Binding of SecA to the SecYEG complex accelerates the rate of nucleotide exchange on SecA
Natale, P; Swaving, J; van der Does, C; de Keyzer, J; Driessen, Arnold

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.M312892200

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Binding of SecA to the SecYEG Complex Accelerates the Rate of Nucleotide Exchange on SecA*

Received for publication, November 25, 2003, and in revised form, January 13, 2004
Published, JBC Papers in Press, January 13, 2004, DOI 10.1074/jbc.M312892200

Paolo Natale, Jelto Swaving‡, Chris van der Does§, Jeanine de Keyzer, and Arnold J. M. Driessen¶

From the Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands

SecYEG translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds the membrane-embedded SecYEG protein-conducting channel with high affinity and then drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the kinetics of nucleotide binding to SecA while associated with the SecYEG complex. Lipid-bound SecA was separated from SecYEG-bound SecA by sedimentation of the proteoliposomes through a glycerol cushion, which maintains the SecA native state and effectively removes the lipid-bound SecA fraction. Nucleotide binding was assessed by means of fluorescence resonance energy transfer using fluorescent ATP analogues as acceptors of the intrinsic SecA tryptophan fluorescence in the presence of a tryptophanless variant of the SecYEG complex. Binding of SecA to the SecYEG complex elevated the rate of nucleotide exchange at SecA independently of the presence of preprotein. This defines a novel pretranslocation activated state of SecA that is primed for ATP hydrolysis upon preprotein interaction.

The SecA protein functions as a molecular motor to drive precursor proteins (preproteins) across the bacterial cytoplasmic membrane (1–3). It is a dimeric peripheral ATPase subunit of the preprotein translocase and binds with high affinity to the translocation channel formed by an oligomeric assembly of the SecYEG complex. The translocation channel allows membrane passage of preproteins in their unfolded state (4, 5). SecA couples the energy of ATP binding and hydrolysis to the preprotein translocation. ATP hydrolysis also drives the cycling of SecA between the membrane-bound and free cytosolic state (6, 7). This cycling reaction occurs on the same time scale as the overall preprotein translocation reaction (6), but it is unclear if cycling is a necessary step in catalysis. Evidence for the high affinity binding of SecA to the SecYEG complex is demonstrated by an increased number of SecA membrane binding sites upon overproduction of the SecYEG complex (7), the reduction of specific binding of SecA to SecYEG by an antibody directed against SecY (1), and the presence of a significant SecYEG-dependent fraction of SecA that cannot be membrane-extracted by urea, alkali, or high salt (1, 8). SecA can also bind to the lipid surface, where it associates with acidic phospholipids (1, 3) and seems to insert into the fatty acid acyl phase of the membrane (1, 2). This process of lipid association occurs with low affinity and is inhibited by ATP (9).

The translocation of preproteins across the membrane involves several rounds of nucleotide binding and hydrolysis by SecA (1, 10, 11). On the basis of mutational and functional studies and the use of photoactivatable nucleotide analogues (11–14), it was suggested that SecA contains a high and a low affinity nucleotide binding domain (NBD). The high affinity NBD corresponds to the catalytic site, whereas the low affinity NBD may act as a regulatory site. The structures of the Bacillus subtilis (15) and Mycobacterium tuberculosis SecA (16), however, show no evidence of a second catalytic NBD (17). The low affinity NBD may correspond to a nonfunctional nucleotide binding domain (11, 18).

The nucleotide binding characteristics of the soluble SecA protein have been studied extensively (13, 14, 19) and used as a model to describe the conformational states of SecA when actively involved in preprotein translocation. The translocation active state of SecA may, however, not be reflected by those studies, since this requires binding of SecA to the SecYEG complex (3, 12). On the other hand, nucleotide binding experiments with the SecYEG-bound SecA using natural membranes or membranes containing overexpressed SecYEG complex are complicated by the presence of many unrelated ATPases. Whereas purification and reconstitution provide a suitable functional alternative, high affinity binding of SecA to the reconstituted SecYEG complex has never been demonstrated for the purified proteins. This has been attributed to the very high nonspecific binding of SecA to the lipid surface (20). We have investigated the binding of nucleotides to SecA when bound to the SecYEG complex. For that purpose, we have devised a method that efficiently separates the high and low affinity-bound SecA fractions to SecYEG proteoliposomes. This method was combined with fluorescence resonance energy transfer (FRET) experiments that monitor the interaction between fluorescent ATP analogues as acceptors of the intrinsic SecA tryptophan fluorescence in the presence of a tryptophanless variant of the SecYEG complex. The data demonstrate that

* This work was supported by European Community Grant QLK3-CT-1999-00413 and by the Council for Chemical Sciences of the Netherlands Organisation for Scientific Research and subsidized by the Dutch Organisation for the Advancement of Scientific Research. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address: DSM Biologics, P.O. Box 454, 9700 AL Groningen, The Netherlands.

