Breast and complementary feeding in Ethiopia: new national evidence from systematic review and meta-analyses of studies in the past 10 years

Tesfa Dejenie Habtewold¹,²*, Shimels Hussien Mohammed³, Aklilu Endalamaw⁴, Mohammed Akibu¹, Nigussie Tadesse Sharew¹, Yihun Mulugeta Alemu⁵, Misrak Getnet Beyene⁶, Tesfamichael Awoke Sisay⁷, Mulugeta Molla Birhanu⁸, Md. Atiqul Islam⁹, Balewgizie Sileshi Tegegne²

¹Department of Nursing, College of Medicine and Health Science, Debre Berhan University, Debre Berhan, Ethiopia.
²Department of Epidemiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
³Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences-International Campus (TUMS-IC), Tehran, the Islamic Republic of Iran.
⁴Department of Pediatrics and Child Health Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
⁵Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Science, Bahir Dar University, Ethiopia.
⁶Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
⁷Department of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
⁸Department of Adult Health Nursing, School of Nursing, College of Health Sciences, Mekelle University, Mekelle, Ethiopia.
⁹Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh.

* =Corresponding author
Tesfa Dejenie Habtewold
Email: tesfadej2003@gmail.com
ORCID: 0000-0003-4476-518X
Phone: +251910025860
P.O.BOX: 445

Acknowledgment
Our special gratitude forwarded to Sjoukje van der Werf (University of Groningen, the Netherlands) for her support to develop the search strings.
Abstract

Purpose: The aim of this systematic review and meta-analysis was to provide a national estimate of breast and complementary feeding practices and its predictors in Ethiopia.

Methods: PubMed, SCOPUS, EMBASE, CINHAL, Web of Science and WHO Global Health Library electronic databases were searched for all available literature published until April 2018. Observational studies including cross-sectional, case-control and cohort studies were included. Newcastle-Ottawa Scale (NOS) was used to assess the quality of studies. Heterogeneity of studies was quantified using Cochran’s Q χ^2 statistic and Higgins’s method (I^2). A meta-analysis using a weighted inverse variance method was performed. Subgroup analysis was carried out based on region and study area.

Results: In total, 70 studies that involved >55,000 women from nine regions and two chartered cities in Ethiopia were included. The pooled national prevalence for timely initiation of breastfeeding (TIBF), exclusive breastfeeding (EBF) and timely initiation of complementary feeding (TICF) was 66.5%, 60.1% and 62.5% respectively. Guidance and counselling on breastfeeding, vaginal delivery and health institution delivery significantly increased the odds of TIBF and EBF. In addition, TIBF significantly associated with high EBF practice. Maternal occupational status significantly associated with low EBF practice, but not TIBF.

Conclusions: Based on the WHO standard, the current breast and complementary feeding practice in Ethiopia is good and improving. Integrated intervention is still required for further improvement and minimizing the effect of occupational status.

Keywords: Breastfeeding, Complementary feeding, Meta-analysis, Infant Nutritional Physiological Phenomena, Ethiopia
Introduction

The World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF) Innocenti Declaration urges developing a national breastfeeding strategy and establishing monitoring and control system [1]. In 2017, the global coverage of timely initiation of breastfeeding (TIBF), exclusive breastfeeding (EBF) and timely initiation of complementary feeding (TICF) was 44%, 40% and 64.5% respectively [2,3]. A meta-analysis of demographic and health surveys from 29 sub-Saharan African countries shows that the prevalence of TIBF ranges from 37.8% to 69.3%, EBF is 23.7% to 56.6%, predominant breastfeeding is 17.6% to 46.4% and bottle feeding is 8.17% to 30.1% [4]. Based on the WHO survey of the 129 nations, only 22 nations have achieved 70% TIBF and 23 countries have achieved at least 60% of EBF [2]. Generally, optimal breast and complementary feeding are high in low- and middle-income countries [2,3].

TIBF within 1 hour after birth and EBF until 6 months followed by appropriate complementary foods have various advantages for maternal, child and societal health [5]. Optimal breast and complementary feeding are also crucial for the achievement of three Sustainable Development Goals (SDG): improves nutrition (SDG-2), decreases child mortality and the risk of non-communicable diseases (SDG-3), and improves cognitive development and education (SDG-4) [2]. Despite these advantages, many women stop breastfeeding and switch to infant formula feeding too early. Suboptimal feeding increases the risk of morbidity and mortality up to fivefold [6]. Approximately 25 to 50% of infant mortality in developing countries occurs due to suboptimal feeding practice [7,8].

Globally, previous studies identified multiple predictors of suboptimal feeding including guidance and counselling, smoking, residence, place of delivery, maternal educational level, maternal occupational status, income, mother’s age, mode of delivery, newborn’s gender, health status of mother and newborn at delivery [9-11]. The same factors have been reported to contribute to sub-optimal breastfeeding in Sub-Saharan Africa [12].

Ethiopia is Africa’s second most populated country located in the Horn of Africa. According to the 2015 projection, the total population was 90,078,000 [13]. Ethiopia is administratively divided into nine regional states (Afar, Amhara, Benishangul-Gumuz, Gambela, Harari, Oromia, Somali, Tigray and SNNPR) and two chartered cities (Addis Ababa and Dire Dawa). Figure 1 shows regions and chartered cities of Ethiopia.

In Ethiopia, several studies have been conducted on breast and complementary feeding, and they identified multiple predictors. However, none of these studies provided a national estimate and the findings are inconsistent.
Since 2000, the Ethiopian Demographic and Health Survey has been conducted every 5 years and provided a national estimate on breast and complementary feeding; however, it does not provide evidence on the associated factors. So far, one meta-analysis [14] was done in Ethiopia aimed to study the prevalence of TIBF and its association with the place of residence and delivery. The present study has the following aims: (1) to provide a national pooled estimate on the prevalence of TIBF, EBF and TICF separately; (2) to conduct a comprehensive systematic review on various associated factors of TIBF, EBF and complementary feeding; (3) developing/proposing a multilevel theoretical model in the context of Ethiopian population; (4) to conduct meta-analysis on the association between TIBF and maternal occupational status, guidance and counselling on breastfeeding, place of delivery and mode of delivery; and (5) to conduct meta-analysis on the association between EBF and maternal occupational status, guidance and counselling on breastfeeding, place of delivery, mode of delivery and TIBF. We hypothesized (1) guidance and counselling on breastfeeding, health institution delivery and vaginal delivery increases TIBF and EBF; (2) TIBF increase EBF; and (3) Being government employed reduce TIBF and EBF.
Methods

Protocol registration and publication

The protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO) (http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42017056768) and published [15].

Databases searching

PubMed, SCOPUS, EMBASE, CINHAL, Web of Science and WHO Global Health Library databases were searched for all available literature. Additional studies were also identified from the reference lists of identified articles and gray literature. Search string was constructed for each database (Supplementary file 1).

Inclusion and exclusion criteria

Studies that meet the following criteria were included: (1) observational studies including cross-sectional, case-control and cohort studies; (2) studies reported the prevalence and/or associated factor(s) of TIBF or EBF or TICF; (3) studies conducted in Ethiopia; and (4) studies that ascertained outcomes based on WHO [16] infant and young child feeding (IYCF) indicators definitions. The search was further limited to studies published in English from October 2000 to April 2018. Commentaries, anonymous reports, letters, protocols, systematic reviews, program evaluation reports, duplicate studies, editorials, qualitative studies, and abstracts without full-text were excluded. In addition, studies with infants who were preterm, low birth weight, in neonatal intensive care unit and mothers or infants with known medical problems such as HIV/AIDS were excluded.

Study screening and selection

Firstly, all studies retrieved from all databases were exported to RefWorks version 2.0 web-based citation manager and, close and exact duplicates were deleted. Secondly, all independent studies were exported to Microsoft Excel spreadsheet. Thirdly, two independent reviewers’ (TD and BS) screened the title and abstract of each study followed by agreement test using Cohen’s kappa coefficient. The kappa coefficient was 0.76 with an asymptotic standard error of 0.05 indicating the agreement between the two reviewers’ was ‘good’. Finally, full-text review was performed and the following data were extracted: first name of author, year of publication, region, study area, study design, study population, number of respondents, data collection method, prevalence, and significantly associated factors—its respective odds ratio (OR) and 95% confidence interval (CI).
Quality and validity of risk assessment

Newcastle-Ottawa Scale (NOS) [17] was used to assess the quality of studies. The following items were included to evaluate studies: (1) selection, (2) comparability, and (3) the ascertainment of the outcome. NOS has a good inter-rater reliability and validity [18]. We ensured that the study population of all included studies was randomly chosen from the sampling frame and all NOS criteria satisfactorily fulfilled.

