Xerostomia and image biomarkers

18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia

A R T I C L E I N F O

Article history:
Received 20 March 2017
Accepted 21 August 2017
Available online 23 September 2017

Keywords:
Xerostomia
NTCP
Image biomarkers
Head and neck cancer
FDG-PET
Radiomics

A B S T R A C T

Background and purpose: Current prediction of radiation-induced xerostomia 12 months after radiotherapy (Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) scores. The hypothesis of this study was that prediction of Xer12m is improved with patient-specific characteristics extracted from 18F-FDG PET images, quantified in PET image biomarkers (PET-IBMs).

Patients and methods: Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment 18F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xerbaseline was compared with the resulting PET-IBM models.

Results: High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of Xer12m to the reference model. The AUC increased from 0.73 (0.65–0.81) (reference model) to 0.77 (0.70–0.84) (P90) and 0.77 (0.69–0.84) (LRHG3E).

Conclusion: Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development.

© 2017 The Author(s). Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 126 (2018) 89–95

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

18F-FDG PET imaging provides functional information about the metabolic activity of tissue. This makes 18F-FDG PET a powerful and widely used diagnostic modality in oncology. In head and neck oncology, 18F-FDG PET can complement other image modalities in tumour staging and delineation for radiotherapy [1,2]. The common clinical use of 18F-FDG PET allows for the possibility to extract large amounts of patient-specific functional information that could contribute to prognosis for head and neck cancer (HNC) patients. Several studies have shown that PET image characteristics of the tumour can contribute to predicting overall, disease-free or event-free survival [3–6]. However, patient-specific image characteristics for predicting normal tissue radiation toxicities are less explored, while these are also crucial in supporting treatment decisions. Additionally, new radiation techniques (e.g. proton therapy [7] and magnetic resonance imaging (MRI) guided radiation [8]) may allow for better sparing of normal tissue. These new techniques demand improved prediction models, to select patients most at risk of developing toxicities [9].

Radiation-induced xerostomia is a major and frequent side effect for HNC patients, and has a considerable impact on these patients’ quality of life [10]. Conventional Normal Tissue Complication Probability (NTCP) models that predict patient-rated xerostomia are based on dose-volume parameters and baseline complaints [11,12]. However, there is still a significant, unexplained variance in predicting xerostomia with these models. Therefore, the demand persists to improve the identification of patients at risk. Previous work showed that patient-specific CT characteristics of the parotid glands could significantly improve the prediction of patient-rated xerostomia, however, model performance improvement was marginal [13]. The hypothesis was that the predictive CT characteristic is related to the ratio of non-function to functional parotid tissue. It can be expected that this ratio would be better represented by image characteristics from functional imaging (i.e. PET or MR images).
In this study, the relationship was tested between metabolic activity of the parotid gland and late xerostomia. Consequently, the patient-specific response to radiation in developing this toxicity was investigated. The purpose was to determine whether functional information from 18F-FDG PET images, which is quantified in PET-image biomarkers (PET-IBMs), was associated with patient-rated moderate-to-severe xerostomia 12 months after radiotherapy (X_{er12m}). Since current NTCP prediction models are based on parotid gland dose and baseline complaints, the study subsequently addressed whether PET-IBMs could improve on the current prediction of X_{er12m}.

Materials and methods

Patient demographics and treatment

18F-FDG PET/CT scans were acquired of 161 HNC patients in treatment position before the start of radiotherapy. The patients were treated with definitive radiotherapy either with or without concurrent chemotherapy or cetuximab, between November 2010 and August 2015. Patients without follow-up data 12 months after radiotherapy were excluded from this study. Patients were also excluded if they underwent surgery in the head and neck area before or within one year after treatment.

A detailed description of the radiotherapy protocols is given in previous studies [13,14]. In summary, all patients were treated with IMRT or VMAT using a simultaneous integrated boost (SIB) technique. The parotid glands and the swallowing structures were spared as much as possible without compromising the dose to the target volumes [14,15]. Patients received a total dose of 70 Gy (2 Gy per fraction, 5 or 6 times a week) to the primary tumour and, if present, pathological lymph nodes. A radiation dose of 54.25 Gy (1.55 Gy per fraction, 5 or 6 times a week) was delivered to the elective lymph node levels.