§ Present address: Institute of Biochemistry, Biocenter, Goethe-Universität Frankfurt, Germany.

¶ To whom correspondence should be addressed. Tel: 31-50-3632164; Fax: 31-50-3632154; E-mail: a.j.m.driessen@biol.rug.nl.

1 The abbreviations used are: NBD, nucleotide binding domain; FRET, fluorescence resonance energy transfer; MANT, 2′-(or-3′)-O-(N-methylanthraniloyl); PMF, proton motive force; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DOPG, 1,2-dioleoyl-sn-glycero-3-phosphoglycerol; IMV, inner membrane vesicle.
Nucleotide Binding to SecA

EXPERIMENTAL PROCEDURES

Materials—SecA, SecB, pro-OMPa, and SecYEG and the tryptophanless SecYEG mutant were purified as described (4). SecYEG was reconstituted into liposomes composed of Escherichia coli phospholipids or synthetic liposomes as described (21). Synthetic phospholipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) (Avanti Polar Lipids, Inc., Birmingham, AL) were mixed in a 60/40 (w/w) ratio, and liposomes were prepared as described (22). 2-(or-3’)-O-(N-methylanthraniloyl) (MANT)-labeled nucleotides were obtained from Molecular Probes, Inc. (Leiden, The Netherlands).

Binding of Nucleotides to SecA—

Nucleotide binding experiments were performed by measuring the change in absorbance of light scattering at 280 nm following the addition of nucleotide to SecA in the presence of MgCl₂ (23). Specifically, the SecA-SecYEG proteoliposomes were incubated with 2.5 nM SecA (0.6 mM) and 0.25 nM MANT-nucleotide/ATP for 20 min at room temperature. The reaction was stopped by filtering the proteoliposomes through a 15% (v/v) glycerol cushion in buffer A (0.13 M HEPES-KOH, pH 7.6, 100 mM KCl, 5 mM MgAc₂), and the liposomes were separated by centrifugation., 5 and 5 mM MgCl₂, then reconstituted at the following ratio: 0.18 M SecA dimers, 0.25 M SecYEG, 0.25 M SecE, 0.25 M SecG, 1 residue) were mutated to phenylalanine by site-directed mutagenesis of the secYEG genes described in Table I. The PCR products were then exchanged with the corresponding fragments in pET610 (25) to obtain Trp-less His-tagged SecA and reconstituted SecYEG proteoliposomes. Although the functional reconstitution of SecYEG into proteoliposomes is well established (29, 30), the high affinity SecA binding has not been studied extensively (13, 14), but no information is available on nucleotide binding to SecA associated with SecYEG complex (28). Inner membrane vesicles (IMVs) of E. coli bind SecA with high affinity at the SecYEG complex (1), but since this system contains many other ATPases that interfere with an accurate analysis of nucleotide binding, it is unsuitable for the analysis of nucleotide binding to SecYEG-bound SecA. Therefore, we have performed nucleotide binding experiments with purified SecA and reconstituted SecYEG proteoliposomes. The functional reconstitution of SecYEG into proteoliposomes...
never been demonstrated for this system. Such experiments are complicated by the high nonspecific binding of SecA to the lipid surface, which masks the specifically bound fraction (20).

