manuscript we use a coupled deterministic system of differential equations to model over time the average quantitative behavior of gene expression levels and protein abundances in a single cell. Although autoregulation is very common it often involves modification and other forms of cooperativity by other molecules, which are not included in our model. Cooperativity, nevertheless, within an autoregulated system is possible, as shown in section II C, and the model is also appropriate as a phenomenological model to describe allosteric, as discussed in section II D. Since our goal is to understand the stability behavior of autoregulated genes measured with noise, in Section III we combine our analysis with some aspects of modern statistical inference of dynamical systems. Although our emphasis is on genomics, the phenomena of bistability and hysteresis are very common at larger scales. Ecosystems, such as lakes, coral reefs, woodlands, deserts and oceans, can shift between alternative stable states [9].

II. GRN STABILITY DYNAMICS

A. Gene autoregulation

According to the central dogma of molecular biology each mRNA molecule produced in the nucleus of the cell encodes the genetic information to produce a protein. Such proteins are the building blocks of life and may have structural functions, such as enzymatic properties. Some of them, however, activate or repress the transcription of other genes. These proteins are called transcription factors and, together with the genes they regulate, form a GRN.

When a gene regulates itself, a loop appears in the GRN (See Figure 1). By the principle of mass-action kinetics it is natural to assume that the gene expression, on average, changes according to the following ordinary differential equation,

$$
\dot{x}(t) = p(t; \theta, z) - \delta x(t),
$$

where $x(t)$ represents the mRNA concentration at time t, δ is the degradation rate of mRNA and $p(t; \theta, z)$ is a transcription function that describes how the TF z regulates the gene given some set of parameters θ. Reversely, the TF z is encoded by the gene according to

$$
\dot{z}(t) = \rho x(t) - \tau z(t),
$$

where τ is the protein degradation rate and ρ is the translational rate of the gene.

Several models have been considered in the literature to define $p(t; z, \theta)$ in (1) ranging from linear approaches [10] to non-parametric methods [11]. In practice, experimental work suggests that the response of the mRNA abundance to the concentration of a TF follows a *Hill curve* [12]. This response can be well described by the family of Michaelis-Menten (MM) models. In case of gene activation the transcription function is assumed to satisfy

$$
p^+(t; \theta, z) = \frac{\beta z^m}{\gamma + z^m} + \phi,
$$

for $\theta = \{\phi, \beta, \gamma\}$ and $m \in \mathbb{N}$. In this model the parameter ϕ is able to detect possible non-specific activation. More precisely, the parameter ϕ is the basal transcription rate — usually zero for most *in vitro* data. The parameter β describes the maximum speed by which the TF regulates the gene [13, 14]. The parameter γ represents

![Diagram](image-url)
the dissociation constant of TF from its DNA binding site [15]. Finally, the parameter \(m \) is called the Hill coefficient. This parameter exhibits level of cooperativity, usually less than the number of DNA binding sites [16], in which a high Hill coefficient is representative of a high degree of cooperativity. Similarly, in case of gene repression, the response can be modelled by

\[
p^-(t; \theta, z) = \beta \frac{1}{\gamma + z^m} + \varphi.
\]

In this paper, our focus will be on the case of gene activation. The system is always stable under gene repression and exhibits smooth behavior in response to changes in the parameters. We refer the reader to the supplementary information for all mathematical proofs. We will study the stability properties of a family of MM kinetics models.

B. Stability of MM kinetics models

Under the MM kinetics the interaction between TF and mRNA in an autoregulated gene occurs according to the following planar system of differential equations

\[
\begin{align*}
\dot{x} &= \beta \frac{z}{\gamma + z} + \varphi - \delta x, \\
\dot{z} &= \rho x - \tau z,
\end{align*}
\]

where we assume that all the parameters are positive and state variables \(x \) and \(z \) lie in the positive quadrant \((0, \infty)^2\). We have the following result.

Result 1 System (3) has a unique equilibrium in the positive quadrant and it is globally asymptotically stable.