Endpoints

The primary endpoint was patient-rated moderate-to-severe xerostomia 12 months after radiotherapy (X_{er12m}), which corresponds to the 2 highest scores of the 4-point Likert scale of the EORTC QLQ-H&N35 questionnaire. This endpoint was prospectively assessed as part of a Standard Follow-up Program (SFP) for Head and Neck Cancer Patients (NCT02435576), as described in previous studies [11,12,16].

Dose and clinical parameters

For treatment planning, parotid glands were delineated on the planning (PET)/CT scans. The mean dose to both the contra- and ipsilateral parotid and submandibular glands were extracted from the dose-volume information [11,17]. In addition, baseline patient-rated xerostomia ($X_{erbaseline}$) was also considered (none vs. any).

Patient characteristics such as age, sex, WHO-performance, tumour stage and body mass index did not significantly add to the parotid gland dose and $X_{erbaseline}$ in predicting X_{er12m} in previous studies [11,13,18]. This was again observed in the current cohort, therefore these variables were not further reported in this study.

18F-FDG PET acquisition

Approximately 2 weeks before the start of radiotherapy, 18F-FDG PET/CT images (Siemens Biograph 64-slice PET/CT scanner, Siemens Medical Systems, Knoxville, TN, USA) were acquired in with the patient positioned for radiotherapy. PET/CT system performance were initially harmonised conform the Netherlands protocol for FDG PET imaging [19] and later by EARL accreditation [20].

Patients were instructed not to eat or drink 6 h before scanning, but were encouraged to drink water to ensure adequate hydration. A body weight-based intravenous injection dose of 3 MBq/kg was administered 60 min prior to the 18F-FDG PET acquisition. 18F-FDG PET images were acquired in the caudal–cranial direction with an acquisition time of ~3 min per bed position.

Candidate PET-image biomarkers

Intensity PET-IBMs were extracted, representing first order standardised uptake value (SUV) characteristics of the delineated contra-lateral parotid glands. Examples are mean, minimum, maximum, standard deviation and root mean square of the SUVs. For the complete list of the 24 intensity PET-IBMs, see Supplementary data 1. Fig. 1 shows a schematic representation of PET-IBMs' extraction process.

Furthermore, more complex, textural features were extracted describing the intensity heterogeneity. These textural PET-IBMs were extracted from the grey level co-occurrence matrix (GLCM) [21], grey level run-length matrix (GLRLM) [22,23], grey level size-zone matrix (GLSZM) [24] and neighbourhood grey tone difference matrix (NGTDM) [25]. GLCM describes the grey level transitions. GLRLM and GLSZM describe the directional and volumetric grey level repetitions, respectively. NGTDM describes the relationship of sum and averages of grey level differences of direct adjacent voxels.

For this study, the average of PET-IBMs from GLCM and GLRLM in 13 independent directions was used. The range of SUVs was binned with a fixed bin size of 0.25. Discretisation of SUV is necessary to reduce the number of possible intensity values, and so reduce noise when calculating textural features [26]. All 66 textural PET-IBMs (25 GLCM, 18 GLRLM, 18 GLSZM and 5 NGTDM) were normalised by subtracting the average from the PET-IBMs' values and then dividing by the standard deviation. For the complete list refer to Supplementary data 2. All PET-IBMs were extracted in MATLAB (version R2014a).

Univariable analysis

Univariable logistic regression analysis was performed to evaluate the basic associations of PET-IBMs with late xerostomia. p-Values <0.05 were considered statistically significant. Coefficients (β) were evaluated to understand the effect that is described by the PET-IBMs in relation to X_{er12m}. The univariable analysis was not used for the variable selection.

Multivariable analysis

Reference model

A reference prediction model was evaluated for the current patient cohort. This model was based on the mean dose to the contra-lateral parotid gland and $X_{erbaseline}$. These were the predictors that were identified by Beetz et al. [11].

Intensity and textural PET-IBMs

First, a basic PET-IBM model was created by adding the ‘mean SUV’ of the parotid gland as an extra variable to the reference model. Since this variable is the simplest of PET-IBMs, it is the easiest to interpret.

Both step-wise forward selection and Lasso regularisation were performed for multivariable logistic analysis of the PET-IBMs, together with parotid dose and $X_{erbaseline}$. Step-wise forward selection was based on the largest significant log-likelihood differences.
Lasso regularisation uses the penalisation term lambda, which excludes variables by reducing their coefficients to zero. The optimal lambda was determined by 100-times repeated 10-fold cross validation [28].