Statistical analysis

A meta-analysis using a weighted inverse variance method was performed to calculate the pooled national prevalence rate of breast and complementary feeding and the odds ratio of associated factors. To adjust the effect of high or low prevalence studies on the pooled estimate, the arc-sine transformation was used [19]. Publication bias was checked through visual inspection of Funnel plot asymmetry and Egger’s regression test [20]. Heterogeneity of studies was quantified using the significance level of Cochran’s χ^2 statistic and Higgins’s method where I^2 statistic >80% (reference value) indicating substantial heterogeneity [15]. Given the limitations of these methods and lack of consensus on the exact cut-off value to confirm heterogeneity in different studies [21,22], however, homogeneity of studies rigorously checked in terms of study setting, study population, study design, data collection method, sampling technique and statistical analysis [23]. A separate forest plot was constructed for each meta-analysed variable. The data were entered using SPSS version 23 and meta-analysed using ‘meta’ and ‘metafor’ packages in R software version 3.4.2. Subgroup analysis was carried out based on region (Amhara region versus other regions) and study area (rural, urban, rural and urban).

Data synthesis and reporting

Firstly, a meta-analysis of prevalence was done for TIBF, EBF and TICF separately. Secondly, all previously reported significantly associated factors were collected and categorized into four levels using the multilevel theoretical model adapted from previous systematic reviews [24,25]. Finally, a meta-analysis was done for selected (level 1 and level 2) associated factors; to increase the power, all studies that reported significant and non-significant association were included in the meta-analysis. Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2009 statement [26,27] and A MeaSurement Tool to Assess Systematic Reviews (AMSTAR 2)[28] were used to report this systematic review and meta-analysis.
Results

Search results

We obtained 169 articles from PubMed search, 24 articles from EMBASE, 200 articles from Web of Science, 85 articles from SCOPUS and 5 articles from others (CINHAL and WHO Global Health Library). Forty-nine additional articles were found through a manual search of cross-references. After removing duplicates and screening of titles and articles, 83 studies were selected for full-text review. Eleven primary studies on late initiation of breastfeeding, duration/cessation of exclusive breastfeeding, early initiation of complementary feeding, prelacteal feeding and breastfeeding measurements tools [29-39] and two project reviews [40,41] were excluded from the final analysis. These articles were published between the years 2007 and 2016. Seven studies were conducted in Amhara region [32-38], two studies in Southern Nations, Nationalities, and Peoples' Region (SNNPR) [30,31], one study in Oromia region [29] and one study in Amhara, Oromia, SNNPR and Tigray regions [38]. Two studies have used EDHS-based data[32,34], eight studies were conducted in urban and rural setting, 10 studies were interviewer administered and one study was prospective study [34]. Detailed explanations of excluded studies presented in Supplementary file 2.

Finally, 70 articles published between years 2009 and 2018 were included and used for meta-analysis. The PRISMA flow diagram of literature screening and selection process is shown in Fig. 2.

Fig. 2 PRISMA flow diagram of literature screening and selection process; “n” in each stage represents the total number of studies that fulfilled a particular criterion (Note: There are studies reported more than one outcome indicator)

Timely initiation of breastfeeding (TIBF)

Among the 70 included studies, 45 studies reported the prevalence of TIBF with a total of 47,858 individuals.

Seventeen studies conducted in Amhara region, nine in SNNPR, 7 studies in Oromia, and 9 studies in other regions, such as Tigray, Addis Ababa, Harari and Afar. Two studies [42,43] were nationally conducted and one study [44] was conducted in SNNPR, Oromia and Amhara regions. Regarding setting, 11 studies were conducted in a rural, 17 in urban and 17 in both urban and rural. Furthermore, the detailed characteristics of included studies presented in Tables 1.
The highest prevalence (93.3%, 95% CI 88.4 to 96.6%) was reported in Oromia region [70] and the lowest (39.6%, 95% CI 34.7 to 44.7%) was reported in SNNPR [76]. The national prevalence of TIBF was 66.5% (95% CI 62.1% to 70.8%) (Fig. 3).

The subgroup analysis based on study area showed that the pooled prevalence was 62.3% (95% CI 52.9 to 71.3%) in rural, 74.5% (95% CI 67.6 to 80.9%) urban and 60.7% (95% CI 55.2 to 66.1%) both rural and urban. The subgroup analysis based on region depicted that the prevalence was 68.2% (95% CI 59.9 to 76.0%) in Amhara region and 65.4% (95% CI 60.2 to 70.5%) in other regions. Subgroup analysis based on region was repeated after excluding two national studies [42,43] and one study [44] conducted in SNNPR, Oromia and Amhara region; the prevalence remained high in Amhara region.

Nineteen studies reported 18 factors that significantly associated with TIBF. Based on a model built by previous meta-analysis [24,25], these factors were categorized into four levels. The most commonly reported predictors were mothers' knowledge of TIBF, guidance and counselling on breastfeeding, place of delivery, mode of delivery and place of residence (table 2).

In order to estimate the pooled effect, a meta-analysis was carried out on the association between TIBF and occupational status (government employed versus unemployed), guidance and counselling on breastfeeding (‘yes’ versus ‘no’), place of delivery (health institution versus home) and mode of delivery (vaginal versus cesarean section). The pooled odds ratio (OR) of TIBF for women who were government employed was 0.82 (95% CI 0.59 to 1.13, p = 0.22, Fig. 4) [42,51,58,60,61,66,77], counseled 1.96 (95% CI 1.18 to 3.26, p = 0.01, Supplementary Fig. 1) [56,58-61,68], delivered at health institution 1.76 (95% CI 1.15 to 2.71, p = 0.01, Supplementary Fig. 2) [42,51,56-59,61,62,64-66,68,77,78] and delivered vaginally 3.35 (95% CI 1.94 to 5.79, p <.0001, Supplementary Fig. 3) [42,51,57-59,61,66-68].

Fig. 4 Forest plot of the unadjusted odds ratios with corresponding 95% CIs of studies on the association of maternal occupational status and TIBF. The horizontal line represents the confidence interval, the box and its size in the
middle of the horizontal line represent the weight of sample size. The polygon represents the pooled odds ratio. The reference category is ‘Nonemployed’. TIBF=timely initiation of breastfeeding; LIBF=late initiation of breastfeeding; REM=random effects model

Exclusive breastfeeding (EBF)

Out of 70 included studies, 44 studies reported the prevalence of EBF with a total of 25,816 participants. Seventeen studies conducted in Amhara region, 12 in SNNPR, five studies in Oromia and eight studies in other regions, such as Tigray, Addis Ababa, Harari and Afar. Two studies were nationally conducted [43,45]. Based on setting, 10 studies were conducted in a rural, 17 in urban and 17 in both rural and urban. Detailed characteristics of included studies presented in Tables 3.

The highest prevalence (87.8%, 95% CI 79.2 to 93.7%) was reported in Oromia region [72] and lowest (29.3%, 95% CI 25.8 to 33.0%) prevalence in Addis Ababa [75]. The national prevalence of EBF was 60.1% (95% CI 55.5% to 64.6%) (Fig. 5).

Fig. 5 Forest plot of the national prevalence of EBF with sample size, 95% confidence interval, weight and test for heterogeneity. The horizontal line represents confidence interval, the large polygon represent a pooled estimate from a random effects model, the small polygon represents a pooled estimate form the fixed effects model. Each box and its size represent the weight of the sample size. The overall pooled estimate was presented in the last line (bold color)

The subgroup analysis based on study area showed that the prevalence was 68.8% (95% CI 60.8 to 76.3%) in rural, 54.9% (95% CI 47.5 to 62.3%) urban and 60.0% (95% CI 52.3 to 67.3%) both rural and urban area. Subgroup analysis based on region depicted that the prevalence was 58.6% (95% CI 51.3 to 65.8%) in Amhara region and 61% (95% CI 54.8 to 67.0) in other regions. Subgroup analysis based on region was repeated after excluding two national studies [43,45]; the prevalence remained low in Amhara region.

Thirty-two studies reported 26 factors that significantly associated with EBF. Similar to TIBF, these factors were categorized into four levels. The most commonly reported predictors were maternal occupational status, mothers' knowledge on exclusive breastfeeding, guidance and counselling on breastfeeding, timely initiation of breastfeeding, antenatal care follow-up, household income and age of newborn (table 4).

