Switch induced instabilities for stable power system DAE models

Tjorben Groß, Stephan Trenn and Andreas Wirsen

* Jan C. Willems Center for Systems and Control, University of Groningen, Netherlands
** Fraunhofer ITWM, Kaiserslautern, Germany

Abstract: It is well known that for switched systems the overall dynamics can be unstable despite stability of all individual modes. We show that this phenomenon can indeed occur for a linearized DAE model of power grids. By making certain topological assumptions on the power grid, we can ensure stability under arbitrary switching for the linearized DAE model.

Keywords: Power Systems, DAE, switching, stability

1. INTRODUCTION

In the precursor (Gross et al., 2016) to this work we have discussed properties of a (linearized) differential-algebraic equation (DAE) model of power grids. We were able to show that the resulting DAE is regular, of index one and also stable (i.e. all solutions remain bounded). The presence of line failures or disconnection of generators can mathematically be modelled in the framework of switched DAEs (Trenn, 2012). It is well known, that switching between stable systems can lead to an overall unstable behavior (Liberzon, 2003). It is therefore of interest to study the stability properties of power DAE models in the presence of switching.

There is a large amount of literature concerning the stability of power systems, however, we are not aware of any references studying the destabilizing effects induced by structural changes within the modelling framework of switched DAEs. Hence, we see our main contribution of this note to demonstrate the possible destabilizing effect of sudden structural changes even in very simple linearized models. We derive a topological condition which prevents this destabilizing effect; however, this is just a first step for many further important studies. For example, it may be of interest to study the stability properties for a more realistic class of switching signals (e.g. with (average) dwell time conditions) or for more detailed power grid models (including e.g. nonlinear effects).

This paper is structured as follows. We will first present a simple example of a power system which exhibits an unstable behavior under a specific switching signal. Afterwards we present the general power system DAE model from Gross et al. (2016) and recall some basic facts from the theory of switched DAEs. In Section 5 we present sufficient conditions in terms of the power grid topology which guarantees stability under arbitrary switching.

2. UNSTABLE POWER GRID EXAMPLE

We will illustrate the potential destabilizing effect of structural changes in power grid modes via a simple power grid with two generators as shown in Figure 1.

![Fig. 1. A simple power grid with two generators. The red line will be subject to sudden changes in the line parameter.](image)

This power grid will be modelled with a linear switched DAE, where each mode is a linear DAE of the form \(\dot{E}x = Ax + Bu \); in the next section we will derive this model for general power grids, the specific parameters are given in the Appendix. Stability in this context means, that the difference between two solutions for the same input remains bounded (and in particular impulse free), see the formal definition in Section 4.

The structural change occurs in the form of an abrupt parameter change in the line between busses one and four (the susceptance of the line is three orders of magnitude larger in mode two than in mode one).

The simulation shows clearly an unstable behavior, see Figure 2(a) for a plot of the first component of the state vector.

This paper was partially supported by the Fraunhofer Internal Programs under the Grant No. Discover 828378 and by NWO Vidi grant 639.032.733. Most parts of this research work was carried out while the first author was at the Fraunhofer ITWM Kaiserslautern and while the second author was at the University of Kaiserslautern, Germany.

1 We have not investigated so far, whether this choice always leads to a worst case behavior; this is a possible topic for future research.
power generator angle and bus voltage angle is small, the electrical \(M \) acting on the turbines and \(P \eta \) are the spring constants of the shafts connecting the rotating symmetric, positive semidefinite matrix containing the \(K \) of the tridiagonal, symmetric, positive definite matrix \((\eta) \) moments of inertia of the rotating masses; \(\eta \) the assumption that the difference \(\alpha \) the trig (1994); Machowski et al. (2008)); in particular, under the power grid are represented by constant-voltage-behind-\(n \) (which are \(i \) directly connected to a generator). The dynamical behaviour of the \(n \)-th generator is modelled as \(n \in \eta \) coupled rotating masses (the turbines) given by the linear differential-equation

\[
\eta \dot{t}^i(t) = \omega^j(t),
\]

