Visual Analysis of Evolution of EEG Coherence Networks employing Temporal Multidimensional Scaling
Ji, Chengtao; Maurits, N.M.; Roerdink, J.B.T.M.

Published in:
Eurographics Workshop on Visual Computing for Biology and Medicine

DOI:
10.2312/vcbm.20181233

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Visual Analysis of Evolution of EEG Coherence Networks employing Temporal Multidimensional Scaling

C. Ji\textsuperscript{1}, N. M. Maurits\textsuperscript{2}, and J. B. T. M. Roerdink\textsuperscript{1}

\textsuperscript{1}University of Groningen, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, The Netherlands
\textsuperscript{2}University of Groningen, Department of Neurology, University Medical Center Groningen, The Netherlands

Abstract

The community structure of networks plays an important role in their analysis. It represents a high-level organization of objects within a network. However, in many application domains, the relationship between objects in a network changes over time, resulting in a change of community structure (the partition of a network), their attributes (the composition of a community and the values of relationships between communities), or both. Previous animation or timeline-based representations either visualize the change of attributes of networks or the community structure. There is no single method that can optimally show graphs that change in both structure and attributes. In this paper we propose a method for the case of dynamic EEG coherence networks to assist users in exploring the dynamic changes in both their community structure and their attributes. The method uses an initial timeline representation which was designed to provide an overview of changes in community structure. In addition, we order communities and assign colors to them based on their relationships by adapting the existing Temporal Multidimensional Scaling (TMDS) method. Users can identify evolution patterns of dynamic networks from this visualization.

CCS Concepts

\begin{itemize}
  \item Applied computing \rightarrow Life and medical sciences;
  \item Human-centered computing \rightarrow Information visualization;
\end{itemize}

1. Introduction

Networks are generally used to model interactions between objects, and play an important role in various disciplines, such as biology, social science, mathematics, computer science, and engineering. In mathematics, networks are often referred to as graphs, where objects are represented by vertices (nodes) while their interactions are indicated by edges (links). Most of these networks have an inherent community structure, i.e., vertices can be organized into groups, which are referred to in various ways, such as communities, clusters, cliques, or modules [For10].

In many application domains, the relationship between objects in a network changes over time, resulting in a dynamic network [GDC10]. The community structure (the partition of a network), as well as the corresponding attributes (the composition of communities and the relationships between communities) are then dynamically changing over time [vLKS\textsuperscript{*}11, HET13]. Visualizing the evolution of networks in dynamic networks can facilitate the discovery of evolution patterns of communities and can help researchers propose hypotheses to explain these patterns for further study.

In this paper we focus on dynamic EEG coherence networks that represent functional brain connectivity, in which nodes represent electrodes which are used to record electrical activity of the brain and edges represent coherences between pairs of signals recorded by electrodes. As the starting point, we consider the existing visualization method for static EEG coherence networks based on functional unit maps (FU maps) by ten Caat et al. [tCMR08]. An example of such a static EEG network is shown in Figure 1(a). The FU-map method clusters electrodes based on their relative spatial position and corresponding coherence values. The resulting clusters for the example in Figure 1(a) are shown in Figure 1(b) and compose an FU map, in which electrodes represented by polygon cells are divided into several groups, each of which is an FU, that is, a spatially connected set of electrodes recording pairwise significantly coherent signals. Each FU is assigned a gray color for distinguishing between FUs and the color of lines connecting two FUs indicates the corresponding inter-FU coherence.

To visualize the evolution of dynamic EEG coherence networks, Ji et al. proposed a visualization framework based on a timeline representation [JvdGMR17]. This representation assists users in identifying the temporal evolution of FUs and their corresponding location on the scalp. However, this approach only shows the change of community structure and composition of FUs, but it does not consider how the relationships between FUs change. Also, existing visualization methods either focus on the change of network attributes or the change of community structure [vLKS\textsuperscript{*}11]. For example, some methods have been proposed to depict the evol-
Our method aims to overcome the drawback of a previously proposed visualization method for EEG coherence networks by Ji et al. [JvdGMR17]. The drawback of that approach is that it focuses only on the changes of state of dynamic FUs and ignores the changes in relationships between FUs. The solution we propose here for incorporating the attribute changes in the visualization is based upon the TMDS method of Jäckle et al. [JFSK16].