Meta-analysis was carried out on the association between EBF and mode of delivery (vaginal versus cesarean section), occupational status (government employed versus unemployed), guidance and counselling on
breastfeeding (‘yes’ versus ‘no’), place of delivery (health institution versus home) and TIBF (within one hour versus after 1 hour) to estimate the pooled effect on EBF. The pooled odds ratio (OR) of EBF for women who delivered vaginally was 1.81 (95% CI 1.19 to 2.77, \(p = 0.006\), Fig. 6) [50,51,73,75,81,82,85,88,92,96]. Government employed 0.60 (95% CI 0.40 to 0.91, \(p = 0.02\), Supplementary Fig. 4) [45,51,73,80,81,85-88,92,93,96,100] counselled 2.29 (95% CI 1.56 to 3.34, \(p < 0.001\), Supplementary Fig. 5) [68,73,75,81,82,85-88,90,99], delivered at health institution 2.33 (95% CI 1.82 to 2.98, \(p < 0.001\), Supplementary Fig. 6) [48,68,73,75,80-82,85,87-92,95-99] and initiated breastfeeding within one hour 2.02 (95% CI 1.46 to 2.79, \(p < 0.001\), Supplementary Fig. 7) [47,51,81,83,84,89-91,97-99].

Fig. 6 Forest plot of the unadjusted odds ratios with corresponding 95% CIs of studies on the association of mode of delivery and EBF. The horizontal line represents the confidence interval, the box and its size in the middle of the horizontal line represent the weight of sample size. The polygon represents the pooled odds ratio. The reference category is ‘CS’. EBF=exclusive breastfeeding; NEBF=non-exclusive breastfeeding; REM=random effects model; CS=Caesarean section

Complementary feeding

From 70 selected studies, 21 studies reported the prevalence of timely initiation of complementary feeding (TICF) with 8,644 individuals. Six studies conducted in Amhara region, five in SNNPR, three studies in Oromia, three studies in Tigray and three studies in Harari and Benishangul-Gumuz. One study [43] was nationally conducted. Based on place of residence, five studies were conducted in a rural, eight in urban and eight in both rural and urban. Detailed characteristics of included studies presented in Tables 5.

The highest prevalence (86.2%, 95% CI 82.5 to 89.5%) was reported in Amhara region [111] and lowest (34.3%, 95% CI 30.3 to 38.4) in SNNPR [76]. The national prevalence of TICF was 62.5% (95% CI 56.6% to 68.2%) (Fig. 7).

Fig. 7 Forest plot of the national prevalence of TICF with sample size, 95% confidence interval, weight and test for heterogeneity. The horizontal line represents confidence interval, the large polygon represent a pooled estimate from a random effects model, the small polygon represents a pooled estimate from the fixed effects model. Each box and its size represent the weight of the sample size. The overall pooled estimate was presented in the last line (bold color)
The subgroup analysis based on study area showed that the prevalence was 54.8% (95% CI 36.5 to 72.5%) in rural, 64.9% (95% CI 57.6 to 71.9%) urban and 63.8% (95% CI 54.3 to 72.8%) both rural and urban. Subgroup analysis based on region depicted that the prevalence was 67.8% (95% CI 57.2 to 77.6%) in Amhara region and 60.2% (95% CI 53.0 to 67.1%) in other regions. Subgroup analysis based on region was repeated after excluding one national study [43]; the prevalence remained high in Amhara region.

Fourteen studies reported 17 significantly associated factors of complementary feeding and categorized into four levels using the aforementioned method (table 6).

Summary of prevalence estimates

Table 7 shows the summary of number of people and studies in each region/city and prevalence estimates (i.e. national, regional and areal) of each infant and young child feeding indicator. Nearly half of the studies on each infant and young child feeding indicator conducted in Amhara region. The prevalence of TIBF, EBF and TICF was 66.5%, 60.1% and 62.5 respectively.

Quality check, heterogeneity and publication bias

All the included studies meet a reasonably acceptable quality level. Notably, high I^2 value and a significant Cochran’s Q χ^2 statistical test was observed in the meta-analysis of prevalence estimate and odds ratio respectively. Firstly, included studies were rigorously checked for their study design, data collection technique, outcome definition, statistical analysis, study setting, publication year and study population [23]. Secondly, the prevalence was transformed using the arcsine square root to adjust the influence of studies that reported high or low prevalence estimate. Thirdly, stratification analysis was done based on quartile of the total sample size of included studies, study area and region. However, there was no major change in the I^2 value. Given the absence of a single I^2 cut-off value for deciding on heterogeneity in different studies [21,22] and lack of changes after the above-mentioned measures, a meta-analysis was done based on the reviewer’s judgment. Finally, the interpretation was done based on the random-effects model.

Regarding meta-analysis of the odds ratio, based on I^2 value, homogeneity of studies was reasonably good. Given the limitation of Cochran’s Q χ^2 statistical test when the number of studies is small [112] and lack of substantial heterogeneity based on reviewers’ qualitative evaluation, a meta-analysis was done as well. Following a
visual inspection of a funnel plot and Egger’s statistical test for asymmetry, significant publication bias was not observed among included studies.

Time-trend analysis

The prevalence of TIBF from 2011 to 2018 was steady. The prevalence of both EBF and complementary feeding have been increasing substantially since 2009 (Fig. 8).

Fig. 8 Time-trend analysis of timely initiation of breastfeeding (A), exclusive breastfeeding (B) and timely initiation of complementary feeding (C). Red mark indicates the individual studies. The blue line represents the average point estimate (middle) and their 95% confidence band (lower and upper).
Discussion

This is the most comprehensive systematic review and meta-analysis to date and the first of its kind that involving >55,000 participants from Ethiopia. The national prevalence of timely initiation of breastfeeding (TIBF), exclusive breastfeeding (EBF) and timely initiation of complementary feeding (TICF) was 66.5%, 60.1% and 62.5% respectively. Guidance and counselling on breastfeeding, mode of delivery and place of delivery significantly associated with high odds of TIBF and EBF. TIBF significantly associated with low odds of EBF. Maternal occupational status (being employed) significantly associated with low odds of EBF, but not TIBF.

According to the World Health Organization (WHO) standard [113], the nationwide practice of TIBF and EBF in Ethiopia is ‘good’ (i.e., 50 to 89%) whereas TICF is ‘fair’ (i.e., 60 to 79%). This is novel given only 22 out of 129 nations achieved 70% in TIBF and 23 out of 129 nations achieved 60% in EBF [2]. The prevalence rate of TIBF in Ethiopia is equivalent with the recent estimate in Zambia, Sudan, Iran, United Kingdom, Uzbekistan, Lesotho, Madagascar and Ukraine [114,115]. The prevalence of EBF is equivalent with Uganda, Zambia, Bolivia, Peru and Cambodia [115]. On the other hand, the current finding is 2 to 3 times higher compared to the recent estimate of 53 WHO European Region member countries where the rate of TIBF and EBF was 43% and 23% respectively [116]. This finding also higher than the prevalence of TIBF (34.3%) and EBF (20.5%) in Middle East countries (Saudi Arabia, Iran, Egypt, Turkey, Kuwait, the United Arab Emirates, Qatar, Lebanon, and Syria) [117]. The prevalence of TICF in Ethiopia was the same as the recent global estimate [3], but on the other hand, it was lower than the prevalence rate in five European Union countries (Germany, Belgium, Poland, Italy and Spain) [118] and two South Asian countries (Bangladesh and Nepal) [119] where 87% and approximately 71% of infants receiving complementary feeding by 6 to 8 months.

In this study, health institution delivery, counselling on breastfeeding and vaginal delivery significantly increased the odds of TIBF and EBF. This is in agreement with an international study from 57 nations [120], WHO survey [121], systematic review and meta-analysis [122] and a prospective cohort study in North America [123]. Additionally, maternal employment status and TIBF significantly associated with EBF as concluded by previous studies in Africa, Middle East and Europe [124-126]. On the other hand, recent studies in Ireland and UK [114], and Canada [127] reveals that home delivery significantly increased the odds of TIBF and EBF. Another study in Central America showed that mode of delivery does not affect TIBF and EBF [128]. This inconsistency may be due to the difference in socio-economic status and health care services. In our study, maternal employment status not
significantly reduced TIBF. This non-significant result may be due to the small number of studies included in the meta-analysis.

All previously identified predictors of breast and complementary feeding were carefully reviewed and a hierarchical theoretical model was developed. The model would be helpful for future researchers to develop a priori hypothesis. We noticed all the included studies have no prior hypothesis about a specific variable and researchers just included all studied variables into a model and checked the association with the outcome. This may create overestimation of the model and may bias the interpretation of results. In addition, primary health care workers may have faced difficulty on the prioritization of factors for intervention as evidenced by the low coverage of breast and complementary feeding although the government implementing several programs, such as Baby-friendly Hospital Initiative programme (BF-HIP) and health extension package. Thus, the proposed model can also be used as a framework for prioritization of community problems. Moreover, Ethiopia is not included in the current WHO evaluation surveys [2,121] which may be due to the unavailability of updated data; therefore, this finding may be useful for next WHO international surveys.