\[
M^\eta \dot{\omega}^i(t) = -D^\eta \omega^i(t) - K^\eta \alpha^i(t) + P^\eta_i(t) - P^\eta_{i,t}(t),
\]

where \(\alpha^i = (\alpha_1^i, \ldots, \alpha_n^i) \) and \(\omega^i = (\omega_1^i, \ldots, \omega_n^i) \) are the angles and the (relative) angular velocities of the \(\eta \) rotating masses, \(P^\eta_i \) is the vector of generator power acting on the turbines and \(P^\eta_{i,t} = (0, \ldots, 0, p^\eta_{i,t}) \) is the electrical power acting on the last rotating mass (the actual generator). The diagonal matrix \(M^\eta \) contains the (positive) moments of inertia of the rotating masses; the tridiagonal, symmetric, positive definite matrix \(D^\eta \) contains the friction coefficients and \(K^\eta \) is a tridiagonal, symmetric, positive semidefinite matrix containing the spring constants of the shafts connecting the rotating masses (and is zero if \(\eta = 1 \)), for details see Gross et al. (2016).

The electrical interconnections of the generators with the power grid are represented by constant-voltage-behind-transient-reactance models (see e.g. Kimbark (1948); Kundur (1994); Machowski et al. (2008)); in particular, under the assumption that the difference \(\alpha^\eta_{i,t} - \theta_{i,t} \) between generator angle and bus voltage angle is small, the electrical power \(p^\eta_{i,t} \) is approximately given by (cf. Pasqualetti et al. (2011); Gross et al. (2014))

\[
p^\eta_{i,t}(t) = \frac{1}{z^i}(\alpha^\eta_{i,t}(t) - \theta_{i,t}(t)),
\]

where \(z^i > 0 \) is the transient reactance of the generator.

The transmission lines are described by the II-model (see e.g. Elgered (1982); Kundur (1994)): it is assumed that the conductance between the busses is negligible and that the difference of the bus voltage angles is small, then the power flow equations can be linearized as follows (Gross et al., 2014), \(i = 1, \ldots, n_g + n_b \),

\[
p^\eta_{i}(t) = \sum_{j=1}^{n_g+n_b} b_{ij}(\theta^j(t) - \theta^i(t)) - p^\eta_{i,t}(t)
\]

where \(p^\eta_{i}(t) \) is the active power infed (usually negative) at the \(i \)-bus, \(b_{ij} = b_{ji} \geq 0 \) is the susceptance between bus \(i \) and \(j \) and \(p^\eta_{i,t} = 0 \) for \(i > n_g \). Note that \([b_{ij}]_{i,j=1,\ldots,n_g+n_b} \) is the (weighted) adjacency matrix of the coupling graph of the power grid. Let \(\Sigma \in \mathbb{R}^{(n_g+n_b) 	imes (n_g+n_b)} \) be the corresponding (weighted) Laplacian matrix of the graph, i.e. \(\Sigma = [\ell_{ij}] \) with

\[
\ell_{ii} = \sum_{j=1}^{n_g+n_b} b_{ij} \quad \forall i,
\]

\[
\ell_{ij} = -b_{ij} \quad \forall i \neq j.
\]

The overall DAE describing the power grid is now given by

\[
\dot{E} = A x + Bu,
\]

where, for \(\eta = \sum_{i=1}^{n_g} \eta_i, \ x = (\alpha^\top, \omega^\top, \theta^\top)^\top \in \mathbb{R}^{n_g + n_b + (n_g+n_b)} \) \(u \in (P^\top, P^\top)^\top \in \mathbb{R}^{n_g+n_b+n} \) with \(\alpha, \ \omega, \ \theta, \ P^\top, \ P \) being each composed from \(\alpha^i, \ \omega^i, \ \theta^i, \ P^g, \ P^\top \),

\[
E = \begin{bmatrix} I_{n_g} & 0 \\ 0 & M \end{bmatrix}, \quad B = \begin{bmatrix} I_{n_g} & 0 \\ 0 & 0 \end{bmatrix},
\]

\[
A = \begin{bmatrix} -K - H Z^{-1} \omega^\top & -D \\ H Z^{-1} & 0 \end{bmatrix} - \Sigma = [z^{-1} 0] \bigg(\sum_{i=1}^{n_g} \begin{bmatrix} 0_{(q_i-1)\times n_g} \\ e_i \end{bmatrix} \bigg),
\]