To understand the contribution of the different types of PET-IBMs to the reference model, the model analysis of all SUV intensity and textural PET-IBMs were conducted separately. Subsequently, the resulting SUV intensity and textural models were compared to the reference and the ‘mean SUV’ model. The performance of the constructed models was quantified with the Area Under the ROC curve (AUC), the Nagelkerke R^2 and the discrimination slope. Furthermore, calibration was evaluated with the Hosmer–Lemeshow test. Internal validation was performed with bootstrapping to correct for optimism of the model [29,30]. Analyses were performed with the R-packages ‘Lasso and Elastic-Net Regularized Generalized Linear Models’ (version 2.0-2) [28] and ‘Regression Modeling Strategies’ (version 4.3-1) [31].

Inter-variable relationships

The relationship between variables of predictive PET-IBMs (and Xerbaseline) was investigated with Pearson correlation (continuous variables) and univariable logistic regression analysis (binary variables). Furthermore, in a previous study, the short run emphasis (SRE), which was extracted from CT information of the parotid gland, was significantly associated with Xer12m [13]. In the current study, this SRE was also extracted from the CT-scans of patients without metal artefacts in the images. Subsequently the correlation of the CT-based SRE values and the predictive PET-IBMs was tested. Additionally, the improvement of the PET-IBM or reference models by SRE was also tested in this patient subset.

Results

Patients

Patient characteristics are depicted in Table 1. Briefly, nearly all patients were bi-laterally irradiated, most patients had oropharyngeal carcinomas and had no baseline xerostomia (none vs. any: 61% vs. 39%). Sixty of the 161 (37%) patients developed moderate-to-severe xerostomia (X_{er12m}).

Table 1

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N = 161</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>Male</td>
<td>111</td>
<td>69</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–65 years</td>
<td>95</td>
<td>59</td>
</tr>
<tr>
<td>>65 years</td>
<td>66</td>
<td>41</td>
</tr>
<tr>
<td>Tumour site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oropharynx</td>
<td>78</td>
<td>48</td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>Larynx</td>
<td>51</td>
<td>32</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Node classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>71</td>
<td>44</td>
</tr>
<tr>
<td>N1</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>N2abc</td>
<td>74</td>
<td>46</td>
</tr>
<tr>
<td>N3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Systemic treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>51</td>
<td>32</td>
</tr>
<tr>
<td>No</td>
<td>90</td>
<td>56</td>
</tr>
<tr>
<td>Treatment technique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMRT</td>
<td>145</td>
<td>90</td>
</tr>
<tr>
<td>VMAT</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Bi-lateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>139</td>
<td>86</td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>Baseline Xerostomia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>98</td>
<td>61</td>
</tr>
<tr>
<td>A bit</td>
<td>46</td>
<td>29</td>
</tr>
<tr>
<td>Quite a bit</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>A lot</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Abbreviations: IMRT: intensity-modulated radiation therapy; VMAT: volumetric arc therapy.

Univariable analysis

In the univariable analysis, the mean dose to the parotid gland and Xerbaseline were associated with X_{er12m}. Univariable analysis
showed that 11 of 24 intensity PET-IBMs and 35 of 66 textural PET-IBMs were significantly associated with Xer12m (Supplementary data 3). In general, a negative coefficient was observed for PET-IBMs that have a positive relationship with SUVs in the parotid gland, indicating that low parotid gland SUVs were associated with a high Xer12m risk.

Multivariable analysis

Reference model

The reference model with the variables contra-lateral parotid gland dose and Xerbaseline (none vs. any) was fit to the dataset (Table 2). The performance measures are depicted in Table 3 (AUC = 0.73 (0.65–0.81), \(R^2 = 0.22 \)).

Intensity PET-IBMs

First, the basic PET-IBM model ('mean SUV', parotid dose, Xerbaseline) showed that the addition of the 'mean SUV' significantly improved the reference model (Likelihood ratio test; \(p = 0.005 \)). Consistent with the univariable analysis, the negative regression coefficient of the mean SUV indicates that high mean SUVs were associated with a lower Xer12m risk (Table 2). The performance of this basic PET-IBM model (AUC = 0.77 (0.69–0.84), \(R^2 = 0.27 \)), was better than that of the reference model (Table 3).