We have therefore devised a method that allows the detection of nucleotide binding to the high affinity SecYEG-bound SecA in proteoliposomes. For this purpose, liposomes and SecYEG proteoliposomes were incubated with \[^{32}P\]ATP with and without SecA (Fig. 1). The specific binding of \[^{32}P\]ATP to the (pro)teoliposomes was determined after centrifugation through a glycerol instead of a sucrose cushion to separate the lipid-bound and free nucleotide fraction. In previous studies, sedimentation to a glycerol cushion more likely minimizes denaturation of SecA (31), and there-

the presence of Mg\(^{2+}\) in SecY (Trp 173, Trp 293, Trp 300, and Trp 302), three in SecE (Trp 257, Trp 261, and Trp 303), and one in SecG (Trp 84). All tryptophan residues were mutated to phenylalanine by site-
ed the number of nucleotide binding sites per SecA dimer bound to SecYEG, SecA binding experiments were performed with the SecYEG proteoliposomes. Since this assay involves only a single glycerol centrifugation step, biphasic SecA binding kinetics were observed (Fig. 2B) that can be attributed to a small fraction of remaining nonspecifically bound SecA. SecA binds SecYEG with a K\(_d\) of 31 ± 5 nm. This value is similar to the one reported for IMVs (32). The background SecA binding appeared nonsaturable in the range tested. The B\(_{\text{max}}\) of 24 ± 2 nm for specific SecA dimer binding corresponds to about half (0.43 ± 0.07) the number of high affinity ADP binding sites that were determined with SecYEG proteoliposomes. This is equivalent to 1.1 ± 0.1 mol of ADP/mol of monomeric SecA. Therefore, we conclude that each SecYEG-bound SecA dimer contains two high affinity nucleotide binding sites.

Binding of Fluorescent Nucleotides by SecA—To analyze the kinetics of nucleotide binding to SecA, we employed fluorescence (MANT)-labeled nucleotides (33) in a nucleotide exchange assay. MANT-ATP was found to support the in vitro pro-OmpA translocation into SecYEG proteoliposomes (Fig. 3A), demonstrating that it functionally interacts with SecA and that it can drive protein translocation (27), albeit with an almost 3-fold lower efficiency as compared with ATP. Nucleotide binding and release of SecA can be monitored by changes in MANT-nucleotide anisotropy (19). Although anisotropy is a fast and easy way to monitor the association and dissociation of MANT-nucleotide to SecA, the presence of liposomes or SecYEG proteoliposomes severely interfered with the measurements (data not shown). A fraction of the MANT-ATP or ADP appears to intercalate with the lipid bilayer, which results in a huge rise in anisotropy. To circumvent this problem, we shifted to FRET measurements (34). Herein, the intrinsic protein fluorescence of SecA is used as a donor for the excitation of the bound MANT-nucleotide. The Förster distance (R\(_{\text{F}}\)) of tryptophan residues varies up to 40 Å (35), which lies within the dimensions of SecA (36). This makes FRET measurements insensitive to nonspecific background binding of MANT-nucleotides to lipids. Upon excitation of the Trp residues of SecA at 295 nm in the presence of MANT-ATP, the Trp fluorescence at 350 nm is decreased (Fig. 3B) with a concomitant increase in MANT fluorescence at 450 nm (Fig. 3C). The FRET could be reversed by the addition of an excess of nonlabeled ATP that chases the MANT-ATP from the SecA bound state (Fig. 3C). This chase reaction was accompanied by an increase in the Trp fluorescence (Fig. 3B). This effect was not observed when SecA was absent from the reaction or when Mg\(^{2+}\) was excluded from the system. MANT-ATP binding is strictly dependent on the presence of Mg\(^{2+}\) with an apparent dissociation constant (K\(_{\text{d(Mg}^{2+}\text{)}}\)) of 40 μM (data not shown).

Construction and Functional Characterization of a Tryptophanless SecYEG Complex—To use FRET for measurements of nucleotide binding to SecA in the presence of the SecYEG complex, a tryptophanless (Trp-less) variant was constructed. The SecYEG complex contains eight tryptophan residues: four in SecY (Trp\(_{173}\), Trp\(_{293}\), Trp\(_{300}\), and Trp\(_{302}\)), three in SecE (Trp\(_{19}\), Trp\(_{65}\), and Trp\(_{160}\)), and a single Trp in SecG (Trp\(_{84}\)). All tryptophan residues were mutated to phenylalanine by site-directed mutagenesis (Table I), and the Trp-less variant of SecYEG was cloned in an expression vector under the control of the trc promoter with an N-terminal hexahistidine tag on SecY. To check the overexpression and functionality of the Trp-less SecYEG complex, IMVs were isolated from the SecYEG-overproducing strain. The Trp-less SecYEG complex could be overexpressed to the same level as the wild-type SecYEG complex.
This result was verified for the individual subunits by immunoblot analysis (data not shown). Wild type and Trp-less SecYEG complex were purified by ion exchange and Ni$_2^+$-nitrilotriacetic acid affinity chromatography and reconstituted into liposomes composed of synthetic lipids (DOPE/DOPG, 60:40, w/w) (Fig. 4A). The Trp-less and wild type SecYEG complexes were equally active in supporting proOmpA translocation (Fig. 4B).

