Long-term effects of husbandry procedures on stress-related parameters in male mice of two strains
Van Loo, PLP; Van der Meer, E; Kruitwagen, CLJJ; Koolhaas, JM; Van Zutphen, LFM; Baumans, [No Value]

Published in:
Laboratory Animals

DOI:
10.1258/002367704322968858

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-03-2019
Long-term effects of husbandry procedures on stress-related parameters in male mice of two strains

P. L. P. Van Loo¹, E. Van der Meer¹, C. L. J. J. Kruitwagen², J. M. Koolhaas³, L. F. M. Van Zutphen¹ & V. Baumans¹, ⁴

¹Department of Laboratory Animal Science, Utrecht University, PO Box 80.166, 3508 TD Utrecht, The Netherlands, ²Center for Biostatistics, Utrecht University, Padualaan 14, 3584 CH Utrecht, The Netherlands, ³Department of Animal Physiology, University of Groningen, PO Box 14, 9750 AA, Haren, The Netherlands and ⁴Karolinska Institutet, 17177 Stockholm, Sweden

Summary

In socially unstable groups of male laboratory mice, individuals may experience a chronic stress situation. Previous experiments have shown that the transfer of specific olfactory cues during cage cleaning, and the provision of nesting material decrease aggression and stress in group-housed male mice. In this study, the combined effect of these husbandry procedures were tested for their long-term effect on stress in groups of moderately aggressive [BALB/c] and severely aggressive [CD-1] male mice. The physiological and behavioural stress-related parameters used were body weight, food and water intake, spleen and thymus weight, adrenal tyrosine hydroxylase activity, urine corticosterone levels and behaviour in a cage emergence test. Long-term provision of nesting material and its transfer during cage cleaning was found to influence several stress-related physiological parameters. Mice housed in cages enriched with nesting material had lower urine corticosterone levels and heavier thymuses, and they consumed less food and water than standard-housed mice. Furthermore, marked differences were found between strains. CD-1 mice were less anxious in the cage emergence test, weighed more, ate and drank more, and had heavier thymuses but lighter spleens and lower corticosterone levels than BALB/c mice. We conclude that the long-term provision of nesting material, including the transfer of nesting material during cage cleaning, reduces stress and thereby enhances the welfare of laboratory mice.

Keywords Husbandry; environmental enrichment; male mice; stress; welfare

Correspondence to: P. L. P. Van Loo
E-mail: P.L.P.vanloo@vet.uu.nl

Accepted 16 October 2003 © Laboratory Animals Ltd. Laboratory Animals (2004) 38, 169–177
Baumans 2000). Before applying any kind of environmental enrichment, its presumed effect on the well-being of the animals, both in the short and in the long term, need to be verified (Shepherdson et al. 1998). Several kinds of environmental enrichment have been shown to decrease inter-male aggression (Ward et al. 1991, Armstrong et al. 1998, Ambrose & Morton 2000), whereas other enrichments appear not to affect inter-male aggression (Eskola & Kaliste-Korhonen 1999), or even increase inter-male aggression (McGregor & Ayling 1990, McGregor et al. 1991, Haemisch & Gärtner 1994, Haemisch et al. 1994, Van Loo et al. 2002). In previous experiments we found that the amount of aggression in group-housed male mice significantly decreased when nesting material was introduced in the cages (Van Loo et al. 2002), and when nesting material was transferred during cage cleaning (Van Loo et al. 2000). These studies were carried out with an inbred strain (BALB/c), known to be moderately aggressive (Eskola & Kaliste-Korhonen 1999, Van Loo et al. 2000) and particularly susceptible to chronic stress exposure (Kopp et al. 1999).

The aim of the present study was to investigate the long-term effect on aggression and stress-related parameters of a combination of factors, previously found to decrease aggression in group-housed male mice of the BALB/c strain, and to investigate whether these effects could be extrapolated to a more aggressive mouse strain (CD-1, Parmigiani et al. 1999). This paper primarily deals with the housing and husbandry effects on stress-related parameters. To obtain an accurate estimate of the level of stress experienced by the mice, a wide variety of stress-related parameters were measured both during life and post-mortem, and included measures reflecting different bodily responses to challenges. As general physiological parameters, food and water intake and body weight were measured. The level of anxiety of the mice was tested in a cage emergence test. Spleen and thymus were weighed to reveal possible gross immunodepressive effects, and finally two neuro-endocrine measures reflecting HPA axis and sympathetic activation in response to challenges (urine corticosterone levels and adrenal TH-activity, respectively) were measured. Effects on aggression are published elsewhere (Van Loo et al. 2003a), as is a thorough review on the housing and management of male mice (Van Loo et al. 2003b).