Once the dynamic FUs have been detected and inter-dynamic FU coherences have been calculated, we can model the relationships between dynamic FUs at a certain time step by an undirected weighted graph $G_t = (V,E_t)$ in which $v_j \in V$ represents a dynamic FU and $e_{ij} \in E_t$ represents the inter-dynamic FU coherence between $v_i$ and $v_j$. A dynamic graph, more precisely the sequence graph $G := (G_1, ..., G_N)$, then is defined as a sequence of $N$ ordered graphs of which each observes the structure of a system at $N$ moments [HET13]. The inter-dynamic FU coherence at a certain time step is the inter-FU coherence which is calculated as the average coherence between all electrodes in the corresponding FUs. Note that after dynamic FU detection, the number $|V|$ of dynamic FUs is a constant, but any FU may exist for a limited period of time only instead of for all time steps.

The main idea of our approach is as follows. For a given dynamic coherence graph with the derived dynamic FUs and a given color space, we embed the dynamic FUs at each time step into the specified color space using the TMDS method (without using the sliding window approach) so that users can recognize the evolution patterns of inter-FU coherences from the changes in FU colors. In this approach, the distance between dynamic FUs in the color space should be inversely related to their similarity, as defined by their inter-FU coherence at each time step.

### 2.1. Timeline-based Representation

The timeline representation is a widely used visual metaphor for visualizing the evolution of communities in dynamic graphs [RTJ’11, VBAW15, JvdGMR17, TA08]. This visualization can track the progress of communities over time in a dynamic network, where each community is characterized by a series of significant evolutionary events [GDC10], such as two or more current FUs merging into one FU in the next time step, or one current FU splitting into two or more FUs in the next time step.

We here propose to use a coloring scheme to depict the evolution pattern of the relationship between dynamic network communities over time. Although there have been studies of the assignment of color to (dynamic) communities, most color schemes were designed in such a way that (dynamic) communities are easily distinguished in generic representations [JRFL09, DEG07, VBAW15, RTJ’11]. Instead, we propose a coloring solution using multidimensional scaling to assist users in recognizing the relationships between dynamic communities and explore the evolution of patterns of relationships between such communities over time.

### 2.2. Distance Function

For a given graph $G_t$ at time step $t$, we define a distance measure for the set of dynamic FUs so that dynamic FUs with high inter-FU
coherence will have a small distance. In addition, we only incorpo-
rate coherences above a pre-defined significance threshold; in our
case, we set the threshold to 0.2 [HRA'95,MSvdHdJ06,tCMR08].
Specifically, we use the following distance function with parame-
ters $a$ and $b$ based on the coherence value $e_{ij}$ between nodes $i$ and
$j$:

$$d_{ij} = \begin{cases} e^{(1-e_{ij})} - 1 & e_{ij} \geq 0.2 \\ e^{(1-e_{ij})} - 1 + b & \text{else} \end{cases}$$

We then embed the dynamic FUs into a color space using MDS as

described in Section 2.3.

This exponential function has several properties. First, it de-
creases with increasing coherence so that dynamic FUs that have
high inter-FU coherence will have a small distance and will be em-
bedded closely together in the color space $C$. The parameter $a$ can
be used to adjust the rate with which the distance decreases. Sec-
ond, inter-FU coherences that are below the threshold will be as-
signed a large distance, and will be separated far away from each
other in the color space $C$. This is achieved by the additive con-
stant $b$. When $b$ is larger the distances between values below the
threshold are larger. Third, the inter-FU coherence is limited to the
interval $[0, 1]$, which makes coherence values harder to distinguish,
so by introducing the exponential function the coherence value do-
main is stretched out while the relative order of coherence values is
preserved.