Figure 2 illustrates Result 1, which shows various solutions of system (3) for \(\beta = 6, \rho = 5, \delta = 0.5, \tau = 1, \gamma = 5 \) and \(\varphi = 0.2 \) when different initial conditions \(z(0) \) and \(z(0) \) are considered. The equilibrium points, or values in which constant functions are solutions of the system (3) (horizontal dotted lines), are unique. Also, the solutions of the ODE for different initial points converge with \(t \) to the equilibrium point due to the global asymptotic stability of the system.

C. Hill coefficient 2: hysteresis, bistability, and irreversible transition

In this section we deal with a more complicated family of MM kinetics models. In particular we focus on cases where the transcription function takes the form

\[
\beta \frac{z^2}{\gamma + z^2} + \varphi.
\]

We show that the corresponding system of ODEs exhibits a richer class of dynamical behavior compared to the standard MM kinetics models. One “limitation” of the approach taken is that to justify a generalized Michaelis-Menten equations with a Hill coefficient \(m \) of 2 or more one needs cooperativity. If the regulator protein binds DNA as a dimer, which is frequently the case in bacterial signal transduction, then \(m = 2 \). Although it is more common in multiple species systems, this can occur in autoregulated systems, such as the recently described MARCH1 regulator [17]. We will show that the generalized family of MM equations have the capability to represent bistability as well as hysteresis, which is a characteristic of positive feedback loops that the standard family of MM models cannot represent.

For the generalized MM system with Hill coefficient 2,

\[
\begin{align*}
\dot{x} &= \beta \frac{z^2}{\gamma + z^2} + \varphi - \delta x, \\
\dot{z} &= \rho x - \tau z,
\end{align*}
\]

the following result explains its core dynamics.

Result 2 Let \(A = (\beta + \varphi) \frac{\gamma}{\delta \tau} \), \(B = \gamma \varphi \frac{\rho}{\delta \tau} \), and

\[
\Delta = 18 \gamma AB - 4 A^3 B + \gamma^2 A^2 - 4 \gamma^3 - 27 B^2.
\]

Then, the equilibria of (4) lie only in the positive quadrant. Moreover:

(a) (Stability) If \(\Delta < 0 \) then (4) has a unique equilibrium and it is globally asymptotically stable.

(b) (Alternative stable states) If \(\Delta > 0 \) then (4) has three equilibria: two alternative stable equilibria separated by a saddle in between. Hence, system (4) is bistable.
Stability states if $\Delta = 0$

Irreversible shift

NO

If $\Delta < 0$

Unique equilibrium

Alternative stable states if $\Delta > 0$

YES

If $\beta > 8\varphi$, CP=γ

If $\gamma > 27\theta^{m-2}$, CP=β

YES

If $\theta^{2} > 4\gamma$

NO

Bistability

YES

If YES

YES

If YES

YES

If YES

TABLE I. Table summarizing the main results of this work. See Section 4 for details and definitions of Δ, θ, β as well as further considerations on the nature of the different equilibria. CP is abbreviation for control parameter.

<table>
<thead>
<tr>
<th>Hill coef.</th>
<th>Stability</th>
<th>Bistability</th>
<th>Hysteresis</th>
<th>Irreversible shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 1$</td>
<td>YES Unique equilibrium</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>$m = 2$</td>
<td>YES Unique equilibrium</td>
<td>YES Alternative stable states if $\Delta > 0$</td>
<td>YES $\gamma > \theta^{m}$, CP=β</td>
<td>YES CP=φ</td>
</tr>
<tr>
<td>$m > 2$</td>
<td>YES Unique equilibrium</td>
<td>YES Alternative stable states</td>
<td>YES $\gamma > \frac{\varphi}{m}$, CP=$\varphi$</td>
<td>YES CP=φ</td>
</tr>
</tbody>
</table>

Note that this result also holds for values of m in the interval $(1,2)$.

(c) (Tipping point) If $\Delta = 0$ then (4) has two equilibria: a stable equilibrium and a non-hyperbolic one in which (4) undergoes a saddle-node bifurcation.