Methods

Animals and husbandry
Sixty male mice of the BALB/cAnNCrlBR (BALB/c) and sixty male mice of the Swiss:CD-1(ICR)BR (CD-1) strain were used. On arrival, all animals were 6 weeks old. Per strain, the animals were randomly divided into 20 groups of three mice, and housed in wire-topped clear Perspex Makrolon® type II cages (375 cm², Tecniplast Milan, Italy) provided with 50 g sawdust (Lignocel® 3/4; Rettenmaier & Söhne, Ellwangen-Holzmühle, Germany). Half of the groups received nesting material (two Kleenex tissues, Kimberly-Clark Corporation®, Ede, The Netherlands) in addition to the usual bedding material (‘enriched’). The other groups served as controls, without nesting material (‘standard’). Pelletted food (RMH-B®, Hope Farms, Woerden, The Netherlands) and tap water were available ad libitum. The animal room had a controlled temperature (23–24°C), humidity (60 ± 5%) and ventilation (15–20 air changes/h). The artificial light/dark cycle was 12:12 with lights on at 07:00 h. The mice were marked on the tail as well as on the fur with a black waterproof marker to enable individual identification. Marks were renewed weekly prior to cage cleaning. After arrival the mice were allowed to adapt to their novel housing condition for one week.

Procedure and behavioural data collection
Cages and wire-tops were cleaned weekly. For enriched cages, the nesting material was transferred from the dirty cage into the clean cage and half of a new tissue was added to compensate for loss due to
shredding or eating. Prior to cage cleaning, the mice were weighed and marked, wounds were counted, and food and water were weighed and refreshed. At the age of 9, 12, 15, 18 and 21 weeks, the behaviour of the mice was recorded on videotape for a period of 30 min immediately following cage cleaning. The number of agonistic encounters scored was used to classify individual animals as dominant (dom), most attacked subordinate (sub+) or least attacked subordinate (sub−). Detailed data on aggressive behaviour are published elsewhere (Van Loo et al. 2003a). To quantify the individual level of anxiety, mice were subjected to a cage emergence test (described by Van de Weerd et al. 1994) at the age of 17 weeks. In short, the cage emergence test measures the latency time for a mouse to escape from a hole in a small barren cage into a larger barren cage, with a maximum of 10 min.

Urine collection and corticosterone analysis

In order to analyse corticosterone levels, urine samples were collected at the ages of 9, 12, 15, 18 and 21 weeks. Samples were taken non-invasively 3 to 4 days after cage cleaning between 09:00 and 10:00 h (method described by Dahlborn et al. 1996, and modified by Van Loo et al. 2001). Corticosterone levels were measured using a solid phase ¹²⁵I radioimmunoassay (CAC® Rat Corticosterone TKRC1, Diagnostic Products Corporation, LA), and corrected for creatinine concentrations determined with the use of a commercial test combination (Creatinine, MA-KIT 10 Roche, Roche Diagnostics) on a COBAS-BIO auto-analyser (Hoffmann-La Roche BV, Mijdrecht, The Netherlands).

Physiology

At the age of 22 weeks, the mice were decapitated simultaneously per group between 09:00 and 12:00 h by three animal technicians. Spleen and thymus were dissected and weighed. Adrenals were dissected, individually shock-frozen in 5 mM Tris-HCl-buffer [pH 7.2], and stored at −70°C. Adrenal tyrosine hydroxylase activity (TH) was measured using a tyrosine-¹⁴C-assay (method described by Witte & Matthaei 1980).

Statistical analysis

Data on body weight, food and water intake, and organ weights were analysed using a general linear model for repeated measures with multiple comparisons, with age or status as a within-subject factor and strain and housing as between-subject factors. Tyrosine hydroxylase (TH) activity and Co/Cr ratio were analysed using a linear mixed effects analysis with, as fixed factors, housing (TH and Co/Cr), strain, age and status (Co/Cr), and as, random factors, group (TH) or mouse number (Co/Cr). Cage emergence time was analysed using a univariate analysis of variance with strain and housing as between-subject factors. To better conform to the normal distribution, several variables were log-transformed. When multiple comparisons were made in any of the statistical analyses, Bonferroni correction was applied (i.e. P value multiplied by number of comparisons, indicated by P_B). To identify dominant and subordinate animals within each group, the level of individual aggressiveness (as observed on videotape) was used. Five out of the 40 groups showed no or hardly any aggression. As a result the hierarchies of these groups could not be reliably evaluated. When comparisons were made between dominant and subordinate mice, these groups were omitted from the analysis. All statistical tests were carried out with the aid of SPSS for MS Windows, Release 9.0 (SPSS Inc, Chicago, USA) or S-plus 2000 Professional Release 2 (© 1988–1999, MathSoft, Inc.).