2.3. Multidimensional Scaling

Multidimensional scaling enables the analysis of high-dimensional
data or relations (usually given as a similarity/dissimilarity matrix)
between objects in a lower dimensional space [BSL'08,VHBV16,
JFSK16]. It provides a visual representation of the pattern of prox-
imities (i.e., similarities or distances) among a set of objects such
that those objects that are very similar to each other are placed near
each other, and those that are very different are placed far away
from each other in the representation.

Our MDS approach is based on an adaptation of the temporal
MDS approach in [JFSK16], in which a temporal 1D MDS plot is
computed for each window separately and then sequentially aligned
in the Cartesian coordinate system. The x-axis represents time and
the y-axis represents the 1D similarity value derived from the MDS
computation. In our case, we map dynamic FUs to a color space
for each time step using MDS based on their inter-FU coherences
which are included in the weighted graph $G_t$, such that FUs hav-
ing higher inter-FU coherence also have more similar colors. The
resulting colors are then assigned to dynamic FUs in the timeline
representation.

The MDS layout for each time step (also referred to as an MDS
“slice”) is computed by the method proposed in [GKN05,XKH11].
In our implementation, the Matlab package of Xu et al. [XKH11]
was used to calculate MDS for every time step.

2.4. Color Space Selection

The distance matrix obtained in Section 2.2 can be used to produce a
3D layout in a color space using MDS since usually the color is a

combination of three components. It also can produce a 2D or 1D
layout in a 3D color space when fixing the other one or two com-
ponents. However, when vertices are mapped to 2D or 3D color
space, the resulting color is very hard to interpret, and it requires a
high cognitive load to compare colors. We chose to map vertices to
the Hue component using 1D MDS rather than Saturation or Value
component, because it is easier to recognize the color differences,
since colors change gradually from red to yellow, green, blue and
pink. Then colors that are close in the color space will be similar,
and colors having a large distance in the color space will be per-
ceived as very different (see Figure 2). In addition, the reason we
have chosen the Hue component of the HSV model instead of one
of the single-hue sequential color schemes as provided by Color
Brewer (colorbrewer2.org) is that we are not aiming for an
exact quantitative reflection of the distance or similarity between
nodes. Instead, we focus on finding the general evolution pattern of
clusters of nodes having a close relationship for a long time. The
Hue component has the desired property of providing an intuitive
visual representation of such clusters.

2.5. MDS Slice Flipping

We first normalize the MDS similarity values of all dynamic FUs to
the interval $[0, 0.9]$ instead of $[0,1]$. Hue has an intrinsic circularity
property, meaning that the color at the left end of the interval is the
same as at the right end (see Figure 2). By normalizing the MDS
similarity values to $[0, 0.9]$ we avoid the extreme condition that two
blocks of lines with a large distance between them (therefore being
placed at totally different positions) would get the same red color.

MDS is not invariant to rotation [JFSK16]. This property means
that position can make the evaluation of inter-FU coherence patterns
hard to identify. Figure 3 gives an example of applying MDS to the
first and second time steps, where Figure 3(a) and 3(b) show totally
different orderings of dynamic FUs at the second time step, even
though they share the same graph $G_2$. To solve this problem, we
first compute the sum of the absolute differences $\sum_{i} |X_i[t] - X_i[t-1]|$
between positions of dynamic FUs $i$ which are present at time step
$t-1$ and $t$ before and after flipping, respectively. If the value after
flipping is smaller than before flipping, the position of dynamic
FUs at time step $t$ will flip; otherwise dynamic FUs will keep the
original position computed by MDS.

![Figure 2: HSV color components. Saturation and Value are varying on the condition of Hue is setting equal to 1. The Hue component has been normalized so that it lies in the interval $[0, 1]$ instead of the interval from 0 to 360 degrees.](image-url)
responses to 20 target tones were analyzed in
After the experiment, each participant had to report the number of
participants were instructed to count target tones of 2 kHz (proba-
were collected during an auditory oddball experiment, in which
work data obtained from a single person [JvdGMR17]. The data
We demonstrate the proposed method on dynamic coherence net-
3. Usage Scenario
We demonstrate the proposed method on dynamic coherence net-
L = 20 segments of 1
For each time interval, we calculated the coherence network within
second, sampled at 1000 Hz. We first averaged over segments and
then divided the averaged segment into five equal time intervals.
For each time interval, we calculated the coherence network within
The color of the lines at each time step represents the correspond-
ing position of the dynamic FU on the H-axis in the HSV color
space (see legend). The top block of lines (rendered in black) is the
set of electrodes belonging to very small FUs. (a) FUs ordered by
their barycenter on the FU map. (b) FUs ordered by their position
on the H-axis in HSV color space.