Resulting from both the Lasso regularisation and forward selection, the 90th percentile of SUVs (P90) was the most predictive of all intensity PET-IBMs (Fig. 2), leading to a significant (Likelihood-ratio test; \(p = 0.002 \)), substantial improvement of the model performance measures (Tables 2 and 3; AUC = 0.77 (0.70–0.84), \(R^2 = 0.28 \)) compared to the reference model (AUC = 0.73 (0.64–0.83), \(R^2 = 0.23 \)). High correlations were observed between P90 and the IBMs that could also significantly improve the reference model when individually added to the reference model (\(r = 0.82 \pm 0.15 \)). See Supplementary data 4 for the correlations of PET-IBMs.

In Fig. 3 the NTCP curves for different P90 values are depicted of the following P90 model:

\[
\text{NTCP} = \frac{1}{1 - e^{-s}}
\]

where \(s = 0.984 + 0.048 \cdot \text{Contra Dose (PG)} + 1.402 \cdot \text{Xerbaseline} - 1.527 \cdot \text{P90}/\text{PG} \)

Table 2

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>Uncorrected</th>
<th>Corrected</th>
<th>OR (95% CI)</th>
<th>(p)-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.632</td>
<td>-2.579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xerbaseline</td>
<td>1.559</td>
<td>1.526</td>
<td>4.75 (2.32–9.75)</td>
<td><0.001</td>
</tr>
<tr>
<td>PG dose</td>
<td>0.056</td>
<td>0.054</td>
<td>1.06 (1.02–1.10)</td>
<td>0.002</td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.752</td>
<td>-2.598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xerbaseline</td>
<td>1.487</td>
<td>1.402</td>
<td>4.43 (2.10–9.31)</td>
<td><0.001</td>
</tr>
<tr>
<td>PG dose</td>
<td>0.050</td>
<td>0.048</td>
<td>1.05 (1.01–1.09)</td>
<td>0.007</td>
</tr>
<tr>
<td>P90</td>
<td>-1.620</td>
<td>-1.527</td>
<td>0.20 (0.06–0.63)</td>
<td>0.006</td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.572</td>
<td>-2.598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xerbaseline</td>
<td>1.577</td>
<td>1.479</td>
<td>4.84 (2.29–10.22)</td>
<td><0.001</td>
</tr>
<tr>
<td>PG dose</td>
<td>0.055</td>
<td>0.051</td>
<td>1.05 (1.02–1.10)</td>
<td>0.004</td>
</tr>
<tr>
<td>LRHG3E</td>
<td>-0.938</td>
<td>-0.880</td>
<td>0.39 (0.19–0.82)</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Abbreviations: Xerbaseline: xerostomia at baseline; PG dose: contralateral mean dose to parotid gland; P90: 90th percentile of intensities; LRHG3E: Long Run High Grey-level Emphasis 3; \(\beta \): regression coefficients; OR: odds ratio; CI: confidence interval.

Table 3

<table>
<thead>
<tr>
<th></th>
<th>Reference model</th>
<th>PET-IBM models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xerbaseline</td>
<td>Xerbaseline</td>
</tr>
<tr>
<td></td>
<td>PG dose</td>
<td>PG dose</td>
</tr>
<tr>
<td></td>
<td>mean SUV</td>
<td>P90</td>
</tr>
<tr>
<td>Overall</td>
<td>-2 log-likelihood</td>
<td>184.51</td>
</tr>
<tr>
<td>Nagelkerke (R^2)</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>Discrimination</td>
<td>Area Under the Curve (AUC)</td>
<td>0.73 (0.65–0.81)</td>
</tr>
<tr>
<td></td>
<td>Discrimination slope</td>
<td>0.17</td>
</tr>
<tr>
<td>Calibration</td>
<td>HL test (X^2) (p-value)</td>
<td>11.22 (0.19)</td>
</tr>
<tr>
<td></td>
<td>Calibration slope (intercept)</td>
<td>1.00 (0.00)</td>
</tr>
<tr>
<td>Internal validation</td>
<td>AUC</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Nagelkerke (R^2)</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Abbreviations: HL: Hosmer–Lemeshow; corrected: corrected for optimism with bootstrapping; IBM: Image Biomarker; Xerbaseline: xerostomia at baseline; PG dose: contralateral mean dose to parotid gland; P90: 90th percentile of intensities; LRHG3E: Long Run High Grey-level Emphasis 3.
Textural PET-IBMs