This study has limitations. First, almost all included studies are cross-sectional which may influence the strength of evidence; however, this can be compensated by a large sample of selected studies which could increases the power of our analyses. Second, high heterogeneity was detected based on the conventional method; therefore, readers should interpret the result cautiously. Third, the risk of reporting bias may be added due to exclusion of studies with preterm newborn or known maternal diseases. Fourth, even though studies were conducted in all regions and cities, some regions/cities may be over- or under-represented. Finally, the pooled effect size was not adjusted for the size of the sampling frame.

Conclusions and future directions

TIBF, EBF and TICF practices were promising and improving compared to the previous years as revealed in the time-trend analysis. Occupational status (being government employed) was a barrier to optimal breastfeeding although not significant for TIBF. Counselling on breastfeeding, health institution delivery and vaginal delivery were facilitators of TIBF and EBF. Moreover, TIBF was a facilitator for EBF. Based on the time-trend analysis, the coverage has been increasing from year-to-year.

To further increase the coverage and minimize barriers of optimal IYCF, the government should implement the global breastfeeding collective calls [2] including increasing fund, endorse workplace breastfeeding policies and
fulfill necessary facilities, improve access to skilled breastfeeding counselling and encourage community networks.

Further meta-analysis based on (inter)national studies on other IYCF indicators and associated factors other than currently studied is required to conclude whether they are facilitator or inhibitor of optimal breast and complementary feeding. Moreover, case-control, cohort, and randomized control trial studies on breast and complementary feeding in Ethiopia would be relevant which can provide a strong evidence. So far unlike institutional-, demographic- and health-related factors, behavioural factors are not studied very well yet. Therefore, further studies shall give due emphasis to those factors.

Contributorship statement
Tesfa Dejenie conceived and designed the study. Tesfa Dejenie and Balewgizie Sileshi screening articles, extracted the data and carried out the statistical analysis. All authors contributed for writing and revising the manuscript. All the authors read the manuscript and have given the final approval for publication.

Data sharing statement
All the data used in this systematic review and meta-analysis were included in the main documents and as a supplementary file.

Funding statement
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest
The authors declare that they have no conflict of interest.

Table 1: Characteristics of included studies that reported the prevalence and/or least adjusted associated factors of TIBF.