with \(M, D, K, Z \) being (block) diagonal matrices composed from \(M^\top, D^\top, \ K^\top, z^\top \) and

\[
H = \begin{bmatrix} H^1 \\ \vdots \\ H^{n_g} \end{bmatrix}, \quad H^i = \begin{bmatrix} 0 \end{bmatrix}_{(q_{n_g+1}\times n_g)}
\]

with \(e_i \in \mathbb{R}^n \) being the \(i \)-th unit vector.

In the context of switching, each of the possible \(q \in \mathbb{N} \) operation modes is induced by a DAE of the form (1) with matrices \((E^q, A^q, B^q) \), \((E^q, A^q, B^q) \). Here we restrict our attention to the case that the switches are induced by changes in the line parameters, i.e. the changes occur only in the Laplacian matrix \(\Sigma \), i.e.

\[
E^1 = \ldots = E^3 = E, \quad B^1 = \ldots = B^3 = B
\]

and, for \(q = 1, \ldots, q \),

\[
A^q = \begin{bmatrix} 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 \end{bmatrix} + \begin{bmatrix} I_{n_g} & 0 \\ 0 & 0 \end{bmatrix},
\]

where \(\Sigma^1, \ldots, \Sigma^q \) are the Laplacian matrices of the different couplings.

4. SWITCHED DAES

A switched differential-algebraic equation (DAE) is a time-varying, linear, implicit differential equation of the form

\[
E^q(t)\dot{x} = A^q(t)x + B^q(t)u
\]

where \(\sigma : \mathbb{R} \to \Sigma := \{1, 2, \ldots, q\} \) is the switching signal choosing at each time which of the \(q \in \mathbb{N} \) modes is active and, for \(q \in \Sigma, E^q, A^q \in \mathbb{R}^{n \times n}, B^q \in \mathbb{R}^{n \times m} \). We assume that \(\sigma \) is piecewise constant and right continuous and has

![Fig. 2. Illustration of destabilizing effect of switching.](http://example.com/image.png)
only finitely many jumps in each finite interval (no Zeno-behavior); the matrix pairs \((E^q, A^q)\) are each assumed to be regular, i.e. for each \(q \in \Sigma\) the polynomial \(\det(sE^q - A^q)\) is not identically zero. A very important characterization for regularity which goes back to Weierstraß (1868) is given by the following well known result:

Lemma 1. A matrix pair \((E, A) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}\) is regular if, and only if, there exist invertible matrices \(S, T \in \mathbb{R}^{n \times n}\) such that \((E, A)\) is equivalent to a *quasi-Weierstrass form* (QWF):

\[
(\text{SET}, \text{SAT}) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right),
\]

where \(N \in \mathbb{R}^{n \times n} \) is nilpotent and \(J \in \mathbb{R}^{n \times n}\) with \(n_N + n_J = n\).

Note that we do not consider the Weierstraß canonical form, because in the QWF the matrices \(N\) and \(J\) are not assumed to be in Jordan canonical form. An easy way to obtain the QWF is via the Wong sequences (Wong, 1974), for details see Berger et al. (2012). In particular, the limit \(V\), of the first Wong sequence is exactly the subspace of consistent initial values:

\[
V = \{ x_0 \in \mathbb{R}^n \mid \exists \text{ solution of } E \dot{x} = Ax, x(0) = x_0 \}.
\]