The most predictive textural PET-IBM was the Long Run High Grey-level Emphasis 3 (LRHG3E), which is derived from the GLRLM. The value of this PET-IBM increases when long repetitions of high SUVs are present in the parotid gland with extra (power of 3) emphasis on high SUVs (see Supplementary data 2 for formula). This variable was selected by both the Lasso regularisation and the step-wise forward selection. This variable significantly improved the reference model in predicting Xer12m (Likelihood-ratio test; \(p = 0.001 \)). The negative coefficient of LRHG3E indicated once more that high SUVs are associated with low Xer12m risk (Table 2). The addition of LRHG3E improved the reference model performance \((0.77 \ (0.69–0.84), R^2 = 0.29; \text{Table 3})\). The NTCP curves for different LRHG3E are depicted in Fig. 3 for the following model:

\[
\begin{align*}
\text{NTCP} & = \frac{1}{1 - e^{-s}} \\
\text{where } s & = -2.598 + 0.051 \cdot \text{Contra Dose (PG)} + 1.479 \cdot \text{Xerbaseline} - 0.880 \cdot \frac{\text{LRHG3E(PG)} - 201.24}{177.05}
\end{align*}
\]

Inter-variable relationships

The predictive PET-IBM P90 (intensity) and LRHG3E (textural) were closely correlated \((p < 0.001; r = 0.83)\). Moreover, they did not add independent information to each other in predicting Xer12m (Likelihood ratio test; \(p > 0.21 \)). Univariable logistic analysis showed no significant association between Xerbaseline and P90 \((p = 0.079)\) or LRHG3E \((p = 0.465)\).

In the current study cohort, 100 patients did not have metal artefacts in the CT images and could therefore be used for the anal-
ysis of the CT-based IBM, the short run emphasis (SRE) [13]. This CT-based SRE was significantly correlated to the predictive PET-IBM P90 (p = 0.008; r = −0.26) and LRHG3E (p = 0.026; r = −0.22). The SRE neither significantly improved the reference model (likelihood ratio test, p = 0.055), nor did it add to the PET-IBM models with P90 (likelihood ratio test, p = 0.140) and LRHG3E (likelihood ratio test, p = 0.096) in this cohort subset.

Discussion

This study is novel to show that the high metabolic activity of the parotid gland was associated with a lower risk of developing late xerostomia (Xer12m). Moreover, the prediction of late xerostomia was significantly and substantially improved with addition of patient-specific PET-IBMs to the reference model based on dose and Xerbaseline. These findings could improve understanding of normal tissue response following radiotherapy, since the variation in patient-specific PET characteristics can partly explain the unexplained variance in predicting xerostomia with dose parameters. Moreover, it could improve identification of patients that are at risk of late radiation-induced side effects, which could potentially benefit most from new therapy technology such as proton [7] and MRI-guided irradiation [8]. In other words, better prediction of toxicities could improve the treatment decision support [9,32]. However, external validation of the PET-IBM models in an independent dataset is necessary before clinical implementation [33].

The PET-IBM that indicates the minimum value of the 90% highest SUVs (P90) was the most predictive of all intensity PET-IBMs. The mean SUV also performed well, but P90 appeared more relevant in this dataset. A high P90 was associated with a lower risk of developing late xerostomia. Similar effect and predictive improvement was observed from LRHG3E (Long Run High Grey-level Emphasis 3) of the textural PET-IBMs, which significantly correlated with P90 (rho = 0.83). This PET-IBM indicates high SUVs that are spatially adjacent to each other. Both PET-IBMs were negatively associated with Xer12m, suggesting that patients with low metabolic activity in the parotid glands were at risk of developing late xerostomia. Although both P90 and LRHG3E perform similarly, currently the P90 is simpler to calculate. However, LRHG3E also contains information about the spatial connectivity of the high SUV voxels, i.e. large repetitions of voxels with high SUV increase the LRHG3E values. External validation is needed to confirm the predictive power of LRHG3E over P90. Additionally, an alternative variable selection approach, Lasso regularisation, resulted in very comparable final models. Since they were independent of the variable selection approach, Lasso regularisation, this IBM could be tested.

Predictive PET-IBMs were not significantly associated with Xerbaseline. This suggests that PET-IBMs contain unique and additional information to baseline xerostomia complaints, since the addition of PET-IBMs to Xerbaseline (and PG dose) improved the prediction of Xer12m significantly.

