Homo erectus erectus: The Search for His Artifacts
Bartstra, G J

Published in:
Current Anthropology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1982

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Homo erectus erectus: The Search for His Artifacts

by GERT-JAN BARTSTRA

Biologisch-Archaeologisch Instituut, State University of Groningen, Poststraat 6, 9712 ER Groningen, The Netherlands.

21 x 81

Where are the artifacts of Java Man? This is the question that arises now that almost four years of research and fieldwork in Indonesia (1977–81) have provisionally been completed. One of the aims of this work was to shed light on the material culture of the early hominids of Java. Accordingly, most of the known sites with stone tools and fossil hominid remains were visited and surveyed, and several new ones were discovered. River terraces in many places in Central and East Java were mapped and investigated for the presence of artifacts. Much attention was devoted to regions in which the geological history indicates that Upper Pleistocene and (Sub-)Holocene disturbances have been minimal. Many artifacts (including hand-axes and unifacial and bifacial choppers) were found, collected, and studied, but nowhere were we able to demonstrate that these artifacts came from Lower or Middle Pleistocene deposits and therefore could have been made by Java Man.

The story of the discovery of Java Man has become legendary. In 1887 the Dutch army surgeon Dubois arrived in the former Dutch East Indies with the aim of finding the “missing link,” and in October 1891, in the course of excavations at Trinil, a village in Central Java (fig. 1), he did indeed find the heavily fossilized braincase of a primitive hominid. Almost a year later, in August 1892, the same fossil horizon yielded a femur with a remarkable resemblance to that of modern man. Dubois (1894) described these remains as belonging to Pithecanthropus erectus, thus honouring Ernst Haeckel, who had used this generic name hypothetically in his writings. There was not much further clarification concerning Java Man until 1937, when the calvarium of a second, fully grown individual was found at Bapang, near Sangiran, also in Central Java. Java Man could then be accepted with more certainty as a precursor of modern man—unfortunately, however, no longer with the approval of Dubois, who came to stress the apelike features of the Trinil skullcap more and more. Pithecanthropus erectus is now classified as *Homo erectus erectus*, although some of those who are closely involved with palaeoanthropological research on Java still use the name *Pithecanthropus*. *H. erectus erectus* (of which the remains of about 30 individuals are now known) differs subspecifically from *H. erectus modjokertensis*, remains of which have been found in older deposits, and from *H. erectus soloensis* (Solo Man), known from younger sediments. In Africa and in Europe representatives of the species *H. erectus* lived in the Lower Pleistocene (from 1,800,000 to 700,000 years B.P.) and in the Middle Pleistocene (from 700,000 to 130,000 years B.P.). Java Man probably lived in the same time span. In the literature dealing with early man in Java, claims have often been made of the discovery of artifacts of *H. erectus erectus*. The first such claim appears in the reports of the Sencken expedition, where it is stated that some fossil remains of vertebrates were found at Trinil with traces of working by man (Carthaus 1911). The Sencken expedition carried out excavations (in 1906–8) close to Dubois’ former pits, and the alleged bone implements came from the same fossil horizon as the braincase of the first *H. erectus erectus*. Subsequently, in the 1930s, von Koenigswald and von Koenigswald, for example, by Movius (1949:408) and van Heekeren (1972:43). Finally, Jacob et al. (1978) mention “stone tools from mid-Pleistocene sediments” near the village of Sambungmacan (also in Central Java, between Sangiran and Trinil) and suggest a correlation with a Middle Pleistocene hominid.

All these claims for the association of artifacts with a Lower

1 The research and fieldwork, carried out in cooperation with staff members and students of the National Research Centre of Archaeology in Jakarta, were made possible by a grant from Wotro, the Netherlands Foundation for the Advancement of Tropical Research.

2 In fact, a new skull of a *Pithecanthropus* had already been found a year earlier (in 1936) near Mojokerto in East Java. This, however, was an infant calvarium, so no satisfactory comparison could be made with the Trinil vault.

3 A good deal of research has been done on Java in recent years with the aim of obtaining reliable absolute datings of Pleistocene strata. Although one would expect the K-Ar method to offer considerable prospects in view of the significant role that vulcanism has played on Java, difficulties arise in the analysis of samples (Stross 1971). Methods currently employed also include fission-track dating (Nishimura, Thio, and Heluwart 1980), U-series dating on vertebrate bones, and palaeomagnetic dating (Sémah et al. 1981, Sartono et al. 1981).

4 The new Indonesian spelling for the town which gave its name to the culture is Pacitan (see fig. 1).
or Middle Pleistocene hominid can be refuted. To do this in detail is beyond the scope of this account; details must await more extensive reports. However, several points will be emphasized here.

In the case of the Selenka expedition, it is the “implements” themselves that are doubtful. The illustrations that are given of them (it seems that the originals were destroyed in World War II) certainly do not show typical bone tools; in fact, they are reminiscent of the “oesteodontokeratic” controversies in South Africa. Their characteristic features and fracture patterns can be explained by, for example, the action of carnivores. Concerning the small stone tools found at Sangiran by von Koenigswald, it is the deposits in which these artifacts occur that raise doubt as to an association with H. erectus erectus. Von Koenigswald calls these deposits Middle Pleistocene on the basis of remains—in lower-lying strata but within the same (Notopuro) formation—of Middle Pleistocene vertebrates (a so-called Trinil fauna, i.e., the fauna that was originally found in the horizon of the skullcap and femur at Trinil). However, these remains are heavily abraded and water-worn and are certainly derived from still older strata. They cannot be used for age determination; among the first to point this out was Teilhard de Chardin (1937:29) in a letter to von Koenigswald dated 6 January 1936, and others have only been able to confirm his observations (e.g., de Terra 1943:456; Movius 1944:90 n. 58; 1949:354 n. 12; van Heukeren 1972:48; Barstraa 1974:7; 1978:68). From a geological point of view, the artifact-bearing deposits indicated by von Koenigswald cannot be older than Upper Pleistocene (<130,000 years B.P.).