Figure 3: 1D layout computed by MDS for graphs at the first (1)
and second (2) time step. (a) 1D layout before flipping the second
time step. (b) 1D layout after flipping the second time step.

Figure 4: Timeline representation of the evolution of dynamic FUs
over time. Each block of lines represents an FU at each time step.
The color of the lines at each time step represents the correspond-
ing position of the dynamic FU on the H-axis in the HSV color
space (see legend). The top block of lines (rendered in black) is the
set of electrodes belonging to very small FUs. (a) FUs ordered by
their barycenter on the FU map. (b) FUs ordered by their position
on the H-axis in HSV color space.

From Figure 4, it can be seen that dynamic FUs 1, 5, 11, 14 have
a similar blueish color across time steps (this is especially clear
in Figure 4(b)), except for the fourth time step at which dynamic
FU 14 is green, but it shifts back to a blueish green color at the
fifth time step. This means that there is rather constant high
inter-FU coherence among them, but at the fourth time step
dynamic FU 14 is less synchronized with the other FUs. In addition,
these four dynamic FUs exist for all time steps and the size of most
of them is large. Another observation is that even though dynamic
FU 10 exists for all time steps, it is consistently far apart from all
other dynamic FUs, meaning that it has low inter-FU coherence
between these other dynamic FUs. This pattern changes at the fourth
time step, at which dynamic FU 9 is far from the other dynamic FUs
in the specified color space. Dynamic FU 4 has similar behaviour,
it appears at the second time step and is a branch of dynamic FU
1. But it does not have a color close to that of dynamic FU 1 from $t = 2$ to $t = 5$. Similar to dynamic FU 9 and 14, it displays a big change of color at the fourth time step.

The dynamic FU 1 is located posteriorly while dynamic FU 14 is located anteriorly, dynamic FU 5 is located left-centrically, dynamic FU 9 is located right-centrically and dynamic FU 11 is located right-frontally [JvdGMR17]. These regions have a high synchronization during the cognitive processing task. Therefore, regions where dynamic FUs 1, 5, 9, 11, and 14 are located, as well as the change in behaviour at the fourth time step are particularly interesting for further targeted analyzes.

### 4. Conclusion

We have presented a combination of a timeline representation for dynamic graphs and the TMDS technique to visualize dynamic EEG coherence networks. The main goal of this study was to help users discover the evolution pattern of relationships between dynamic FUs over time. It does not only show the change in community structure of dynamic networks, but also the evolution patterns of relationships between communities. Therefore, the proposed method can act as a guideline for further analysis and has potential for visual exploration of large data sets. It can be extended to analyze different types of networks. Many networks can be ordered by their similarity using algorithms such as developed by Van den Elzen et al. [VHBV16].

However, the proposed method has some limitations. First, the underlying visualization metaphor (timeline representation) has a limited scalability. In our application, there are 119 electrodes for each coherence network and 5 time steps. When this method is extended to other dynamic networks of thousands of nodes and hundreds of time steps, the scalability becomes an issue. In such cases, interactive methods may be helpful to facilitate users to explore the evolution patterns of dynamic networks, e.g., drilling-down abilities and more aggregated views. Second, the final assessment of similarity involves the composition of the similarity reduction from a high-dimensional space to 1D (hues) with the way humans perceive hues as being similar or not. As such, what MDS finds to be similar of different is not necessarily perceived in the same proportions by a human observer. Studying the precise effect of this composition is an interesting topic for future research.

### 5. Acknowledgements

C. Ji acknowledges the China Scholarship Council (Grant number: 201406240159) for financial support. We also would like to thank Prof. dr. Alexander C. Telea for his feedback and advice.

### References