Results

Body weight, food and water intake

During the experiment, all mice showed a general increase in body weight ($P<0.001$, Table 1). Enriched CD-1 mice gained more weight than CD-1 mice housed under
standard conditions \((P_B < 0.05) \). No such housing effect on weight gain was found for mice of the BALB/c strain. From the start of the experiment, CD-1 mice were significantly heavier than BALB/c mice \((P, 0.001) \) and gained more weight than the BALB/c mice during the experiment \((P < 0.001) \). Social status did not affect body weight in either strain.

An overall significant difference in food and water intake between the housing conditions was found \((P < 0.05, \text{Table 1}) \). Mice housed in enriched cages consumed less food and water than mice housed in standard cages. In general, food and water consumption showed a parabolic time effect. Initially, both food and water intake decreased, after which it increased again slightly \((P < 0.001) \).

A strain difference in the total amount of food and water consumed \((P < 0.001) \) and the change in food and water intake over the weeks \((P < 0.001) \) was found, with CD-1 mice consuming significantly more food and water than BALB/c mice.

Urine corticosterone/creatinine (Co/Cr) ratios

For both strains, a significant housing effect on Co/Cr ratios was found \((P < 0.05) \). Mice housed under enriched conditions showed a lower Co/Cr ratio than mice housed under standard conditions. Furthermore, a significant strain effect was apparent. CD-1 mice showed a significantly lower Co/Cr ratio than BALB/c mice \((P < 0.001) \). Co/Cr ratios showed a significant time effect \((P < 0.001) \) that differed between strains \((P < 0.05, \text{Fig 1b: pooled for housing conditions}) \). At the age of 9 weeks, the Co/Cr ratios of the BALB/c mice were quite high, then decreased when the mice were 12 weeks old and started to show an increase again after the age of 15 weeks. The CD-1 mice, on the contrary, showed lower Co/Cr ratios at the age of 9 weeks compared to the BALB/c mice followed by an increase at the age of 12 weeks after which the Co/Cr ratios decreased slightly again. No effect of position in the dominance hierarchy on Co/Cr ratios was found.

Cage emergence test

In the cage emergence test, again a clear strain effect was found. Mice of the BALB/c strain took significantly longer to escape from the small cage than did CD-1 mice \((P < 0.001) \). No effect of housing condition could be established.
Post-mortem variables

Thymus and spleen weight and TH activity are summarized in Table 2. The thymus weight of enriched-housed mice was significantly higher than thymus weight of standard-housed mice in both strains ($P < 0.05$). Furthermore, CD-1 mice had heavier thymuses than BALB/c mice ($P < 0.05$). In contrast, spleen weight of CD-1 mice was significantly lower than spleen weight of BALB/c mice ($P < 0.05$), and a significant interaction between strain and housing condition was found ($P < 0.01$). For the enriched-housed mice, spleen weight did not differ between the strains, while in the standard housing BALB/c mice showed

![Graph](image1.png)

Fig 1 Corticosterone/creatinine ratio (mean ± SEM) of BALB/c mice and CD-1 mice (a) housed under standard or enriched conditions, (b) at five different ages, pooled for housing conditions. *$P < 0.05$; **$P < 0.001$

![Graph](image2.png)

Fig 2 Emergence time (geometric mean ± SEM) of BALB/c mice and CD-1 mice housed under standard or enriched conditions, in the cage emergence test. ***$P < 0.001$

- Standard
- Enriched
a heavier spleen weight compared to the
CD-1 mice ($P_{B} < 0.05$).

The TH activity tended to differ for
individuals with different positions in the
dominance hierarchy (Table 2, $P < 0.1$), and
no effects of housing condition or strain
were found. Multiple comparisons, pooled
for housing and strain, revealed that
dominant mice tended to have higher TH
activity than least attacked subordinate
mice ($P_{B} < 0.1$), while most attacked
subordinate mice were intermediate.