<table>
<thead>
<tr>
<th>First author and year of publication</th>
<th>Region</th>
<th>Place</th>
<th>Study area</th>
<th>Study design</th>
<th>Study population</th>
<th>Sample size/Participated</th>
<th>Data collection technique</th>
<th>Prevalence</th>
<th>Associated factors (least adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beyene et al 2017[56]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Urban and Rural</td>
<td>Dale Woreda</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 24 months</td>
<td>634/634</td>
<td>Interviewer-administered</td>
<td>83.7%</td>
<td>Living in rented house</td>
</tr>
<tr>
<td>Liben and Yesuf 2016[57]</td>
<td>Afar, Northeastern Ethiopia</td>
<td>Urban and Rural</td>
<td>Amibara district</td>
<td>Cross-sectional study</td>
<td>Mothers of children aged < 24 months</td>
<td>407/403</td>
<td>Interviewer-administered</td>
<td>39.6%</td>
<td>Urban residence, Attended formal education, Cesarean section delivery, Birth order</td>
</tr>
<tr>
<td>Derso et al 2017[46]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban and Rural</td>
<td>Dabat district</td>
<td>Cross-sectional study (EDHS-based)</td>
<td>Mothers with children < five years of age</td>
<td>6,761/6,761</td>
<td>Interviewer-administered</td>
<td>43.9%</td>
<td>Urban residence, Antenatal care, No prelacteal feeding</td>
</tr>
<tr>
<td>Setegn et al 2011[58]</td>
<td>Oromia, South Eastern Ethiopia</td>
<td>Urban and Rural</td>
<td>Goba district</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 12 months</td>
<td>668/608</td>
<td>Interviewer-administered</td>
<td>52.4%</td>
<td>Urban residence, Postnatal counseling</td>
</tr>
<tr>
<td>Tewabe 2016[59]</td>
<td>Amhara, Northeast Ethiopia</td>
<td>Urban</td>
<td>Motta town</td>
<td>Cross-sectional study</td>
<td>Mothers with infant < six months</td>
<td>423/405</td>
<td>Interviewer-administered</td>
<td>78.8%</td>
<td>Health institution delivery, Vaginal delivery, No prelacteal feeding</td>
</tr>
<tr>
<td>Hailemariam et al 2015[60]</td>
<td>Oromia, West Ethiopia</td>
<td>Rural</td>
<td>East Wollega zone</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 24 months</td>
<td>594/593</td>
<td>Interviewer-administered</td>
<td>83.1%</td>
<td>Being a housewife, Colostrum feeding, No access to mass media, No breastfeeding counseling, Prelacteal feeding</td>
</tr>
<tr>
<td>Tilahun et al 2016[61]</td>
<td>Amhara, Northeast Ethiopia</td>
<td>Urban</td>
<td>Debre Berhan town</td>
<td>Cross-sectional study</td>
<td>Mothers with children < six months</td>
<td>416/409</td>
<td>Interviewer-administered</td>
<td>62.6%</td>
<td>High monthly income, Extended family, No breastfeeding counseling, Cesarean section delivery, Traditional birth attendant, No colostrum feeding</td>
</tr>
<tr>
<td>Researchers et al.</td>
<td>Region</td>
<td>Setting</td>
<td>Area</td>
<td>Design</td>
<td>Group</td>
<td>Sample Size</td>
<td>Data Collection Method</td>
<td>Data Collection Rate</td>
<td>Additional Details</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Bimerew et al. 2016[62]</td>
<td>Amhara, North West Ethiopia</td>
<td>Rural</td>
<td>Dembecha district</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 2 years</td>
<td>739/739</td>
<td>Interviewer-administered</td>
<td>73.1 %</td>
<td>Antenatal care Access to mass media Traditional birth attendant</td>
</tr>
<tr>
<td>Tamiru et al. 2012[63]</td>
<td>Oromia, Southwest Ethiopia</td>
<td>Rural</td>
<td>Jimma Arjo Woreda</td>
<td>Cross-sectional study</td>
<td>Mothers with children 0 to 6 months</td>
<td>384/382</td>
<td>Interviewer-administered</td>
<td>62.6%</td>
<td>Painful breastfeeding experiences</td>
</tr>
<tr>
<td>Adugna et al. 2014[64]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Arba Minch Zuria</td>
<td>Cross-sectional study</td>
<td>Women with children < 2 years</td>
<td>384/383</td>
<td>Interviewer-administered</td>
<td>57.2%</td>
<td>Breastfeeding knowledge Health education</td>
</tr>
<tr>
<td>Tamiru et al. 2015[65]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Arba Minch Zuria</td>
<td>Cross-sectional study</td>
<td>Mothers with < two years</td>
<td>384/384</td>
<td>Interviewer-administered</td>
<td>57%</td>
<td>Health education</td>
</tr>
<tr>
<td>Horii et al. 2011[44]</td>
<td>SNNPR, Oromia and Amhara</td>
<td>Urban and Rural</td>
<td>SNNPR, Oromia and Amhara</td>
<td>Survey</td>
<td>Mothers with children 0 to 11 months</td>
<td>2,084/2,072</td>
<td>Interviewer-administered</td>
<td>41.6%</td>
<td>Received iron–folate supplements</td>
</tr>
<tr>
<td>Alemayehu et al. 2014[66]</td>
<td>Tigray, Northern Ethiopia</td>
<td>Urban</td>
<td>Axum town</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6 to 12 months</td>
<td>418/418</td>
<td>Interviewer-administered</td>
<td>41.6%</td>
<td>Sex of newborn Colostrum discarding</td>
</tr>
<tr>
<td>Berhe et al. 2013[51]</td>
<td>Tigray, Northern Ethiopia</td>
<td>Urban</td>
<td>Mekelle town</td>
<td>Cross-sectional study</td>
<td>Mothers of children < two years</td>
<td>361/361</td>
<td>Interviewer-administered</td>
<td>77.9%</td>
<td>Home delivery Vaginal delivery Health professional birth attendant</td>
</tr>
<tr>
<td>Seid 2014[67]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban</td>
<td>Bahir Dar City, Debre Berhan town</td>
<td>Cross-sectional study</td>
<td>Mothers of children < two years</td>
<td>819/819</td>
<td>Interviewer-administered</td>
<td>87.0%</td>
<td>Vaginal delivery Breastfeeding knowledge</td>
</tr>
<tr>
<td>Gultie and Sebsibie 2016[68]</td>
<td>Amhara, Northeastern Ethiopia</td>
<td>Urban</td>
<td>Debre Berhan town</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 2 years</td>
<td>548/548</td>
<td>Interviewer-administered</td>
<td>82.5%</td>
<td>No breastfeeding counseling Home delivery</td>
</tr>
<tr>
<td>Regassa 2014[69]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Urban and Rural</td>
<td>Sidama zone</td>
<td>Cross-sectional study</td>
<td>Mothers with children 0 and 6 months</td>
<td>1,100/1,094</td>
<td>Interviewer-administered</td>
<td>80.1%</td>
<td>---</td>
</tr>
<tr>
<td>Wolde et al. 2014[70]</td>
<td>Oromia, Western Ethiopia</td>
<td>Urban</td>
<td>Nekemte town</td>
<td>Cross-sectional study</td>
<td>Mothers children < two years</td>
<td>182/174</td>
<td>Interviewer-administered</td>
<td>88.5%</td>
<td>---</td>
</tr>
<tr>
<td>Disha et al. 2012[43]</td>
<td>National</td>
<td>Urban and Rural</td>
<td>All regions</td>
<td>Cross-sectional study (EDHS)</td>
<td>Mothers with children < two years</td>
<td>244/244</td>
<td>Interviewer-administered</td>
<td>60.7%</td>
<td>---</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Type</td>
<td>Area</td>
<td>Sample Size</td>
<td>Data Collection Method</td>
<td>Parity</td>
<td>Knowledge and Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>--------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woldemichael et al 2016[71]</td>
<td>Oromia, Central Ethiopia</td>
<td>Cross-sectional</td>
<td>Tiyo Woreda</td>
<td>386/373</td>
<td>Interviewer-administered</td>
<td>67.3%</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wubante 2017[55]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Case-control</td>
<td>Dabat District</td>
<td>400/400</td>
<td>Interviewer-administered</td>
<td>59%</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yonas et al 2015[72]</td>
<td>Oromia, Southwest Ethiopia</td>
<td>Case-control</td>
<td>Shashemene Woreda</td>
<td>423/417</td>
<td>Interviewer-administered</td>
<td>58%</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arage et al 2016[73]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Cross-sectional</td>
<td>Debre Tabor Town</td>
<td>470/453</td>
<td>interviewer administered</td>
<td>78.6%</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayissa et al 2015[74]</td>
<td>Oromia, West Ethiopia</td>
<td>Cross-sectional</td>
<td>Ambo woreda</td>
<td>403/371</td>
<td>Interviewer-administered</td>
<td>71.2%</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minas et al 2016[54]</td>
<td>Addis Ababa, Central Ethiopia</td>
<td>Prospective</td>
<td>Addis Ababa</td>
<td>233/233</td>
<td>Interviewer-administered</td>
<td>64.3%</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yohannes et al 2018 [76]</td>
<td>SNNPR, Southwestern Ethiopia</td>
<td>Cross-sectional</td>
<td>Soro district</td>
<td>543/543</td>
<td>Interviewer-administered</td>
<td>55.4%</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekubay et al 2018[77]</td>
<td>Addis, Central Ethiopia</td>
<td>Cross-sectional</td>
<td>Addis Ababa</td>
<td>597/583</td>
<td>Interviewer-administered</td>
<td>58.3%</td>
<td>Parity Antenatal care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tariku et al 2017[78]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Cross-sectional</td>
<td>Dabat District (EDHS)</td>
<td>822/822</td>
<td>Interviewer-administered</td>
<td>53.3%</td>
<td>Health institution delivery Knowledge of infant and young child feeding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Setting</td>
<td>Location</td>
<td>Study Type</td>
<td>Study Population</td>
<td>Sample Size</td>
<td>Data Collection Method</td>
<td>Husband Educational Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ersino et al 2016a[79]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 2 years</td>
<td>268/268</td>
<td>Interview administered</td>
<td>62.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ersino et al 2016b[79]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 2 years</td>
<td>90/90</td>
<td>Interview administered</td>
<td>92.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chekol et al; 2017[80]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban</td>
<td>Comparative cross-sectional study</td>
<td>Employed and unemployed mothers with children 7–12 months</td>
<td>649/649</td>
<td>Interview-administered</td>
<td>68%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDHS = Ethiopian Demographic Health Survey; SNNPR = Southern Nations, Nationalities, and Peoples' Region
Table 2: Predictors of TIBF and hierarchical theoretical model.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 (Model 1): Proximal factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Mothers’ occupational status [42,60]</td>
</tr>
<tr>
<td>2.</td>
<td>Mothers' knowledge about timely initiation of breastfeeding [42,60,62,64,65,67,78]</td>
</tr>
<tr>
<td>3.</td>
<td>Guidance and counselling on breastfeeding [58,60,61,68]</td>
</tr>
<tr>
<td>Level 2 (Model 2): Proximal intermediate factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Place of delivery [51,59,68,78]</td>
</tr>
<tr>
<td>2.</td>
<td>Mode of delivery [42,51,57,59,61,67]</td>
</tr>
<tr>
<td>3.</td>
<td>Birth attendant [51,61,62]</td>
</tr>
<tr>
<td>4.</td>
<td>Sex of newborn [42,66]</td>
</tr>
<tr>
<td>Level 3 (Model 3): Distal intermediate factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Antenatal visit [46,62,77]</td>
</tr>
<tr>
<td>2.</td>
<td>Prelacteal feeding [46,59,60]</td>
</tr>
<tr>
<td>3.</td>
<td>Colostrum feeding [60,61,66]</td>
</tr>
<tr>
<td>Level 4 (Model 4): Distal factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Paternal educational status [42,57,78]</td>
</tr>
<tr>
<td>2.</td>
<td>Household income [56,61]</td>
</tr>
<tr>
<td>3.</td>
<td>Family size [61]</td>
</tr>
<tr>
<td>4.</td>
<td>Breastfeeding experience [63]</td>
</tr>
<tr>
<td>5.</td>
<td>Place of residence [42,46,57,58]</td>
</tr>
<tr>
<td>6.</td>
<td>Birth order [57]</td>
</tr>
<tr>
<td>7.</td>
<td>Received iron–folate supplements [44]</td>
</tr>
<tr>
<td>8.</td>
<td>Parity [77]</td>
</tr>
</tbody>
</table>
Table 3: Characteristics of included studies that reported the prevalence and/or least adjusted associated factors of EBF.

<table>
<thead>
<tr>
<th>First author and year of publication</th>
<th>Region</th>
<th>Place</th>
<th>Study area</th>
<th>Study design</th>
<th>Study population</th>
<th>Sample size/Participated</th>
<th>Data collection technique</th>
<th>Prevalence</th>
<th>Associated factors (least adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setegn et al 2012[81]</td>
<td>Oromia, South East Ethiopia</td>
<td>Urban and Rural</td>
<td>Bale Zone, Goba district</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 6 months</td>
<td>668/608</td>
<td>Interviewer-administered (24hrs recall method)</td>
<td>71.3%</td>
<td>Unemployment Age of infants of less than two months</td>
</tr>
<tr>
<td>Seid et al 2013[82]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban</td>
<td>Bahir Dar city</td>
<td>Cross-sectional study</td>
<td>Mothers gave birth in the last 12 months</td>
<td>819/819</td>
<td>Interviewer-administered (Since birth dietary recall method)</td>
<td>50.3%</td>
<td>Age of infant < 3 months Being a housewife Prenatal breastfeeding plan Health institution delivery Vaginal delivery Infant feeding counseling/advice</td>
</tr>
<tr>
<td>Dachew et al 2014[50]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban and rural</td>
<td>North Gondar Zone</td>
<td>Cross-sectional study</td>
<td>Nurses and midwives with children 6 to 20 months</td>
<td>178/178</td>
<td>Self-administered questionnaire</td>
<td>35.9%</td>
<td>Older women Rural residence Being midwife Vaginal delivery Multiparity Resumption of work after 3 months</td>
</tr>
<tr>
<td>Liben et al 2016[83]</td>
<td>Afar, Northeast Ethiopia</td>
<td>Urban</td>
<td>Dubti town</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 6 months</td>
<td>346/333</td>
<td>Interviewer-administered (24-hrs recall method)</td>
<td>81.1%</td>
<td>Initiation of breastfeeding within one hour Age of infants < 2 months Being a housewife Counseling</td>
</tr>
<tr>
<td>Lenja et al 2016[84]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Offa district</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 6 months</td>
<td>403/396</td>
<td>Interviewer-administered (24-hrs recall method)</td>
<td>78.0%</td>
<td>Initiation of breastfeeding within one hour Attending formal education Awareness of the benefits of exclusive breastfeeding Knowledge of colostrum feeding</td>
</tr>
<tr>
<td>Hunegnaw et al 2017[85]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Rural</td>
<td>Gozamin district</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6 to 12 months</td>
<td>506/478</td>
<td>Interviewer-administered</td>
<td>74.1%</td>
<td>Government employment No breastfeeding counseling Health institution delivery</td>
</tr>
<tr>
<td>Tariku et al</td>
<td>Amhara,</td>
<td>Urban</td>
<td>Dabat</td>
<td>Cross-</td>
<td>Mothers with</td>
<td>5,227/5,227</td>
<td>Interviewer-administered</td>
<td>54.5%</td>
<td>Higher mothers’ education</td>
</tr>
</tbody>
</table>