The index of \((E, A)\) (or the corresponding DAE) is defined to be the nilpotency index of \(N\) in the QWF. In case \((E, A)\) has the special structure (semi-explicit form)

\[
(E, A) = \begin{bmatrix} E_1 & 0 & 0 \\ 0 & A_2 & A_3 \\ 0 & A_4 & A_5 \end{bmatrix}, \quad (4)
\]

with \(E_1\) being invertible, it is easily seen, that \((E, A)\) is regular if, and only if, \([A_3, A_4]\) has full row rank; if this is the case, then \((E, A)\) is of index one if, and only if, \(A_4\) is invertible. In fact, if \(A_4\) is invertible, one obtains the QWF (3) (with \(N = 0\) and \(J = E_1^{-1}(A_1 - A_3 A_5^{-1}A_4)\)) via

\[
S = \begin{bmatrix} E_1^{-1} & 0 & 0 \\ 0 & A_4^{-1} & A_1 \\ 0 & A_4^{-1} & A_3 \\ A_4^{-1} & 0 & A_5 \end{bmatrix}, \quad T = \begin{bmatrix} I & 0 \\ 0 & A_4^{-1} & A_3 \\ 0 & A_4^{-1} & A_5 \end{bmatrix}. \quad (5)
\]

In general, existence and uniqueness of solution of the switched DAE (2) is guaranteed provided all matrix pairs \((E_0, A_0)\) are regular; however, solutions have to be considered in a certain distributional solution framework (Trenn, 2012). In particular, solutions of (2) will be discontinuous and may even contain derivatives of jumps (Dirac impulses). If the solutions do not contain Dirac impulses (impulse-freeness), then one can interpret the distributional solutions again as piecewise-smooth functions (right-continuous) and we will simply write \(x(t)\) for the evaluation of \(x\) at time \(t\) (or \(t^-\), i.e. the left limit) although, formally, the evaluation of a general distribution at some specific point in time is not well defined. Independently of the index, the unique jump in the solution of (2) with \(u \equiv 0\) is given by

\[
x(t) = \Pi^q(t)x(t^-)
\]

where \(\Pi^q \in \mathbb{R}^{n \times n}\) is the consistency projector of mode \(q\), given by

\[
\Pi^q = T^q \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} (T^q)^{-1},
\]

where the block sizes correspond to the block sizes in the QWF of \((E^q, A^q)\) obtained by some invertible matrices \(S^q, T^q\).

We will now introduce the following stability notion for (2):

Definition 2. The regular switched DAE (2) (for given switching signal) is called stable iff 1) all solutions are impulse-free\(^2\) and 2) for all \(\epsilon > 0\) there exists \(\delta > 0\) such that all solutions \(x_1, x_2\) for the same input \(u\) satisfy the following implication:

\[
\|x_1(0^-) - x_2(0^-)\| \leq \delta \implies |x_1(t) - x_2(t)| \leq \epsilon.
\]

Due to linearity, it suffices to consider \(u = 0\) and \(x_2 = 0\); furthermore, it is easily seen that stability is equivalent to boundedness of all solutions.

In contrast to Liberzon and Trenn (2012) we do not consider asymptotic stability, because, as was shown in Gross et al. (2016), the power grid DAE models considered here are only stable and not asymptotically stable. We will now give a sufficient condition for stability of the switched DAE (2) in terms of (multiple) Lyapunov functions:

Theorem 3. Consider the regular switched DAE (2) with corresponding consistency spaces \(V^q\) and consistency projectors \(\Pi^q, q \in \Sigma\). If

1. all solutions are impulse-free;
2. for each \(q \in \Sigma\), there exist a symmetric \(P^q \in \mathbb{R}^{n \times n}\) such that \(V^q(x) := x^\top (E^q)^\top P^q E^q x\) is positive definite on the consistency space \(V^q\) and \(V^q(x) := x^\top (A^q)^\top P^q E^q + (E^q)^\top P^q A^q x\) is negative semi-definite on \(V^q\);
3. for all \(p, q \in \Sigma\) the Lyapunov-functions are not increasing at switches, i.e.

\[
V^p(\Pi^q x) \leq V^p(x) \quad \forall x \in V^p,
\]

then (2) is stable for any switching signal.

Proof. The proof is a straightforward adaption of the proof in Liberzon and Trenn (2012), where the stronger case of asymptotic stability was considered.