As for the Patjitan culture, “Palaeolithic” types of artifacts, such as handaxes and choppers, are found in terrace fills and in the channel-load of several rivers on the south coast of Java. These artifacts, however, cannot be the work of H. erectus erectus. The oldest river terraces in the region west of Pacitan (where most of the finds have been made) belong to the last phases of the Pleistocene; the younger terrace fills and scarpis are Holocene, and the artifacts have not been derived from older sediments. What is even more important is that so-called Palaeolithic types of artifacts occur in surface assemblages away from rivers. In the literature these assemblages are rather vaguely categorized as “Neolithic” and demonstrated geomorphologically that they do indeed belong to Pleistocene fluvial deposits. It is questionable to what extent the various sites of the Patjitan culture represent only different seasonal or occupational activities of a group of (Sub)-Holocene hunter-gatherers. Wadjak Man could very well have been the manufacturer of the Patjitan tools, and the very name “Patjitanian” can be cast into the melting-pot of the Hoabinhian. In any case, the label “Lower Palaeolithic” that is always attached to the Patjitan culture is extremely confusing.

Finally, the tools from Sambungmacan amount to no more than a chopper and a flake. The village of Sambungmacan made news in 1973, when a fossilized hominid cranial was found in the course of canal-digging operations to short-circuit a meander of the Solo River. From a morphological viewpoint this cranium shows many more advanced features than the remains of Glaman. (Omo Delta) older than the oldest strata containing H. erectus erectus. In conclusion, it must be said that on Java there is still not a single site where artifacts can be associated with H. erectus erectus. Since many remains of this fossil hominid have been found, however, a feeling of paradox arises: where are the artifacts of Java Man?

Two paths to a solution lie open. First, it could be assumed that the absence of any association between artifacts and Java Man is the result of the lack of sufficient research. From this it would follow that continuing palaeoanthropological research and fieldwork on Java in the traditional way will ultimately bring to light older Quaternary deposits containing the recognizable and (by Movius) long-established stone-tool types of the Lower Palaeolithic in southern and eastern Asia, which are clearly to be associated with H. erectus erectus. This hominid must have been able to manufacture stone tools, even if the use of wooden implements was more the rule. Other Lower and Middle Pleistocene hominids, elsewhere in the world, have been found in association with stone artifacts, among them H. erectus pekinensis (Peking Man), H. erectus mauritanicus (Termine), and H. erectus leakeyi (OH 9). And even if one would want to point out that Java Man is morphologically more primitive and probably somewhat earlier than the other subspecies mentioned, it should still be recognized that the use of stone implements has been found in channel deposits (Omo Delta) older than the oldest strata containing H. erectus erectus in Java.

5 Carthaus was in fact the only member of the expedition who accepted them as “implements” (Blankenhorn 1977:239). In this connection it is interesting to note that Dubois (1908:1251) remarked that despite meticulous searching at various sites he had never succeeded in finding any artifacts. Concerning the vertebrate fossils of Trinil he says that many bones were broken by crocodiles, in some cases showing (fossil) tooth marks of these animals, and that the fauna included vast numbers of crocodile teeth (Dubois 1908:1242).

6 Formerly written Wadjak Man. The skulls of this prehistoric hominid were found in caves east of Pacitan at the end of the last century (see review by Jacob 1967).
It is my opinion, however, that a second path should be followed. To find the tools of Java Man the search strategy must be altered. We should stop searching for the established core types of the "chopper/chopping-tool complex," because these constitute a late development of Java, the roots of which extend at most into the Upper Pleistocene. The Patjitarian is not, the work of H. erectus erectus. Instead, we should look at the small irregular cores and crude flakes collected by von Koenigswald at Sangiran, which, while not Middle Pleistocene as he contended, are up until now the oldest tools in all of Java. These artifacts point in the direction in which we must search to find the stone tools of Java Man: assemblages of mostly small, indistinct flakes.

Unfortunately, however, this second road is full of pitfalls. The question is whether it will be possible to recognize these amorphous, indistinct, simple, small stone artifacts as such in the synorogenic river sediments and lahar deposits of the Middle and Lower Pleistocene of Java, which were formed "during this very turbulent time that the Pithecanthropus lived here, threatened by waterfloods, landslides, and frequent earthquakes" (van Bemmelen 1949:591). In fact, in recent years some finds have been reported of alleged stone implements from Middle Pleistocene strata at Sangiran,8 but when one sees these objects, made of chaledony, silicified limestone and chert, and similar late development on Java, the roots of the disputes concerning eoliths at the beginning of this century.

At Sangiran, too, these "implements" come from deposits in which their raw materials are abundant. Horizontally and vertically they have a remarkably wide distribution, and what is clear is the absence of distinct forms and types: they consist for the most part of small crude flakes, sometimes with irregular retouch and an occasional cone of percussion. Are these the work of Java Man, or are they just stones?

References Cited