Fig. 2. Analysis of [α-γ^32P]ADP (A) and [14C]SecA (B) binding to SecYEG-proteoliposomes. A, ADP binding experiments (1 nM to 2 μM [α-γ^32P]ADP) were performed with SecA-SecYEG proteoliposomes that were isolated by glycerol cushion centrifugation of SecYEG proteoliposomes co-incubated with excess SecA. After incubation with various [α-γ^32P]ADP concentrations, the SecA-bound and free nucleotide was separated by a second glycerol cushion centrifugation step. Binding experiments were performed in the absence (○) and presence (□) of the SecB-pro-OmpA complex as described under “Experimental Procedures.” The inset shows the Scatchard analysis of the high affinity nucleotide binding after correction for nonspecific binding using nonlinear regression. B, SecA binding (2–650 nM [14C]SecA dimer) to SecYEG proteoliposomes was performed in the presence of 1 mM ADP. After incubation, the bound and free SecA was separated by glycerol cushion centrifugation. The inset shows the Scatchard analysis of the binding data as analyzed by nonlinear regression assuming biphasic binding kinetics. The solid line shows the high affinity binding of SecA to the SecYEG proteoliposomes, whereas the dashed line represents the contribution of the nonspecific binding.

Fig. 3. Binding, hydrolysis, and release of MANT-nucleotides by SecA. A, SecA-dependent translocation of pro-OmpA into SecYEG proteoliposomes in the presence of ATP (lane 1), MANT-ADP (lane 2), and MANT-ATP (lane 3). B, time-dependent changes in the fluorescence intensity of the endogenous tryptophans of SecA upon the addition of 0.15 mM MANT-ATP and 0.6 mM ATP. Excitation and emission wavelengths were set at 295 and 350 nm, respectively. C, time-dependent changes in the fluorescence intensity of MANT-ATP upon the addition to SecA and the subsequent addition of 0.6 mM ATP. Excitation and emission wavelengths were set at 295 and 450 nm. In the absence of SecA, the MANT-ATP fluorescence level was equal to zero when an excitation wavelength of 295 nm was used.
Fig. 4. Functional expression of a tryptophanless variant of the SecYEG complex.

A, Coomassie Brilliant Blue-stained SDS-PAGE of IMVs derived from *E. coli* SF100 overexpressing the wild-type (lane 1) and Trp-less (lane 2) SecYEG complex and proteoliposomes reconstituted with the purified wild-type (lane 3) or Trp-less (lane 4) SecYEG complex. Lane 1 corresponds to 10% of the input pro-OmpA.

B, ATP-dependent translocation of pro-OmpA into IMVs containing overproduced wild-type (lane 3) or Trp-less (lane 4) SecYEG complex and into proteoliposomes reconstituted with the purified wild-type (lane 5) or Trp-less (lane 6) SecYEG complex. WT SecYEG, + + + +; Trp-less SecYEG, − + + +.

C, SecA ATPase activity of soluble SecA, liposome-bound SecA, and Trp-less SecYEG-bound SecA in the presence (filled bars) and absence of pro-OmpA (open bars).

D, tryptophan fluorescence emission spectra of DOPG/DOPE liposomes (dotted and dashed line) reconstituted with the purified wild-type (solid line) or Trp-less (dashed line) SecYEG complex. Excitation was set at 295 nm. The inset represents tryptophan fluorescence spectra of the reconstituted wild-type (solid line) and Trp-less SecYEG (dotted and dashed line) complexes after correction of the light scatter and background fluorescence of liposomes.

E, Coomassie Brilliant Blue-stained SDS-PAGE of Trp-less SecYEG proteoliposomes with bound-SecA as isolated by a glycerol cushion as described under “Experimental Procedures.”
activity (Fig. 4C), and SecA binding (27) (data not shown). Taken together, these data demonstrate that none of the Trp residues of the SecYEG complex are essential for activity.