Discussion

Housing condition effects

Housing condition affected several physio-
logical parameters, i.e. food and water
intake, body weight, corticosterone levels
and thymus weight. Food and water intake
for mice housed under enriched conditions
were lower than for mice housed under
standard conditions while body weight of
enriched-housed CD-1 mice was higher than
for standard-housed CD-1 mice, and BALB/c
mice of different housing conditions gained
equal weight. This is in accordance with
Dahlborn et al. (1996), Van de Weerd et al.
(1997) and Van Loo et al. (2002), who found
that mice from cages enriched with nesting
material gained equal or more weight than
mice from standard housing conditions,
although they consumed less food. It was
hypothesized that nesting material allows
the mice to regulate their body temperature
and, as a consequence, might decrease the
need for food and water. Others stipulate
that laboratory animals kept in standard
conditions eat and drink more than animals
housed in enriched cages due to boredom
(Fiala et al. 1977, Van de Weerd et al. 1994).
Excessive feeding and drinking have been
reported as behavioural reactions to
prolonged encagement (Wemelsfelder 1993).
A discrepancy between food and water
intake and body weight gain may also be
related to the amount of stress experienced.
Many reports have shown that chronic
stress can produce a decrease in body
weight, or a reduced weight gain in animals
that are still growing (Manser 1992).

Corticosterone levels were higher and
thymus weight was lower for standard-
housed mice compared to mice housed with
nesting material that was transferred during
cage cleaning. An increase in baseline levels
of corticosterone may be an indicator of
chronic stress (Manser 1992, Shepherdson
et al. 1998), and a decreased thymus weight
is consistent with higher baseline corticos-
terone levels (Manser 1992, Moberg &
Mench 2000). The lower corticosterone
levels of enriched-housed mice found in this
experiment are contrary to the results of
Haemisch and Gärtnner (1994). They found
that enriched-housed mice showed increased
levels of corticosterone, which they
explained by their finding that mice in
enriched cages were more aggressive and
failed to maintain stable dominance
relationships. An important difference
between the latter and this experiment is the
type of enrichment used. In a previous study

Table 2 Organ weights (mg), TH activity (nmol/h/adrenal pair); mean ± SEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BALB/c</th>
<th>CD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Enriched</td>
</tr>
<tr>
<td>Thymus</td>
<td>30.00 ± 0.90</td>
<td>32.30 ± 1.30b</td>
</tr>
<tr>
<td>Spleen</td>
<td>108.70 ± 5.30a</td>
<td>100.30 ± 4.50</td>
</tr>
<tr>
<td>TH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dom±</td>
<td>8.45 ± 1.10</td>
<td>8.33 ± 1.79</td>
</tr>
<tr>
<td>sub+</td>
<td>8.46 ± 1.03</td>
<td>8.21 ± 2.03</td>
</tr>
<tr>
<td>sub-</td>
<td>7.19 ± 0.73</td>
<td>6.79 ± 0.73</td>
</tr>
<tr>
<td>Unknown status</td>
<td>8.28 ± 1.14</td>
<td>4.40 ± 0.54</td>
</tr>
</tbody>
</table>

a/b – c/d, a/c – b/d: $P < 0.05$
e–f: $P_{B} < 0.05$
g–h: $P_{B} < 0.1$
Van Loo et al. 2002) inter-male aggression and corticosterone levels increased in mice housed in cages, structured with a shelter, comparable to the enrichment used by Haemisch and Gärtner (1994), while inter-male aggression decreased in mice housed with nesting material. In another experiment (Van Loo et al. 2000) the transfer of nesting material during cage cleaning clearly decreased aggression between male mice. Besides the transfer of familiar odours that may have reduced stress, the provided nesting material (tissues) itself could be used to hide from other mice besides being manipulated for nest building, which gave the mice the possibility of having some control over their environment. Controllability of the environment, next to predictability, has been reported to be an important factor influencing the amount of stress experienced by animals in an environment (Weiss 1972, Manser 1992, Wiepkema & Koolhaas 1993, Shepherdson et al. 1998). Moreover, preference tests have shown that both mice and rats clearly prefer nesting material to rigid structures such as a platform, a nest box (Bradshaw & Poling 1991, Van de Weerd et al. 1998, Van Loo submitted) or a shelter (unpublished data).