Remark 4. Existence of a Lyapunov function as in assumption II of Theorem 3 for a regular matrix pair \((E, A)\) is equivalent with stability of the unswitched DAE \(E \dot{x} = Ax\); in fact, stability of the latter is equivalent with solvability of the generalized Lyapunov equation

\[
A^TP E + E^T A P = -Q
\]

for some symmetric matrices \(P, Q \in \mathbb{R}^{n \times n}\) such that \(V^q(x) := x^\top (E^q)^\top P^q E^q x\) is positive semi-definite on \(V^q\), c.f. Liberzon and Trenn (2012, Rem. 2.8). However, in contrast to ODEs, not for all \(Q\) the equation (6) has a solution \(P\). If the regular matrix pair \((E, A)\) has index one (or two) then stability actually is equivalent to solvability of

\[
A^T P E + E^T A P = -E^T Q E
\]

doing see Groß (2016, Thm. 5.4.2) (which is a slight modification of Stýkel (2002, Thm. 4.8) to the non-asymptotic case).

Remark 5. For a regular, index-one matrix pair \((E, A)\) in semi-explicit form (4) the consistency projector is given by

\[
\Pi = \begin{bmatrix} I & 0 \\ 0 & A_4^{-1} A_3 \end{bmatrix}.
\]

Furthermore, for any function \(V : \mathbb{R}^n \to \mathbb{R}\) given by \(V(x) = x^\top E^T P E x\) it is easily seen that

\[
V(\Pi x) = x_1^T E_1^T P E E_1 x_1 = V(x),
\]

\(^2\) but jumps are still allowed
where \(P = \begin{bmatrix} P_1 & P_2 \\ P_3 & P_4 \end{bmatrix} \) and \(x = (x_1^T, x_2^T) \) with partitions corresponding to the block sizes in (4). Consequently, for index-one switched systems in semi-explicit form and parameter changes only in the \(A \)-matrix, Theorem 3 yields that the common Lyapunov function is sufficient to ensure stability under arbitrary switching (in general, a common Lyapunov Function is not sufficient to guarantee stability under arbitrary switching, see e.g. Liberzon and Trenn (2009, Ex. 1)).

5. STABILITY OF SWITCHED POWER SYSTEMS

We have seen that in general switching may result in an overall unstable behavior; however, under certain restrictions on the topology of the power grid as well as on the allowed topological changes stability may be preserved under switching. A key lemma to formulate such a topological restriction is the following.

Lemma 6. Consider a matrix pair \((E, A)\) with the following structure:

\[
(E, A) = \begin{bmatrix}
E_1 & 0 & 0 \\
0 & A_3 & -L_4 \\
0 & 0 & 0
\end{bmatrix},
\]

with \(E_1 \in \mathbb{R}^{n_1 \times n_1}, n_1 \in \mathbb{N}, A_3 \in \mathbb{R}^{n_3 \times n_3} \), invertible, \(A_1, A_2, A_3, A_4 \in \mathbb{R}^{n_2 \times n_2}, n_2 \in \mathbb{N}, n_4 \in \mathbb{N}^{n_2 \times n_2}, \) and \(\mathcal{L} := [\mathcal{L}_2, \mathcal{L}_3] \in \mathbb{R}^{n_3 \times n_3}, n_3 > n_2 \), is a (weighted) Laplacian matrix of some (undirected) graph with \(n_2 \) nodes. Assume that

1. \((E, A)\) is regular, stable and index one;
2. \(\text{rank} \mathcal{L}_2 = 1 \).

Then there is a Lyapunov function for \(E \dot{x} = Ax \) which is also valid for any regularity preserving topological change in \(\mathcal{L}_4 \). In particular, there is a common Lyapunov function for the corresponding switched systems where parameter changes only occur in \(\mathcal{L}_4 \).

Proof. According to Remark 4, stability of \((E, A)\) with index-one guarantees existence of a Lyapunov function \(V(x) = x^T E^T P E x \) where \(P \) is a symmetric positive semidefinite solution of (7) for some positive semidefinite \(Q \). We will now show that the possible choices for \(P \) are independent of the entries in \(\mathcal{L}_4 \), which then proves the claim of the lemma. For that, we consider a partition of \(P \) according to the partition of \(E \) and \(A \), i.e.

\[
P = \begin{bmatrix}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{bmatrix}.
\]

Evaluating (7) also blockwise we see that only the following two block equations depend on \(\mathcal{L}_4 \):

\[
-E_4 P_{21} - E_2 - E_1 P_{31} = 0,
\]

\[
-E_1^T P_{21} E_1 - E_3 - E_4 P_{31} = 0.
\]