The model parameters are considered fixed in a standard analysis. However, note that the model parameters, potentially even the model structure described by the ODE can change under changing environmental conditions. The maximum protein production rate β, the dissociation constant γ, which describes the inverse transcription efficiency, or the basal transcription rate φ could change as a function of temperature, for instance. Hence, environmental changes can therefore potentially bring the system close to a tipping point, where it is prone to abrupt shifts between alternative states (see Figure 3A and Figure 5). It is also worth noting that factors external to our model, such as the availability of component molecules, or activity of other partially competing processes and binding targets, can affect the process in vivo.

Consider Figure 3A. Imagine that system is rested at its upper branch and a certain parameter (here γ) is continuously increased until at a tipping point (F_{2}) the system jumps down to the lower branch. If the parameter is then decreased then system will jump back to upper branch at a different tipping point (F_{1}). In short, the system jumps to another stable branch and jumps back to its original stable branch through the so-called “hysteresis loop”. Hysteresis is often associated with bistability [1] although this is not always the case for any bistable system [18] including ours (see Result 3C).

Here, the quantity Δ plays a central role in determining the stability dynamics of system (4). We explain how changes in Δ lead to hysteresis: In Figure 3A, if Δ is negative, then system is stable and can rest in only one stable branch (for example, upper branch). Under a saddle-node bifurcation (F_{1}), another stable equilibrium and an unstable saddle point bifurcate as certain parameters (for instance, γ) change and Δ crosses into positive values. However, the system continues to follow the upper branch. If the parameters continue to change and at some threshold bounce the Δ back to zero again (occurrence of second bifurcation, F_{2}), the upper branch and unstable dashed curve coalesce and turn into an unstable equilibrium. If further changes in the parameters make Δ to become negative then this equilibrium disappears so that the system has to jump down to the lower branch. Conversely, the system jumps back to upper branch at the first bifurcation point once the parameters change in opposite direction. Note that the system can not jump back to its original state at the second bifurcation point. This means that further changes of the parameters in opposite directions is necessary for the system to get back to its primary stable branch.

The bistable nature of the system (4) leads to a bimodal distributions of protein abundance and gene expression levels. This gives rise to the coexistence of two sub-populations of autoregulated genes: “low protein abundance and gene expression level” and “high protein abundance and gene expression level” (see Figures 3 and 4).

In hysteresis, transitions between alternative stable states are reversible. However, there is an extra “cost”. Biologically speaking, once the cell transits from one mode to the other one in response to changes in cellular conditions it is able to restore its previous mode once we reverse the biological conditions. However, the same amount of changes in cellular conditions which made a cellular switch is not sufficient for the cell to regain its original mode. An extra cellular change, or cost, is necessary (see Figure 3A and the first example after Result 3).

On the other hand, our model can also predict the irreversible transitions between stable states (see Figure 5 and the second example after Result 3). This means that transitions are only possible from one stable state to the other one and not the opposite. This may explain the existence of an interesting biological phenomenon that autoregulated genes can exhibit: under hysteresis the autoregulated gene is able to switch between high and low expression levels while this is not the case for tran-
FIG. 3. Illustration of stability scenarios and hysteresis. Bifurcation diagram of the mean gene expression (\bar{x}) as the dissociation parameter varies. It describes how autoregulated gene drops in expression level as the TF dissociates from promoter region. (B) The same bifurcation diagram as in (A) for both state variables. (C) ODE solution which is convergent to an equilibrium ($\gamma = 2.5$ is in the stable region). (D) ODE solution can converge to two distinct equilibria (based on the choice of initial values) since the system is bistable ($\gamma = 7.5$ is in the bistability region).

positions due to an irreversible genetic switch (transitions are only possible from low expression levels to high ones but not the opposite). Perhaps, under an irreversible genetic switch the gene behaves in a “conservative” manner: when the cellular decision for transition is made the gene enters a state with an everlasting fate.

The following result gives us two cases under which system (4) can exhibit hysteresis as well as a case in which irreversible transition occurs.