Strain, social status and age effects
Several parameters indicated that BALB/c mice may be more susceptible to social stress than CD-1 mice. BALB/c mice had higher urine corticosterone levels and they were considerably slower to escape in the cage emergence test, indicating more anxiety. In accordance with this, Kopp et al. (1999) showed that mice of the BALB/c strain are particularly susceptible to chronic stress exposure compared to several other inbred mouse strains. Although BALB/c mice had lower body weights with accordingly lighter organs, the spleen weight of BALB/c mice was significantly heavier than that of CD-1 mice. The spleen reacts actively to blood-borne antigens, and would thus be expected to increase in weight when mice are wounded (Roitt 1988). Although CD-1 mice showed more aggressive interactions, BALB/c mice were generally more wounded (Van Loo et al. 2003a).

Corticosterone levels of BALB/c mice followed a time curve similar to time curves found in previous and other experiments (Bronson 1973, Goldsmith et al. 1978, Van Loo et al. 2001, 2002): after grouping, levels were quite high due to the social tension associated with establishment of a stable hierarchy. Levels then decreased as the hierarchy within groups remained stable and thereafter started to rise again, paralleling an increase in aggression as the mice became older (Van Loo et al. 2003a). For CD-1 mice, on the other hand, corticosterone levels increased from the age of 9 to 12 weeks and declined slightly afterwards. A reason for this is difficult to allege.

The correlation between social status and both corticosterone levels and TH activity were investigated as well. These measures reflect the HPA axis and sympathetic activation in response to challenges, respectively (Manser 1992, Moberg & Mench 2000). For corticosterone levels, no effect of social status could be revealed, although Co/Cr ratios of dominant and most-attacked subordinate mice significantly correlated to the level of aggression (Van Loo et al. 2003a). This may indicate that the level of aggression within a group influences corticosterone levels to a greater extent than position in the hierarchy. In general, the TH activity of the dominant mice tended to be higher than for the least attacked subordinate mice, while the TH activity of most attacked subordinate mice was intermediate. Previous findings and those of others (Haemisch & Gärtner 1996, Van Loo et al. 2001, 2002) are in agreement with these results. The most obvious explanation being that both maintaining dominance and being defeated is stressful, while accepting a subordinate status without ever challenging the dominant male may be less stressful (Busser et al. 1974).

Conclusion and recommendations
Long-term enrichment with nesting material combined with the repeated transfer of
neste material when cleaning the cages influenced several stress-related parameters. The corticosterone levels of enriched-housed mice were lower, their thymus weight was increased, and they consumed less food and water than standard-housed mice while gaining more or equal weight. Since these results are an indication for reduced levels of stress in enriched-housed conditions, the provision of nesting material combined with its transfer during cage cleaning is recommended for group-housed male laboratory mice.

Acknowledgments The authors would like to thank T. Blankenstein, I. Lemmens and J. Wolfsinkel for assistance with laboratory analyses and K. Brandt, S. Versteeg, P. Rooymans and R. Timmermans for technical assistance with euthanasia and dissection.

References
Council of Europe (1997) Resolution on the Accommodation and Care of Laboratory Animals, adopted by the Multilateral Consultation on 30 May 1997
Dean SW (1999) Environmental enrichment of laboratory animals used in regulatory toxicology studies. *Laboratory Animals* 33, 309–27
Eskola S, Kaliste-Korhonen E (1999) Aspen wood-wool is preferred as a resting place but does not affect intracage fighting of male BALB/c and C57BL/6j mice. *Laboratory Animals* 33, 108–21
Fiala B, Snow F, Greenough W (1977) Impoverished rats weigh more than enriched rats because they eat more. *Developmental Psychobiology* 10, 537–41
Goldsmith JF, Brain PF, Benton D (1978) Effects of the duration of individual or group housing on behavioural and adrenocortical reactivity in male mice. *Physiology & Behavior* 21, 757–60
Manser CE (1992) *The Assessment of Stress in Laboratory Animals*. West Sussex: RSPCA
Parmigiani S, Palanza P, Rodgers J, Ferrari PF (1999) Selection, evolution of behavior and animal mod-

Van Loo PLP, Blom HJM, Meijer MK, Baumanns V (submitted) Ask the Animal! The use of commercially available environmental enrichment by laboratory mice

Van de Weerd HA, Van Loo PLP, Van Zutphen LFM, Koolhaas JM, Baumanns V (1997) Nesting material as environmental enrichment has no adverse effect on behavior and physiology of laboratory mice. *Physiology & Behavior* 62, 1019–28