Fig. 4D shows the fluorescence emission spectra at an excitation at 295 nm of the purified and reconstituted wild type and Trp-less SecYEG complexes. As expected, the Trp-less SecYEG variant showed no significant fluorescence above that of liposomes, which makes the Trp-less SecYEG complex suitable for our FRET measurement.

Binding of Fluorescent Nucleotides to the SecYEG-bound SecA—To measure the nucleotide binding characteristics of SecA bound to SecYEG, SecA was incubated with Trp-less SecYEG proteoliposomes, and the complex was recovered by sedimentation through a glycerol cushion (Fig. 4E). FRET measurements on nucleotide binding to SecYEG-bound SecA protein showed a very fast rate of MANT-ATP binding and release upon the addition of an excess of ATP (Fig. 5, dark line). No FRET was observed when the Trp-less SecYEG proteoliposomes were prepared in the absence of SecA (dark gray line). Moreover, the rate of MANT-nucleotide release was nearly identical when, instead of ATP (dark line), ADP was used for the chase (light gray line).

Next, the kinetic parameters of MANT-ATP binding were determined for SecA associated with the Trp-less SecYEG complex and compared with soluble SecA and SecA bound to DOPE/DOPG liposomes. In the presence of DOPE/DOPG liposomes, SecA readily associates with the lipid surface, and the majority of the SecA co-sediments with the liposomes after ultracentrifugation (20) (data not shown). The kinetics of MANT-ATP binding and release with SecA in solution (Fig. 6, A and D) or in the presence of liposomes (Fig. 6, B and E) were indistinguishable within the experimental error. Remarkably, substantial higher rates of MANT-ATP binding and release were observed with SecA bound to SecYEG proteoliposomes (Fig. 6, C and F). The enhanced rate is in particular pronounced with the nucleotide release. Whereas free or lipid-bound SecA only slowly releases the nucleotide, a 6–7-fold increase in the nucleotide dissociation rate, k_{off}, is observed with the SecYEG-bound SecA. These data suggest that SecA is stimulated for nucleotide binding and exchange when it associates with the SecYEG complex.

To determine whether the nucleotide binding kinetics are influenced by the presence of a preprotein, pro-OmpA was added to the reaction that contained the SecYEG-bound SecA complex. The wild-type pro-OmpA harbors five tryptophan residues (Trp7, Trp15, Trp57, Trp102, and Trp143) (37), but no significant fluorescence above that of liposomes was observed with SecYEG–pro-OmpA (data not shown). Therefore, the Trp residues of pro-OmpA do not contribute to the FRET, probably because they are more than 40 Å away from the nucleotide binding site on SecA. Although the presence of pro-OmpA markedly stimulated the ATPase activity of SecA bound to Trp-less SecYEG proteoliposomes (Fig. 4C, lane 6), it only marginally affected the MANT-nucleotide binding and release kinetics (data not shown). Likewise, pro-OmpA did not significantly affect the nucleotide exchange kinetics of the soluble and lipid-bound SecA.

SecYEG Lowers the Activation Energy for Nucleotide Binding to SecA—The stimulatory effect of the SecYEG complex on the nucleotide exchange kinetics on SecA was observed over a wide temperature range as shown in the Arrhenius plot for the binding (Fig. 7A) and release (Fig. 7B) kinetics of MANT-ATP. The activation energy (E_a) for MANT-ATP binding to free, liposome-bound, and SecYEG-bound SecA was 22.5, 20.8, and 15.2 kJ/mol, respectively. For nucleotide release, these values were equal to 44.2, 42.1, and 22.5 kJ/mol, respectively. This demonstrates that the SecYEG-bound SecA has a lower activation energy barrier for the nucleotide binding as well as for the nucleotide release.