Result 3 (a) (Hysteresis) Assume that all the parameters are fixed except γ. Then (4) undergoes hysteresis provided that

$$\beta > 8\varphi.$$

(6)

(b) (Hysteresis) Assume that all the parameters are fixed except β. Then (4) undergoes hysteresis provided that

$$\gamma > 2\tau^2 \left(\frac{\varphi \rho^2}{\delta \tau}\right).$$

(7)

(c) (Irreversible transition) Assume that all the parameters are fixed except φ. Then (4) exhibits irreversible transition provided that

$$\left(\frac{\beta \rho}{\delta \tau}\right)^2 > 4\gamma.$$

(8)

We consider some examples. First, let $\beta = 6$, $\varphi = 0.2$, and choose the rest of parameters in which we have $\rho = 1$. Then condition (6) simply holds. Some calculations show that the first and second bifurcations happen
at $\gamma_- \approx 4.6340$ and $\gamma_+ \approx 10.2860$ as we increase the parameter γ (see Figure 3A). Imagine that the system starts at the beginning of the upper leg of Figure 3A. Then as we increase the dissociation parameter γ gradually the system follows the upper branch. At $\gamma = \gamma_+$ the system has to jump down to the lower branch and rests there as we increase γ further. Reversely, if γ decreases the system jumps up to the upper branch at the first bifurcation point $\gamma = \gamma_-$. Biologically this may mean that the autoregulated gene drops in expression gradually as the TF tends to dissociate more and more from the promoter binding site. Then it switches into a low expression regime as a certain dissociation threshold is passed.

However, if $\gamma = 1$, $\beta = 20.5$, and $\frac{\rho}{\delta \tau} = 0.1$, then condition (8) holds. By Result 3(c) an irreversible transition occurs: as we increase φ the system jumps up at $\varphi \approx 1.3100$ to the upper branch but never jumps down if we decrease φ (see Figure 5). Biologically speaking, as cellular perturbation φ increases the autoregulated gene switches irreversibly. See [19] for a detailed analysis of the passage from hysteresis to irreversibility in budding yeast.

D. Generalized MM kinetics with $m > 2$

Higher Hill coefficients in natural autoregulated systems are possible. [20] report cooperativity in several E. coli autoregulated genes with Hill coefficients of 3. The model can also be seen as a phenomenological model for describing allosteric cooperativity, which involves the binding of exogenous ligands to the protein, which can result in fractional Hill coefficients [21, 22]. Furthermore, the absence of feedback can be obtained by letting
FIG. 6. Illustration of critical transitions an autoregulated gene undergoes. The upper surface (right hand side of (11)) distinguishes transitions between stable and bistable modes of gene while lower surface (right hand side of (10)) distinguishes transitions between bistable and irreversible modes.

$m \to \infty$. For the cases where $m > 2$ no closed form solution exists for the analysis of the dynamical behaviour of the following Generalized MM formulation

$$\dot{x} = \beta \frac{z^m}{\gamma + z^m} + \varphi - \delta x,$$

$$\dot{z} = \rho x - \tau z,$$ \hspace{1cm} (9)

Nevertheless, the same results hold as for the case $m = 2$. The following result describes the dynamic scenarios, which holds for values of m in the interval $(1, 2)$, too.

Result 4 Let $m > 2$, and consider the following polynomial

$$f(z) = z^{m+1} - (\beta + \varphi) \frac{\rho}{\delta \tau} z^m + \gamma z - \varphi \frac{\rho}{\delta \tau}.$$

Which has either one, two, or three positive roots. Moreover

(a) (Stability) If f has a unique positive root then (9) has a unique equilibrium in $(0, \infty)^2$ and it is globally asymptotically stable.

(b) (Bistability) If f has three positive roots then (9) has three equilibria in $(0, \infty)^2$: two alternative stable equilibria with a saddle in between. Hence, (9) is bistable.

(c) (Tipping point) If f has two positive roots then (9) has two equilibria in $(0, \infty)^2$: a stable equilibrium and a non-hyperbolic one in which (9) undergoes a saddle-node bifurcation.

Therefore, in the case of gene activation the generalized MM formulation also exhibits bistability and hysteresis for $m > 2$. Using more advanced mathematical methods we were able to extend some of the results of Result 3 to the case of $m > 2$ as follows.