<p>| Year | Region | Type | District | Study Design | Participants | Method | Age (±35 years) | Urban Residence | Antenatal care | Initiation of breastfeeding within one hour | High household income | Withholding prelacteal feeding | Employment | Breastfeeding counseling | No prelacteal feeding | Knowledge of breastfeeding | Low income | Unemployment | Breastfeeding counseling | No infant feeding | Counseling | Employment | Home delivery | High educational status | Infants age 0-1 month | Unemployment | Breastfeeding counseling | Colostrum feeding | No prelacteal feeding | Husband support | Mothers aged > 35 years | Breastfeeding initiation within one hour | Rural to urban migration | Antenatal care | Postnatal care | Initiating breastfeeding within one hour | Attending formal education | Breastfeeding counseling | Awareness of exclusive breastfeeding | High monthly income (≥500ETB) |
|------|----------------|-----------------------------|---------------------------|----------------------------------|--------------|--------------------------|----------------|------------------|-----------------|--|------------------------|-------------------------------|-------------|-----------------------|--------------------------|------------------------|------------------|-------------------|--------------------------|-------------------|-----------------|--------------|------------------------|------------------------|-----------------------|-----------------|------------------------|------------------------|-----------------|-----------------|------------------------|------------------------|-----------------------------|</p>
<table>
<thead>
<tr>
<th>Author(s) et al.</th>
<th>Year</th>
<th>Region</th>
<th>Setting</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Data Collection Method</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemayehu et al. 2009[45]</td>
<td>National</td>
<td>Urban and rural</td>
<td>National</td>
<td>Cross-sectional study (EDHS based)</td>
<td>Mothers with children < six months</td>
<td>14,500/1,142</td>
<td>Interviewer administered (24-hrs recall method)</td>
</tr>
<tr>
<td>Tamiru et al. 2015[65]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Arba Minch Zuria Woreda</td>
<td>Cross-sectional study</td>
<td>Mothers with children < two years</td>
<td>384/384</td>
<td>Interviewer-administered</td>
</tr>
<tr>
<td>Tadesse et al. 2016[91]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Sorro District</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 5 months</td>
<td>602/579</td>
<td>Interviewer-administered (24-hrs recall method)</td>
</tr>
<tr>
<td>Tamiru et al. 2012[63]</td>
<td>Oromia, Southwest Ethiopia</td>
<td>Rural</td>
<td>Jimma Arjo Woreda</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 6 months</td>
<td>384/382</td>
<td>Interviewer-administered</td>
</tr>
<tr>
<td>Asemahagn 2016[92]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban</td>
<td>Azezo district</td>
<td>Cross-sectional study</td>
<td>Women with children < 6 months</td>
<td>346/332</td>
<td>Interviewer-administered (24-hrs recall method)</td>
</tr>
<tr>
<td>Alemayehu et al. 2014[93]</td>
<td>Tigray, Northern Ethiopia</td>
<td>Urban</td>
<td>Axum town</td>
<td>Cross-sectional study</td>
<td>Mothers with children between 6-12 months</td>
<td>418/418</td>
<td>Interviewer-administered</td>
</tr>
<tr>
<td>Berhe et al. 2013[51]</td>
<td>Tigray, Northern Ethiopia</td>
<td>Urban</td>
<td>Mekelle town</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 24 months</td>
<td>361/361</td>
<td>Interviewer-administered</td>
</tr>
<tr>
<td>Gultie and Sebsibie 2016[68]</td>
<td>Amhara, Northeastern Ethiopia</td>
<td>Urban</td>
<td>Debre Berhan town</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 24 months</td>
<td>548/548</td>
<td>Interviewer-administered</td>
</tr>
<tr>
<td>Regassa 2014[69]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Urban and rural</td>
<td>Sidama zone</td>
<td>Cross-sectional study</td>
<td>Mothers with children between 0 and 6 months old</td>
<td>1100/1094</td>
<td>Interviewer-administered</td>
</tr>
<tr>
<td>Authors</td>
<td>Location</td>
<td>Setting</td>
<td>Design Type</td>
<td>Participants</td>
<td>Study Methodology</td>
<td>Immunization Coverage (%)</td>
<td>Other Observations</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Biks et al 2015[48]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban and rural Dabat district</td>
<td>Nested case-control study (EDHS based)</td>
<td>All pregnant women in the second/third trimester</td>
<td>1,769/1,769 Interviewer-administered</td>
<td>30.7 %</td>
<td>Private job Housewife Antenatal care Health institution delivery</td>
</tr>
<tr>
<td>Fenta et al 2017[94]</td>
<td>SNNPR, Southwest Ethiopia</td>
<td>Urban and rural Gurage zone</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 6 months</td>
<td>422/410 Interviewer-administered (Seven repeated 24 h recall method)</td>
<td>53.2%</td>
<td>---</td>
</tr>
<tr>
<td>Wubante 2017[55]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban and rural Dabat District</td>
<td>Case-control study</td>
<td>Mothers with children < one year</td>
<td>400/400 Interviewer-administered</td>
<td>85.5%</td>
<td>---</td>
</tr>
<tr>
<td>Yonas et al 2015[72]</td>
<td>Oromia, Southwest Ethiopia</td>
<td>Urban and rural Shashemene Woreda</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 24 months</td>
<td>423/417 Interviewer-administered (24-hrs recall method)</td>
<td>87.8%</td>
<td>---</td>
</tr>
<tr>
<td>Abera 2012[95]</td>
<td>Harari, Eastern Ethiopia</td>
<td>Urban Harar town</td>
<td>Cross-sectional study</td>
<td>Mothers with children < two years</td>
<td>604/583 Interviewer-administered</td>
<td>51.8%</td>
<td>High monthly income Health institution delivery</td>
</tr>
<tr>
<td>Arage et al 2016[73]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban Debre Tabor Town</td>
<td>Cross-sectional study</td>
<td>Mothers with children < six months</td>
<td>470/453 Interviewer-administered (24-hrs recall method)</td>
<td>70.8%</td>
<td>Child age (2-3 months) Health institution delivery Housewife Infant feeding counseling Colostrum feeding</td>
</tr>
<tr>
<td>Adugna et al 2017[96]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Urban Hawassa city</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 6 months</td>
<td>541/529 Interviewer-administered (24-hrs recall method)</td>
<td>60.9%</td>
<td>Infant age Married Housewife Vaginal delivery Health institution delivery No breast complication</td>
</tr>
<tr>
<td>Bayissa et al 2015[74]</td>
<td>Oromia, West Ethiopia</td>
<td>Urban and rural Ambo woreda</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 2 years</td>
<td>403/371 Interviewer-administered</td>
<td>82.2%</td>
<td>---</td>
</tr>
<tr>
<td>Egata et al 2013[49]</td>
<td>Oromia, Easter Ethiopia</td>
<td>Urban and rural Kersa district</td>
<td>Cross-sectional study (EDHS based)</td>
<td>Mothers with children < two years</td>
<td>881/860 Interviewer-administered</td>
<td>71.4%</td>
<td>Not married No access to health institution Lack of knowledge about</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Type</td>
<td>Sample Description</td>
<td>Sample Size</td>
<td>Data Collection Method</td>
<td>Breastfeeding Self-Efficacy (%)</td>
<td>Breastfeeding Outcome Expectancy</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-------------</td>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Minas et al 2016[54]</td>
<td>Addis Ababa, Central Ethiopia</td>
<td>Prospective</td>
<td>Primiparous women during third trimester of pregnancy</td>
<td>233/233</td>
<td>Interviewer administered</td>
<td>34.3%</td>
<td></td>
</tr>
<tr>
<td>Shiferaw et al 2015[75]</td>
<td>Addis Ababa, Central Ethiopia</td>
<td>Cross-sectional</td>
<td>Mothers who attended a public health center for their children’s measles vaccination at nine months of age</td>
<td>660/648</td>
<td>Interviewer-administered</td>
<td>29.3%</td>
<td>Monthly income</td>
</tr>
<tr>
<td>Ersino et al 2016a[79]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Cross-sectional</td>
<td>Mothers with children < 2 years</td>
<td>87/87</td>
<td>Interviewer-administered</td>
<td>86.2%</td>
<td>---</td>
</tr>
<tr>
<td>Ersino et al 2016b[79]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Cross-sectional</td>
<td>Mothers with children < 2 years</td>
<td>15/15</td>
<td>Interviewer-administered</td>
<td>93.3%</td>
<td>---</td>
</tr>
<tr>
<td>Taddele et al. 2014[97]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Comparative</td>
<td>Mothers with children ≤ 1 year</td>
<td>524/473</td>
<td>Interviewer-administered</td>
<td>65%</td>
<td>Husband support</td>
</tr>
<tr>
<td>Echamo. 2012[98]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Cross-sectional</td>
<td>Mothers with children 6 to 12 months</td>
<td>768/768</td>
<td>Interviewer-administered</td>
<td>46.5%</td>
<td>Lack of knowledge</td>
</tr>
<tr>
<td>Teka et al. 2015[99]</td>
<td>Tigray, Northern Ethiopia</td>
<td>Cross-sectional</td>
<td>Mothers with children < 24 months</td>
<td>541/530</td>
<td>Interviewer-administered</td>
<td>70%</td>
<td>Maternal age</td>
</tr>
<tr>
<td>Sefene et al. 2013[100]</td>
<td>Amhara, Northeast Ethiopia</td>
<td>Cross-sectional</td>
<td>Mothers with children < 6</td>
<td>170/159</td>
<td>Interviewer-administered</td>
<td>49.1%</td>
<td>Maternal educational status</td>
</tr>
<tr>
<td>Chekol et al; 2017[80]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban Gondar town</td>
<td>Comparative cross-sectional study</td>
<td>Employed and unemployed mothers with children 7–12 months</td>
<td>649/649</td>
<td>Interviewer-administered</td>
<td>34.8%</td>
</tr>
</tbody>
</table>