Due to symmetry of \(\mathcal{L} \) and \(P \), both are equivalent and can be rewritten as (invoking invertibility of \(E_1 \)):

\[
\text{im} \begin{bmatrix} P_{21} \\ P_{31} \end{bmatrix} \subseteq \ker [\mathcal{L}_3, \mathcal{L}_4].
\]

Due to regularity, \([\mathcal{L}_3, \mathcal{L}_4]\) has full row rank \(n_{22} := n_2 - n_{21} \), hence \(\dim \ker [\mathcal{L}_3, \mathcal{L}_4] = n_2 - n_{22} = n_{21} \). For any Laplacian matrix \(\mathcal{L} \) we have \((1, \ldots, 1)^T \in \ker \mathcal{L} \subseteq \ker [\mathcal{L}_3, \mathcal{L}_4] \) and since \(\text{rank} \mathcal{L}_3 = 1 \) by assumption we additionally have \(\dim \ker \mathcal{L}_3 = n_{21} - 1 \). Altogether this yields

\[
\ker [\mathcal{L}_3, \mathcal{L}_4] = \left(\ker \mathcal{L}_3 \right) \oplus \text{im} \begin{bmatrix} 1 \\ 0 \end{bmatrix},
\]

which shows that \(\ker [\mathcal{L}_3, \mathcal{L}_4] \) is independent of the specific entries in \(\mathcal{L}_4 \) and, therefore, the solution of (7) is independent of \(\mathcal{L}_4 \).

The result of Lemma 6 can now be utilized to give a topological condition on a power grid which ensures stability under arbitrary switching. Therefore, we will make the following topological assumptions on the power grid network.

Assumptions

Consider an electrical grid as in Section 3 with a corresponding coupling graph \(G = (\mathcal{V}, \mathcal{E}) \). Assume that

\[
\mathcal{V} = \mathcal{V}_g \cup \mathcal{V}_l \cup \mathcal{V}_f
\]

such that

(i) \(\mathcal{V}_g \) are the nodes corresponding to the generator busses (in particular, \(|\mathcal{V}_g| = n_g \));

(ii) there are no edges between nodes in \(\mathcal{V}_g \) and nodes in \(\mathcal{V}_l \);

(iii) all nodes in \(\mathcal{V}_g \) are connected with all nodes in \(\mathcal{V}_l \);

(iv) the weights of the edges between \(\mathcal{V}_g \) and \(\mathcal{V}_l \) are such that the corresponding submatrix of the Laplacian has rank one \(^3\);

(v) topological changes (addition/removal of edges or sudden change of the weight) are allowed in all edges between nodes in \(\mathcal{V}_g \cup \mathcal{V}_l \) as long as the resulting graph remains connected.

\(^3\) In particular, this is the case if either A) for each generator bus all adjacent edges have the same weight or B) for each node in \(\mathcal{V}_f \) all adjacent edges have the same weight.

Fig. 3. A simple power grid satisfying Assumptions (i)-(v).

\[
\mathcal{L} = \begin{bmatrix}
\mathcal{L}_1 & \mathcal{L}_2 \\
\mathcal{L}_3 & \mathcal{L}_4
\end{bmatrix} = \begin{bmatrix}
\ell_{13} & \ell_{14} & 0 & 0 & 0 & 0 \\
0 & \ell_{23} & \ell_{24} & 0 & 0 & 0 \\
0 & \ell_{35} & \ell_{36} & 0 & 0 & 0 \\
0 & 0 & \ell_{45} & \ell_{46} & 0 & 0 \\
0 & 0 & 0 & \ell_{56} & \ell_{57} & 0 \\
0 & 0 & 0 & 0 & \ell_{67} & \ell_{77}
\end{bmatrix}
\]
and Assumptions (i)-(v) are satisfied if, and only if, only the entries in L_4 (highlighted in blue) are subject to changes and the matrix $[f_{i3} f_{33}]$ only contains positive entries and has rank one.