This study suggests that high metabolic parotid glands have more viable cells (parenchyma and/or stem cells) with more repair capability and/or are less radiosensitive. Although possibly driven by multiple underlying biological processes, there is some similarity in the tumour reaction to radiation. For tumour tissue it is known that high metabolic tumours are more likely to recur [34], particularly in their high metabolic regions [35]. A possible explanation is that it arises from a combination of higher cell density, proliferation rate of metabolically active tissue and DNA repair capacity [36].

Other studies have shown that parotid gland SUVs decrease post-radiotherapy, and in addition that this change was associated with parotid gland dose [37,38]. Cannon et al. [38] showed that mean ‘SUV-weighted parotid gland dose (voxel-wise)’ was significantly related to fractional-SUV (post-SUV/pre-SUV). In an additional small cohort (n = 8), they showed that fractional-SUV was significantly associated with fractional salivary flow and physician-rated xerostomia. Although this indirectly suggests that ‘SUV-weighted parotid gland dose’ is related to xerostomia measures, the direct and separate associations of parotid gland dose and pre-treatment SUV with xerostomia measures or fractional SUV were unfortunately not described.

In previous work, a positive association was shown between higher risk of developing late xerostomia and CT-based SRE (Short Run Emphasis), which might be related to the ratio between non-functional fatty tissue and functional parotid parenchyma tissue. In this study, we showed that this CT-IBM was significantly correlated to P90 and LRHG3E in patients without metal artefacts (n = 100) and did not significantly add to the PET-IBM models. Additionally, the performance of predicting Xer12m was substantially higher with PET-based IBM models than with CT-based IBMs. This suggests that 18F-FDG PET is better to quantify the ratio between fatty non-functional and functional parotid parenchyma tissue. This is logical since 18F-FDG PET is a functional image modality. Furthermore, the SRE did not show a significant improvement in the reference model for the cohort subset, which might be caused by the small additive effect of SRE and low number of patients on which this IBM could be tested.

A well-defined protocol was used to ensure optimal standardisation of SUV in the 18F-FDG PET images by correcting for body-weight, injection dose, tracer uptake period, and glucose plasma levels by letting the patients fast [19,20]. Although SUVs may also be affected by fasting blood glucose level, muscle activity, liver and kidney function, the images were not corrected for these fluctuations. Furthermore, patients with metal artefacts in CT images were included, where the attenuation correction can influence SUVs, but this bias will primarily be located around the metal implant [20]. Additional analyses showed that the PET-IBMs’ performance was still good in the sub cohort of patients without metal artefacts. Additionally, future improvements of the consistency and spatial resolution of PET imaging should also improve the performance of the PET-IBMs in predicting Xer12m.

In this study, patient-rated outcomes (EORTC QLQ-H&N35 questionnaire) were used as a measure for moderate-to-severe xerostomia, because of their relationship with the quality of life of HNC patients [10]. However, some unexplained variability of the models may be caused by the assessment of xerostomia, as the questionnaires can be interpreted differently by the individual patients [39]. Our current study could be strengthened by the addition of investigating the associations between PET-IBMs and objective xerostomia measures. Parotid flow rates are often used, but several studies have shown no or modest correlation between patient reported xerostomia and parotid flow rates [40] and have a low reproducibility [41]. Another example is scintigraphy of parotid gland ejection fraction over time. Although this technique seems promising as a quantitative measure for xerostomia, it requires additional scans with complex procedures with radioactive tracers [41]. This highlights the importance for future research on a non-invasive, accessible and reliable quantitative measure of xerostomia. Nevertheless, we believe that patient-rated xerostomia remains an important endpoint, due to its clinical importance and practical benefits.

Conclusion

The pre-treatment PET-IBMs indicated that a large quantity of high SUVs in the parotid gland was significantly associated with a lower risk of developing xerostomia 12 months after radiotherapy. The addition of the predictive intensity PET-IBM
(90th percentile of SUV) to a model with parotid gland dose and baseline xerostomia improved the prediction performance of the reference model substantially (from 0.73 (0.65–0.81) to 0.77 (0.70–0.84)). This study highlights the importance of incorporating patient-specific functional characteristics into NTCP model development and can, thereby, contribute to the understanding of the patient-specific response of healthy tissue to radiation dose.

Conflict of interest

The authors state that the research presented in this manuscript is free of conflicts of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.radonc.2017.08.024.

References