EDHS = Ethiopian Demographic Health Survey; SNNPR = Southern Nations, Nationalities, and Peoples' Region
Table 4: Predictors of EBF and hierarchical theoretical model.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 1 (Model 1): Proximal factors</td>
</tr>
<tr>
<td>1.</td>
<td>Mothers’ occupational status [48,50,51,73,80-83,85-88,90,92,96]</td>
</tr>
<tr>
<td>2.</td>
<td>Mothers’ knowledge about exclusive breastfeeding [49,63,65,80,84,86,90,98]</td>
</tr>
<tr>
<td>3.</td>
<td>Guidance and counselling on exclusive breastfeeding [65,68,73,75,82,83,85-88,90]</td>
</tr>
<tr>
<td>4.</td>
<td>Access to health facility [49]</td>
</tr>
<tr>
<td>5.</td>
<td>Poor attitude [80]</td>
</tr>
<tr>
<td>6.</td>
<td>Age of newborn [45,51,73,81-83,88,96,99]</td>
</tr>
<tr>
<td></td>
<td>Level 2 (Model 2): Proximal intermediate factors</td>
</tr>
<tr>
<td>1.</td>
<td>Place of delivery [48,73,82,85,87,92,95-98]</td>
</tr>
<tr>
<td>2.</td>
<td>Breast feeding practice (TIBF) [47,83,84,89,90,97,98]</td>
</tr>
<tr>
<td>3.</td>
<td>Intention/plan to breastfeed [82]</td>
</tr>
<tr>
<td>4.</td>
<td>Mode of delivery [50,75,82,96]</td>
</tr>
<tr>
<td>5.</td>
<td>Breast complication [96]</td>
</tr>
<tr>
<td>6.</td>
<td>Breastfeeding self-efficacy [54]</td>
</tr>
<tr>
<td>7.</td>
<td>Breastfeeding outcome expectancy [54]</td>
</tr>
<tr>
<td>8.</td>
<td>Sex of new born [100]</td>
</tr>
<tr>
<td></td>
<td>Level 3 (Model 3): Distal intermediate factors</td>
</tr>
<tr>
<td>1.</td>
<td>Antenatal visit [47,48,65,90-92,98]</td>
</tr>
<tr>
<td>2.</td>
<td>Postnatal visit [90-92,99,100]</td>
</tr>
<tr>
<td>3.</td>
<td>Prelacteal feeding [47,86,88,92]</td>
</tr>
<tr>
<td>4.</td>
<td>Colostrum feeding [63,73,88,93,98]</td>
</tr>
<tr>
<td></td>
<td>Level 4 (Model 4): Distal factors</td>
</tr>
<tr>
<td>1.</td>
<td>Paternal educational status [47,84,87,90,100]</td>
</tr>
<tr>
<td>2.</td>
<td>Household income [45,47,75,88,90,92,95]</td>
</tr>
<tr>
<td>3.</td>
<td>Marital status [45,49,91,96]</td>
</tr>
<tr>
<td>4.</td>
<td>Parity [50,100]</td>
</tr>
<tr>
<td>5.</td>
<td>Husband support [88,97]</td>
</tr>
<tr>
<td>6.</td>
<td>Maternal age [50,87,89,92,97,99]</td>
</tr>
<tr>
<td>7.</td>
<td>Place of residence [47,50,87,89]</td>
</tr>
<tr>
<td>8.</td>
<td>Family size [100]</td>
</tr>
</tbody>
</table>
Table 5: Characteristics of included studies that reported the prevalence and/or least adjusted associated factors of TICF.