To obtain an estimate of the association rate (k_{on}) of MANT-ATP and MANT-ADP, the rate of nucleotide binding (k_{obs}) was measured at different concentrations of the MANT nucleotides. As shown in Fig. 8A, the k_{obs} for nucleotide binding to soluble SecA increased linearly with the nucleotide concentration. The data were fitted to the relationship $k_{\text{obs}} = k_{\text{on}} + k_{\text{off}} [\text{MANT-nucleotide}]$, with a k_{off} value that was measured directly by monitoring the rate of MANT-nucleotide release upon the addition of 0.6 mM ATP. For soluble SecA, the k_{on} for MANT-ADP (7.8×10^4 M$^{-1}$ s$^{-1}$) was significantly higher as compared with...
translocation is represented by the SecYEG-bound state. Since
nucleotide binding has not been analyzed kinetically for the
SecYEG-bound SecA, it is unclear how SecYEG alters the SecA
catalytic cycle except that it activates SecA for preprotein-
stimulated ATP hydrolysis. Our data now demonstrate that
the binding reaction to SecYEG alters the nucleotide binding ki-
etics to SecA. Unlike the SecA free in solution or bound to
liposomes, the SecYEG-bound SecA appears to be primed for
nucleotide binding and exchange. Both the rates of nucleotide
binding and release are markedly stimulated. Therefore, we
conclude that SecA undergoes a conformational switch upon
binding to SecYEG, which completes its high affinity nucleotide
binding fold and/or changes the accessibility of this domain to
externally added nucleotide. This study defines a pretranslo-
cation activated state of SecA that is primed for high rates of
ATP hydrolysis upon accepting preproteins for translocation.
The data further indicate that preproteins do not stimulate the
nucleotide exchange activity of the SecYEG-bound SecA but
instead activate SecA for ATP hydrolysis (12) by a mechanism
that is largely unknown.

Based on the higher k_{on} values with MANT-ADP, it appears
that the soluble SecA prefers to bind to ADP over ATP (Fig. 8).
This difference in binding kinetics seems to be maintained with
the SecYEG-bound SecA, but the nucleotide association rates
are almost 3-fold higher as compared with soluble SecA. Over-
all, it seems that the soluble form of SecA adopts a confor-
mation that does not favor nucleotide binding and release, even in
the presence of a translocation-competent preprotein. In effect,
this prevents futile cycles of ATP hydrolysis when SecA is not
associated with the translocation channel. It is well established
that soluble SecA has only a low basal ATPase activity that is
not stimulated by preprotein (3) (see also Fig. 4C). Also, the
SecYEG-bound SecA is equipped with a low ATPase activity,
but the activity is dramatically stimulated upon the binding of
a translocation-competent preprotein, an activity termed SecA
“translocation ATPase.” This process probably involves further
conformational changes among which is relief of the suppress-
ing activity of IRA1 on the catalytic NBD (18). The initial
acceleration of the nucleotide release kinetics upon SecYEG
binding, independent of the presence of a preprotein, primes
SecA for a high turnover rate of bound ATP.

The low basal ATPase activity of soluble SecA is also ele-
vated when SecA binds to the lipid surface. However, this effect
is smaller than the preprotein stimulation of the SecA ATPase
activity in the presence of the SecYEG complex (3). The exact
role of the lipid-stimulated SecA is unknown. SecA is thermo-
labile in the presence of lipids and is readily inactivated unless
a preprotein is present. This phenomenon has been attributed
to a protective effect of the preprotein on the heat-induced
inactivation of the SecA when bound to the lipid surface (3).
Lipid ATPase activity is observed only at low Mg$^{2+}$ con-
centrations and cannot be detected with IMVs. The latter probably
relates to a shielding of the lipid surface in IMVs due to the
high protein-to-lipid ratio. Our experiments further suggest
that the lipid activation of SecA differs mechanistically from
the “translocation ATPase” of SecA. In contrast to the SecYEG-
bound SecA, no acceleration of the nucleotide exchange kinetics
is observed when SecA binds to lipids. Recent studies on the
lipid-bound SecA suggest that nucleotide binding induces the
conversion of the dimeric form of SecA into a monomeric form
(41–43), whereas signal sequence binding has been reported to
reassemble the SecA in its dimeric form (41). Apparently, mo-
nomerization of SecA does not suffice to activate the enzyme for
nucleotide exchange. Thus, the activation must relate to the
specific interaction of SecA with SecYEG, which apparently
induces a conformational state of SecA that is not observed in

DISCUSSION

Here we have investigated the kinetics of nucleotide inter-
action to the SecYEG-bound SecA protein. Nucleotide binding
to the soluble form of SecA has been studied extensively (3,
10–12, 17, 38–40); however, the active form of SecA in protein

solution or when SecA is bound to the lipid surface.