Result 5 (a) (Irreversible vs. hysteretic bistability) Assume that all the parameters are fixed except φ and let $\theta = \frac{\beta \rho}{\delta \tau}$. Then (9) exhibits irreversible transition if

$$\gamma < \bar{\gamma} = \frac{\theta^m (m-1)^{m-1}}{m^m},$$ \hspace{1cm} (10)

In fact, this is the only case in which one can observe irreversible bistability. Moreover, for higher values of γ (9) exhibits hysteresis if

$$\gamma < \frac{(m + 1)^{m+1}}{4^m} \bar{\gamma},$$ \hspace{1cm} (11)

(b) (Hysteresis) Assume that all the parameters are fixed except β and let $\theta' = \frac{\varphi \rho}{\delta \tau}$. Then (9) undergoes hysteresis provided that

$$\gamma > \theta'^m \left(\frac{m + 1}{m - 1} \right)^{m+1}.$$ \hspace{1cm} (12)

See Figure 6 for a graphical illustration of this result. For a summary of this and other results of this paper see Table I.

III. EXPERIMENTS

A. Simulation study

The goal of this section is to illustrate how the results obtained in Section II can be used to gain some knowledge about the dynamical behaviour of real systems. In the sequel, we will focus on the parameter Δ defined in (5), since it contains all the necessary information to know if a system is stable ($\Delta < 0$), bistable ($\Delta > 0$) or if it has a bifurcation point ($\Delta = 0$). Our goal is, therefore, to infer Δ from noisy samples of gene expression and TF activity levels of autoregulated genes.

Maximum likelihood inference of Δ can be carried out through the estimation of the parameters $\beta, \rho, \delta, \tau, \gamma$ and φ and plugging them into (5) for obtaining Δ. In order to obtain such estimators we use the method proposed in [23], which has been successfully applied in the identification of both the parameters and hidden components of gene regulatory networks [14]. In the Supplementary Materials we have included a description of this approach for the system in (4).
We analyze the dynamical behaviour of (4) with a simulation study where \(\Delta \) is estimated for different synthetically generated datasets. Motivated by Results 2 and 3, we work with four scenarios in which we fix the values of the parameters of system (4) in a way that stability, bistability or bifurcation occur. See Table II for details.

We consider the first example right after Result 3. Given the solutions of system (4) in the four previous scenarios we sample \(x \) and \(z \) in 100 equally spaced points in the interval \([0, 4]\) and we perturb the resulting vector with Gaussian noise with mean zero and variance 0.01. Figures 7A–D show the obtained samples in the four cases. Note that although the datasets look similar at a first glance, they correspond to three completely different dynamic scenarios.

We repeat the data simulation procedure 500 times and in each case we estimate \(\Delta \) as mentioned above. Figure 7E shows the estimated density functions of \(\Delta \) for the 500 datasets in the four cases. The mode of the estimated distributions is always close to the true value of

<table>
<thead>
<tr>
<th>Dynamics</th>
<th>(\gamma)</th>
<th>(\Delta)</th>
<th>(\hat{\Delta}) (S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario A</td>
<td>Stability</td>
<td>2.5</td>
<td>-166.2 (-164.6) (10.3)</td>
</tr>
<tr>
<td>Scenario B</td>
<td>Bistability</td>
<td>7.5</td>
<td>239.5 (251.1) (103.7)</td>
</tr>
<tr>
<td>Scenario C</td>
<td>Bifurcation</td>
<td>4.6</td>
<td>0.0 (2.8) (18.4)</td>
</tr>
<tr>
<td>Scenario D</td>
<td>Bifurcation</td>
<td>10.3</td>
<td>0.0 (30.9) (80.6)</td>
</tr>
</tbody>
</table>

TABLE II. Four simulated scenarios. We generate data using system (4). The value of dissociation constant \(\gamma \) changes in order to obtain different dynamic scenarios as illustrated in Figure 3A. The rest of the parameters are fixed to \(\beta = 6, \rho = 0.5, \delta = 0.5, \tau = 1, \varphi = 0.2, x(0) = 0 \) and \(z(0) = 10 \). The estimated stability coefficient \(\Delta \) significantly diverges from 0 in the first 2 scenarios and is consistent with 0 in the final 2 scenarios, showing that the dynamics can be inferred from noisy data on the system.
FIG. 8. A) Observed data for the autoregulated gene INO4 in *S. cerevisiae* and the obtained ODE solution after estimating the parameters of the system. The value $\hat{\Delta} < 0$ suggests that the system is stable. B) Observed data for the autoregulated gene SCO3217 in *Streptomyces coelicolor* and obtained ODE solution after estimating the parameters of system (4). The value $\hat{\Delta} > 0$ suggests that the system is bistable, which may provoke bimodal effects at a population level.