<table>
<thead>
<tr>
<th>First author and year of publication</th>
<th>Region</th>
<th>Place</th>
<th>Study area</th>
<th>Study design</th>
<th>Study population</th>
<th>Sample size/Participated</th>
<th>Data collection technique</th>
<th>Prevalence</th>
<th>Associated factors (least adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayana et al 2017[101]</td>
<td>Benishangul Gumuz, Northwest Ethiopia</td>
<td>Urban and rural</td>
<td>Pawe District</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6–23 months</td>
<td>806/785</td>
<td>Interviewer-administered</td>
<td>61.8%</td>
<td>Urban residence Postnatal care</td>
</tr>
<tr>
<td>Demilew et al 2017[102]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban</td>
<td>Bahir Dar City</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6 and 23 months</td>
<td>423/412</td>
<td>Interviewer-administered (24-hr recall method)</td>
<td>7%</td>
<td>High maternal educational status Postnatal care Access to mass media Health institution delivery</td>
</tr>
<tr>
<td>Kassa et al 2016[103]</td>
<td>Oromia, Southeastern Ethiopia</td>
<td>Rural</td>
<td>Arsi Negele Woreda</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6–23 months</td>
<td>626/611</td>
<td>Interviewer-administered</td>
<td>9.5%</td>
<td>Child's age (12–17 months) Maternal educational status (primary) Small family size</td>
</tr>
<tr>
<td>Semahegn et al 2013[52]</td>
<td>Harari, Eastern Ethiopia</td>
<td>Urban</td>
<td>Harar town</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6–23 months</td>
<td>203/200</td>
<td>Interviewer-administered</td>
<td>60.5%</td>
<td>Sex of child</td>
</tr>
<tr>
<td>Shumey et al 2013[53]</td>
<td>Tigray, Northern Ethiopia</td>
<td>Urban</td>
<td>Mekele town</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6 to 12 months</td>
<td>422/422</td>
<td>Interviewer-administered</td>
<td>62.8%</td>
<td>High maternal educational status Housewife Parity Antenatal care Birth preparedness</td>
</tr>
<tr>
<td>Zeleke et al 2017[105]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban</td>
<td>Feres Bet Town</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6 to 23 months</td>
<td>353/351</td>
<td>Interviewer-administered</td>
<td>23.9%</td>
<td>Child age (>9 months) Husband’s occupation (employed) Maternal weaning advice Family size (larger >=4)</td>
</tr>
<tr>
<td>Mekbib et al 2014[106]</td>
<td>Tigray, Northern Ethiopia</td>
<td>Urban</td>
<td>Abyi-Adi town</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6-23 months</td>
<td>434/428</td>
<td>Interviewer-administered</td>
<td>10.75%</td>
<td>Child’s age High maternal educational status Postnatal care</td>
</tr>
<tr>
<td>Gessese et al 2013[107]</td>
<td>Amhara, Northwest</td>
<td>Urban and rural</td>
<td>Enemay district</td>
<td>Cross-sectional</td>
<td>Mothers with children 6-23</td>
<td>554/543</td>
<td>Interviewer-administered</td>
<td>40.5%</td>
<td>Child age (higher) Higher family income</td>
</tr>
<tr>
<td>Authors</td>
<td>Study Location</td>
<td>Setting</td>
<td>Study Type</td>
<td>Sample</td>
<td>Data Collection Method</td>
<td>Study Population</td>
<td>Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
<td>------------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regassa 2014[69]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Urban and rural</td>
<td>Cross-sectional study</td>
<td>Mothers with infants < 6 months</td>
<td>1,100/1,094</td>
<td>Interviewer-administered</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agedew et al 2014[110]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Urban and rural</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6 to 24 months</td>
<td>567/562</td>
<td>Interviewer-administered</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deme et al 2015[29]</td>
<td>Oromia, East Ethiopia</td>
<td>Urban</td>
<td>Cross-sectional study</td>
<td>Mothers with children < six months</td>
<td>422/422</td>
<td>Interviewer-administered</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dish et al 2012[43]</td>
<td>National</td>
<td>Urban and rural</td>
<td>National Cross-sectional study (EDHS based)</td>
<td>Mothers with children 0-23 months</td>
<td>244/244</td>
<td>Interviewer-administered</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wubante 2017[55]</td>
<td>Amhara, Northwest Ethiopia</td>
<td>Urban and rural</td>
<td>Case-control study</td>
<td>Mothers with children < one year</td>
<td>400/400</td>
<td>Interviewer-administered</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yonas et al 2015[72]</td>
<td>Oromia, Southwest Ethiopia</td>
<td>Mixed</td>
<td>Case-control study</td>
<td>Mothers with children < 24 months</td>
<td>423/417</td>
<td>Interviewer-administered</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abera 2012[95]</td>
<td>Harari, Eastern Ethiopia</td>
<td>Urban</td>
<td>Cross-sectional study</td>
<td>Mothers of children < two years</td>
<td>604/583</td>
<td>Interviewer-administered</td>
<td>Monthly income, Antenatal care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yohannes et al 2018[76]</td>
<td>SNNPR, Southwest Ethiopia</td>
<td>Rural</td>
<td>Cross-sectional study</td>
<td>Mothers with children 6-23 months</td>
<td>543/543</td>
<td>Interviewer-administered</td>
<td>High educational status, Postnatal care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ersino et al 2016a[79]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 2</td>
<td>31/31</td>
<td>Interviewer-administered</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ersino et al 2016b[79]</td>
<td>SNNPR, Southern Ethiopia</td>
<td>Rural</td>
<td>Zeway</td>
<td>Cross-sectional study</td>
<td>Mothers with children < 2 years</td>
<td>9/9</td>
<td>Interviewer administered</td>
<td>44.4%</td>
<td>---</td>
</tr>
</tbody>
</table>

EDHS = Ethiopian Demographic Health Survey; SNNPR = Southern Nations, Nationalities, and Peoples' Region; † = Timely initiation, minimum meal frequency and minimum meal diversity
Table 6: Predictors of complementary feeding and hierarchical theoretical model.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 (Model 1): Proximal factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Mothers’ occupational status [29,53,109]</td>
</tr>
<tr>
<td>2.</td>
<td>Mothers’ decision making [109]</td>
</tr>
<tr>
<td>3.</td>
<td>Mothers’ knowledge of complementary feeding [29,102,109]</td>
</tr>
<tr>
<td>4.</td>
<td>Guidance and counselling on complementary feeding [105]</td>
</tr>
<tr>
<td>5.</td>
<td>Age of newborn [103,105-107]</td>
</tr>
<tr>
<td>Level 2 (Model 2): Proximal intermediate factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Place of delivery [29,102,104,107,108]</td>
</tr>
<tr>
<td>2.</td>
<td>Breastfeeding practice (TIBF) [29]</td>
</tr>
<tr>
<td>3.</td>
<td>Sex of newborn [52]</td>
</tr>
<tr>
<td>Level 3 (Model 3): Distal intermediate factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Desire for pregnancy/plan for pregnancy [53]</td>
</tr>
<tr>
<td>2.</td>
<td>Antenatal visit [53,95,104,107,108]</td>
</tr>
<tr>
<td>3.</td>
<td>Postnatal visit [76,101,102,106,109]</td>
</tr>
<tr>
<td>Level 4 (Model 4): Distal factors</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Paternal educational status [53,76,102-104,106]</td>
</tr>
<tr>
<td>2.</td>
<td>Household income [95,107]</td>
</tr>
<tr>
<td>3.</td>
<td>Husband occupation [105]</td>
</tr>
<tr>
<td>4.</td>
<td>Family size [103,105]</td>
</tr>
<tr>
<td>5.</td>
<td>Parity [53]</td>
</tr>
<tr>
<td>6.</td>
<td>Place of residence [101]</td>
</tr>
</tbody>
</table>
Table 7: Number of studies in each region/city and prevalence estimate (National, regional and areal) of infant and young child feeding indicators.

<table>
<thead>
<tr>
<th>Infant and Young Child Feeding indicators</th>
<th>Number of studies per region/city and total population</th>
<th>National prevalence (%)</th>
<th>Regional prevalence (%)</th>
<th>Areal prevalence(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name of region/city</td>
<td>Number of studies</td>
<td>Population*</td>
<td>Amhara</td>
</tr>
<tr>
<td>TIBF*</td>
<td>Addis Ababa</td>
<td>3</td>
<td>3,273,000</td>
<td>66.5 (95% CI 62.1 - 70.8)</td>
</tr>
<tr>
<td></td>
<td>Afar</td>
<td>3</td>
<td>1,723,000</td>
<td>60.1 (95% CI 55.5 - 64.6)</td>
</tr>
<tr>
<td></td>
<td>Amhara</td>
<td>17</td>
<td>20,401,000</td>
<td>68.2 (95% CI 50.2 - 76.0)</td>
</tr>
<tr>
<td></td>
<td>Benshangul-Gumaz</td>
<td>-</td>
<td>1,005,000</td>
<td>60.1 (95% CI 55.5 - 64.6)</td>
</tr>
<tr>
<td></td>
<td>Dire Dawa</td>
<td>-</td>
<td>440,000</td>
<td>60.1 (95% CI 55.5 - 64.6)</td>
</tr>
<tr>
<td></td>
<td>Gambela</td>
<td>-</td>
<td>409,000</td>
<td>60.1 (95% CI 55.5 - 64.6)</td>
</tr>
<tr>
<td></td>
<td>Harari</td>
<td>1</td>
<td>232,000</td>
<td>60.1 (95% CI 55.5 - 64.6)</td>
</tr>
<tr>
<td></td>
<td>Oromia</td>
<td>5</td>
<td>33,692,000</td>
<td>60.1 (95% CI 55.5 - 64.6)</td>
</tr>
<tr>
<td>Region</td>
<td>TPM</td>
<td>Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somali</td>
<td>-</td>
<td>5,453,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNNPR</td>
<td>12</td>
<td>5,056,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigray</td>
<td>3</td>
<td>18,276,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TICF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addis Ababa</td>
<td>-</td>
<td>3,273,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afar</td>
<td>-</td>
<td>1,723,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amhara</td>
<td>6</td>
<td>20,401,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benishangul-Gumuz</td>
<td>1</td>
<td>1,005,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dire Dawa</td>
<td>-</td>
<td>440,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gambela</td>
<td>-</td>
<td>409,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harari</td>
<td>2</td>
<td>232,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oromia</td>
<td>3</td>
<td>33,692,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somali</td>
<td>-</td>
<td>5,453,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNNPR</td>
<td>5</td>
<td>5,056,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigray</td>
<td>3</td>
<td>18,276,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

62.5 (95% CI 56.6 - 68.2) 67.8 (95% CI 57.2 - 77.6) 60.2 (95% CI 53.0 - 67.1) 54.8 (95% CI 36.5 - 72.5) 64.9 (95% CI 57.6 - 71.9) 63.8 (95% CI 54.3 - 72.8)

* = Two national studies and one study conducted in SNNPR, Oromia and Amhara region; SNNPR = Southern Nations, Nationalities, and Peoples; ¥ = Two national studies; † = One national study; +=2015 population projection (available at http://www.citypopulation.de/Ethiopia.html)
Supplementary file 1: Search string for all databases searched.

Supplementary file 2: Overview of studies excluded after full-text review.

Supplementary file 3: Meta-analyses results for various variables. This was prepared to maintain the conciseness of the main manuscript.