To examine nucleotide binding kinetics by SecA, we have utilized the method of FRET with the endogenous trypophans of SecA as donor and MANT-nucleotides as acceptor. The method of MANT-nucleotide fluorescence anisotropy to measure binding was found to be incompatible with the (proteoliposomal system (19). The addition of liposomes to MANT-ATP already resulted in a dramatic increase in fluorescence anisotropy indicative of a (nonspecific) binding reaction (34). Since liposomes did not interfere with the FRET measurements and because MANT-ATP can drive the protein translocation, albeit inefficiently, we conclude that our method monitors an authentic nucleotide binding and release reaction even under conditions in which protein translocation occurs. Bound MANT-ATP (or ATP) is immediately converted into MANT-ADP (or ADP) in line with previous observations on nucleotide binding (28, 44). In contrast to the nucleotide binding reaction, the rate of fluorescent nucleotide release was indistinguishable when ADP or ATP was used for the chase. This strongly suggests that ADP release is rate-limiting in the productive cycle of SecA. Previously, it has been reported that ADP release is a rate-limiting step in the SecA catalytic cycle, and it has been suggested that the presence of an ATP-generating system or the proton motive force (PMF) accelerates this step (45). The latter was based on observations that the apparent K_m value of the translocation reaction for ATP is reduced by 2 orders of magnitude by the PMF. The PMF, however, does not affect the SecA translocation ATPase activity at saturating concentrations of ATP. On the other hand, the PMF has been shown to affect the conformation of SecA during its cycling reaction (11, 40). Direct measurements of a kinetic effect of the PMF on the ADP release have not been reported and will be the subject of future studies.

Although the protein translocation was reconstituted with the purified translocase components more than a decade ago (29, 30), high affinity binding of SecA to the purified SecYEG has not been demonstrated previously. Our data using the glycerol cushion now for the first time demonstrate that SecA can bind the purified SecYEG complex in proteoliposomes with an affinity nearly identical to that reported for intact IMVs. This supports the long existing notion that SecYEG suffices to form an authentic binding site for SecA. These experiments also allowed a quantitative estimate of the number of nucleotides bound per SecA dimer associated with the SecYEG complex. Our experiments indicate that in the steady state, 2 mol of ADP are bound per 1 mol of SecA dimer. This number deviates from the value reported for the soluble E. coli SecA by Schmidt and co-workers (28), who observed the binding of 1 mol of ADP per 1 mol of SecA dimer using a gel filtration-based analysis technique. On the other hand, isothermal titration calorimetry experiments on the soluble B. subtilis SecA support the binding of 2 mol of ADP per 1 mol of SecA dimer (14). The kinetic experiments did not reveal any cooperativity in the nucleotide binding; therefore, the presence of two high affinity NBD on the SecA dimer seems most likely. The question of whether, in addition to the high affinity nucleotide binding site, a second low affinity binding site is present in SecA remains to be answered.

Taken together, we conclude that SecA undergoes a conformational change upon binding to the SecYEG complex. This conformational change elicits an elevated rate of nucleotide binding and release. This study defines a preactivated state in which the SecA is primed for preprotein-stimulated ATP hydrolysis, a process that ultimately drives the translocation cycle.

Acknowledgments—Juke Lolkema is acknowledged for help in interpreting the nonlinear binding data. Jaap Broos is acknowledged for helpful suggestions on the fluorescence experiments.

REFERENCES

FIG. 8. Nucleotide concentration dependence of the rate of MANT-nucleotide binding to and release from soluble SecA (A) and SecA bound to Trp-less SecYEG proteoliposomes (B). k_{on} (circles and inverted triangles) and k_{off} (squares and triangles) for the indicated concentrations of MANT-ATP (closed symbols) and MANT-ADP (open symbols) were measured at 20 °C. MANT-nucleotide release was initiated by the addition of 0.6 mM ATP. Soluble SecA was used at 0.165 μM, and SecA bound to Trp-less SecYEG proteoliposomes was present at 0.07 μM. Excitation was set at 295 nm, and emission was measured at 450 nm. Data were fitted by a straight line, which was forced through the y axis at the value equal to the experimentally determined k_{off}. The slope of the fitted k_{on} values represents the k_{on} value for the binding of the nucleotide.
Nucleotide Binding to SecA