Δ, which indicates the ability of the approach to detect different dynamical behaviours. The noise in the data produces certain amount of variability in the estimates of Δ, which is reflected in the shape of the distribution of $\hat{\Delta}$. In cases of stability (Figure 7A) the distribution is symmetric around the true value of Δ. The results of this experiment show how the different dynamics of an autoregulated gene can be estimated from noisy data. Notice that this is done for data collected in an interval in which the system did not necessarily converge to an equilibrium point, which shows the power of this approach in scenarios where ability to sample in long intervals is limited.

B. Autoregulation of the yeast autoregulator INO4

We use the model to analyze the stability properties of the INO4 autoregulated gene (Affymetrix probe-set 1774516_at) in yeast. We use a synchronized $\Delta bar 1$ strain of *S. cerevisiae* observed in duplicate across 41 time points, separated by 5 minutes and totally covering 200 minutes after synchronization [24]. This corresponds to approximately three cell cycle periods. We have only a partially observed system: we know the mRNA abundances but information about the protein abundances is not available. Therefore, we treated protein abundance, z, as a latent variable in parameter estimation. This means that the formulation in (9) is potentially unidentifiable. Fortunately, we can cancel the parameter ρ by rescaling the protein concentration z in (2) withouth any need to rescale the mRNA concentrations x. We apply the rescaling $z = \rho \zeta$ which gives

$$\dot{x} = \beta \frac{\zeta^m}{\gamma^* + \zeta^m} + \varphi - \delta x$$

$$\dot{\zeta} = x - \tau \zeta,$$

where $\gamma^* = \gamma / \rho^m$. For notational convenience, we will drop the asterisk in γ^*.

We fit the autoregulatory model for Hill parameters from 1 to 5 using the generalized Tikhonov regularization [25] described in supplementary materials Section III A. The minimum AIC is found for $m = 2$, suggesting that the best fit kinetics is more complex than a simple MM model. The estimated parameters are $\hat{\gamma} = 0.841, \hat{\beta} = 0.133, \hat{\varphi} = 0.019, \hat{\delta} = 0.012, \hat{\tau} = 3.374$. Using that in the latent model $\rho = 1$, we obtain an estimate of the stability parameter $\hat{\Delta} = -46.4 < 0$. This suggest that the INO4 autoregulation in the yeast system is, in fact, stable. The fit of the system for $m = 2$ is shown in Figure 8A.

C. Autoregulated CdaR in *Streptomyces coelicolor*

Next, we consider an experiment involving gene SCO3217 of the *Streptomyces coelicolor* bacterium. This is an autoregulated gene that produces the transcription factor CdaR. This gene is an important trigger of a cascade of genes that make *Streptomyces coelicolor* produce calcium dependent antibiotic. The protein CdaR is an activator TF, so the generalized MM formulation in system (4) is adequate to study its autoregulatory dynamical behaviour [26].

The experiment used 2-channel microarrays to sample, destructively, a *Streptomyces coelicolor* wildtype strain at different times after chemical induction of the CdaR TF
The Streptomyces coelicolor wildtype strain was grown on a solid medium. At each time point two biological replicates were collected. The original data set consists on a dataset with 10 measurements of the mRNA expressions and the CdaR abundances collected at 16, 18, 20, 21, 22, 23, 24, 25, 39 and 67 minutes after starting of the experiment. At the first time point we observed an increase in both protein and mRNA expression, which later converge to a steady state situation. In this analysis we study such recovery so we only consider the 7 data points collected after the first 20 minutes. We follow the statistical approach described in Section III A to estimate the parameters of the system (4) from the collected data. In order to select the best model to fit the data we use the Akaike information criterion (AIC) to choose between GMM models with Hill coefficients $m = 1, 2, 3, 4$. Comparison between the values of the AIC for the four models, shows that the model with $m = 2$ is preferred.