Theorem 7. Consider a switched power grid model satisfying Assumptions (i)-(v). Then it remains stable for arbitrary switching signals.

Proof. Since each mode by assumption has a connected coupling graph, Gross et al. (2016, Thms. 3.2, 4.3, 5.3) have shown that each mode is regular, index-one and stable. The topological assumptions ensure that all parameter changes only occur in L_4 and also that L_3 has rank one, hence all requirements of Lemma 6 are satisfied and there exist a common Lyapunov-function V. Now Remark 5 concludes the proof.

Consider again the example from Section 2. The conditions from Theorem 7 are not satisfied, because the switches occur for a power line directly connected to a generator bus and, furthermore, the susceptances for the lines connected to the generator buses are not identical (i.e. the rank-one- assumption from Lemma 6 is not satisfied); therefore, stability for arbitrary switching cannot be guaranteed and indeed instability occurs as shown with the simulations in Section 2.

However setting the susceptance between bus 1 and 4 to $\frac{1}{10}$ example it is not possible to obtain a common Lyapunov function via (5) one can easily find $Y = Y^\top > 0$, such that $YJ + J^\top Y \leq 0$, e.g.,

It is now possible to construct a Lyapunov function for the original system with the help of Y via

$$V(x) := \begin{bmatrix} x_1 \ x_2 \end{bmatrix}^\top E^\top S^\top \begin{bmatrix} Y & 0 \\ 0 & 0 \end{bmatrix} SE \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} > 0 \ \forall x_1 \neq 0.$$

Then the symmetric matrices, $i = 1, 2,$

$$\Pi^\top \begin{bmatrix} E^\top S^\top \begin{bmatrix} Y & 0 \\ 0 & 0 \end{bmatrix} S A^i + (A^i)^\top S^\top \begin{bmatrix} Y & 0 \\ 0 & 0 \end{bmatrix} SE \end{bmatrix} \Pi = \begin{bmatrix} 0 & 1 & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix}$$

corresponding to the derivatives along solutions have negative or (numerically) zero eigenvalues. In view of Remark 5 we can therefore conclude directly with the help of a common Lyapunov function that the switched system is stable under arbitrary switching.

6. CONCLUSION

We have studied the stability property of a simple, linearized model of a power grid which is subject to sudden structural changes. Surprisingly, the switching itself may result in an unstable behavior although each configuration exhibits stable dynamics. At the moment this is just a theoretical observation and it remains a topic for future research whether this phenomena really plays an important role in real world power grids. In particular, unbounded trajectories in response to switching indicates that our model introduces energy into the system when a topological change occurs; whether this is physically justified needs to be clarified in the future.

We provide topological assumptions on the power grid which prevents instability due to switching. These assumptions in particular require that certain line parameters satisfy a rank-one assumption; an intuitive interpretation of this rank-one assumption in terms of the physical properties of the power grid is still an open question.

Appendix A. PARAMETERS OF SIMPLE POWER GRID EXAMPLE

For the simulation of the example in Section 2 we used DAE descriptions given by the matrix pairs (E, A^1), $(E, A^2) \in \mathbb{R}^{8 \times 8} \times \mathbb{R}^{8 \times 8}$ as in Section 3 with the following parameters

\[(\eta_0) = (\emptyset), \quad M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}, \quad D = \begin{bmatrix} 0.01 & 0 \\ 0 & 0.01 \end{bmatrix}, \quad \text{and, for mode } 1, \]

\[L_1 = \begin{bmatrix} 0.005 & -5.005 & 0.005 & 0.005 \\ 0.005 & 5 & 0.005 & -5.005 \end{bmatrix} \]

\[\text{and, for mode } 2, \]

\[L_2 = \begin{bmatrix} 0.005 & -5.005 & 0.005 & 0.005 \\ 0.005 & 5 & 0.005 & -5.005 \end{bmatrix}. \]

The dashed boxes in (A.1) and (A.2) highlight the changes in the system matrices induced by the susceptibility change in the line between bus one and four. As (consistent) initial value we choose

\[x_0 := \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}^\top. \]

For the illustration of the destabilizing effect of switching it suffices (due to linearity) to consider the system with zero input.

REFERENCES