In Figure 8B we show the data points and the smoothed functions obtained from the parameter estimation approach. The obtained parameter estimates are $\hat{\beta} = 1024.8$, $\hat{\rho} = 0.001$, $\hat{\delta} = 1.08$, $\hat{\tau} = 0.001$, $\hat{\gamma} = 976.2$, and $\hat{\varphi} = 0.001$. From these values we can infer the value of Δ and therefore to gain some insight about the stability properties the system. In particular, by plugging the parameter estimates in (5) we obtain that $\hat{\Delta} = 8.5 \times 10^{11}$, which indicates, following Result 2, that the system is bistable. A caveat about his result is the small size of the data set used in the experiment. We think however, that this result should be taken into account in further analysis of this system since variations in the initial conditions of the experiment may lead to different steady-state solutions for mRNA concentration and protein level.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Autoregulation is a process common in biological systems, such as GRN. For example, autoregulation is the only type of feedback loop existing in the transcriptional network of the well-characterized model organism E. coli. The aim of this paper has been to apply quantitative methods to unravel the implications of this mechanism. We were able to manifest diverse cellular scenarios emerging from autoregulation through a rather simple, but realistic dynamic system model, which is analytically tractable. Although the model parameters are fixed in a standard analysis, they can change due to environmental changes (for instance as a function of temperature).

The generalized MM kinetics model is capable of predicting typical properties of positive and negative autoregulated genes: it leads to steady state solutions in the case of negative autoregulation, which represents homeostatic regulation. It can exhibit bistability in the case of positive autoregulation, which represents developmental differentiation. In the later case, the gene can shift between alternative stable states (low and high gene expression levels). Furthermore, in response to gradual changes in cellular conditions, the generalized MM is able to show a discontinuous switch-like response, which is common in biological systems, including cell cycle regulation and cell differentiation.

We applied the model to two typical noisy time-course expression data involving the autoregulated genes INO4 in S. cerevisiae and SCO3217 in S. coelicolor. In the first case we find that the overall system is stable, whereas in the second example the situation is more complicated. Our statistical analysis about the dynamical behavior of this autoregulated gene, reveals that its kinetic parameters lie well in the bistability region of the generalized MM model. Furthermore, we found correlation between bistable behavior and bimodal distribution of gene expressions using simulated data. The model is also capable of exhibiting irreversible shifts between bistable states. Such a phenomenon is representative of an irreversible genetic switch. This can, perhaps, lead to so-called “conservative” cellular decision making since the cell cannot restore its primary state. However, more research is necessary to verify this through experimental data.

Each cell is always subject to cellular noise or perturbations, which can alter cellular activities. Under high noise levels, the cell might alternate between bistable modes with kinetic parameters far from bifurcation points. It is an intriguing question what the maximum cellular noise can be that the gene can absorb without being tipped into an alternative state. Such a question could perhaps be answered through Freidlin-Wentzell theory of random perturbations [27] using a suitable potential function, which for gradient systems always exists. However, many systems including GRN are not gradient systems, so therefore it would be interesting if a quasi-potential landscape with meaningful biological interpretations could be constructed [28]. An alternative approach would be to extend our deterministic model to the following simple Langevin system with additive noise

$$dx = \left(\frac{\beta z^m}{\gamma + z^m} + \varphi - \delta x\right)dt + \sigma_1 dW_1,$$

$$dz = (\rho x - \tau z)dt + \sigma_2 dW_2,$$ \hspace{1cm} (13)

where W_1, W_2 are wiener processes and σ_1, σ_2 are the corresponding noise intensities. Then, one can consider the corresponding backward Kolmogorov [29] or backward Fokker-Planck [30] equation of (13) and calculate the mean first exit time from the attraction basins.

ACKNOWLEDGMENTS

Javier González and Ernst Wit thank the support of the project SBC-EMA-435065. Leo Lahti was supported by Academy of Finland (grants 295741 and 307127).