Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction

Streng, Koen W.; Nauta, Jan F.; Hillege, Hans L.; Anker, Stefan D.; Cleland, John G.; Dickstein, Kenneth; Filippatos, Gerasimos; Lang, Chim C.; Metra, Marco; Ng, Leong L.

Published in:
International Journal of Cardiology

DOI:
10.1016/j.ijcard.2018.04.001

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction

Koen W. Streng a, Jan F. Nauta a, Hans L. Hillege a, Stefan D. Anker b, John G. Cleland c, Kenneth Dickstein d,e, Gerasimos Filippatos f, Chim C. Lang g, Marco Metra h, Leong L. Ng i, Piotr Ponikowski j, Nilesh J. Samani i, Dirk J. van Veldhuisen a, Aeilko H. Zwinderman k, Faiez Zannad l, Kevin Damman a,
Peter van der Meer a, Adriaan A. Voors a,*

* Corresponding author: Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands.
E-mail address: a.a.voors@umcg.nl (A.A. Voors).

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abstract

Background: Comorbidities play a major role in heart failure. Whether prevalence and prognostic importance of comorbidities differ between heart failure with preserved ejection fraction (HFpEF), mid-range (HFmrEF) or reduced ejection fraction (HFrEF) is unknown.

Methods: Patients from index (n = 2516) and validation cohort (n = 1738) of The BIology Study to TAIlored Treatment in Chronic Heart Failure (BIOSTAT-CHF) were pooled. Eight non-cardiac comorbidities were assessed; diabetes mellitus, thyroid dysfunction, obesity, anaemia, chronic kidney disease (CKD, estimated glomerular filtration rate < 60 mL/min/1.73 m²), COPD, stroke and peripheral arterial disease. Patients were classified based on ejection fraction. The association of each comorbidity with quality of life (QoL), all-cause mortality and hospitalisation was evaluated.

Results: Patients with complete comorbidity data were included (n = 3499). Most prevalent comorbidity was CKD (50%). All comorbidities showed the highest prevalence in HFpEF, except for stroke. Prevalences of HFmrEF were in between the other entities. COPD was the comorbidity associated with the greatest reduction in QoL. In HFpEF only CKD, anaemia and COPD were associated with higher mortality risks. In HFrEF, almost all were associated with a significant reduction in QoL, while in HFpEF only CKD and obesity were associated with a reduction. Most comorbidities in HFrEF were associated with an increased mortality risk, while in HFpEF only CKD, anaemia and COPD were associated with higher mortality risks.

Conclusions: The highest prevalence of comorbidities was seen in patients with HFpEF. Overall, comorbidities were associated with a lower QoL, but this was more pronounced in patients with HFpEF. Most comorbidities were associated with higher mortality risks, although the associations with diabetes were only present in patients with HFpEF.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Heart failure (HF) is often accompanied by one or multiple non-cardiac comorbidities, making diagnosis and management of HF more complicated. These comorbidities are often associated with worse outcomes and higher hospitalisation rates [1–3]. It is known that HF and comorbidities such as chronic kidney disease (CKD, defined as glomerular
3. Results

3.1. Baseline characteristics

A total of 3499 patients were included in our current study. Baseline characteristics are shown in Table 1. We included 2309 patients with HFrEF (66%), 634 with HfmrEF (18%) and 556 patients with HfPEF (16%). Patients with HfPEF were older, more often women, and had higher systolic blood pressures (P < 0.001). Patients with HFrEF were less likely to have a history of hypertension (57%). CKD was present in 50% of patients, anaemia in 36%, obesity and diabetes mellitus in 33%, COPD in 18%, and stroke and thyroid dysfunction in 13% of the patients (Fig. 1). In general, the prevalences of comorbidities were greater in HFrEF, compared with HfmrEF and HfPEF. CKD (56%) and anaemia (46%) had the highest prevalence in HfPEF (respectively P = 0.002 and P < 0.001). COPD was present in 24% of HfPEF patients and 17% in patients with HFrEF (P < 0.001). A history of stroke was found more often in HfmrEF (17%). The prevalence of diabetes differed between HfPEF and HfFrEf, where the prevalence within HfmrEF was in between HFrEF and HfPEF, but not significantly different. The prevalences of the other comorbidities are shown in Table 1. The number of comorbidities in patients with HFrEF, HfmrEF and HfPEF differed significantly (P < 0.001). Patients with HfPEF had the highest number of comorbidities, while patients with HFrEF had the lowest number of comorbidities (Supplementary Fig. 1). At least 1 comorbidity was found in 84% of the patients with HfFrEf, while this was 87% in HfmrEF patients and 94% in patients with HfPEF (P < 0.001). Age-standardized prevalence for the comorbidities is depicted in Supplementary Fig. 2.

3.2. Non-cardiac comorbidities and quality of life

Overall, Qol was lower in HfPEF compared with HfmrEF and HfFrEf. When assessing the different domains within the KCCQ, patients with HfPEF had more physical limitations, more symptom frequency and burden, and had the most social limitations (all P < 0.001). Most comorbidities were associated with a significant decline in mean KCCQ score (all P < 0.001), but the decline in mean overall KCCQ score was larger in patients with HFrEF and HfmrEF, compared with patients with HfPEF (Table 2). In patients with HFrEF, each comorbidity, except for thyroid dysfunction, was associated with a significant decline in mean KCCQ score, while in patients with HfPEF COPD (P = 0.002), obesity (P = 0.048) and thyroid dysfunction (P = 0.017) were associated with a decline in Qol. Other comorbidities did not yield a significant difference in mean KCCQ score. Supplementary Fig. 3 shows the difference in overall mean KCCQ score between the subgroups. A difference of ≥ 5 points was considered to be minimal clinically important. In the total cohort, each of the comorbidities had a minimal clinically important difference, where a decrease of 10 points in mean KCCQ score was seen in patients with COPD. However, in patients with HFrEF, obesity and thyroid dysfunction are no longer associated with a difference in Qol, while the same was true for CKD in HfmrEF. In contrast to the other HF groups, the only comorbidities with a minimal clinical important difference in patients with HfPEF were COPD and thyroid dysfunction. To evaluate the association of comorbidities with Qol in the different HF groups, linear regression was performed (Supplementary Table 1). Overall, each non-cardiac comorbidity was associated with a lower KCCQ overall score (all P < 0.001, except for thyroid dysfunction (P = 0.035)). Consistent in each of the HF groups, both COPD and obesity were significantly associated with a lower KCCQ score. However, diabetes was only associated with a lower KCCQ score in HfPEF (P < 0.001), but not in HfmrEF and HfFrEf. Both CKD and anaemia were not associated with KCCQ score in HfPEF (respectively P = 0.987 and P = 0.293). The differences between the groups were less pronounced when using the EQ-5D scale. When assessing the Visual Analog Scale (VAS) score used in the EQ-5D in the total cohort, the presence of each...
comorbidity significantly lowers the VAS scale, except for obesity (P = 0.115). In patients with HFrEF, the presence of COPD (P < 0.001), stroke (P = 0.039), diabetes (P < 0.001), CKD (P = 0.003) and anaemia (P = 0.003) lowers the VAS score. In HFrEF, only anaemia had a significantly lower VAS score.

3.3. Non-cardiac comorbidities and outcome

In the overall cohort, all comorbidities were associated with increased risk for all-cause mortality, except for stroke. Mean follow-up was 25 months. Fig. 2 shows a forest plot with hazard ratios for all-cause mortality and for hospitalisation per HF subgroup. For hospitalisation, the only comorbidity with an increased hazard ratio in HFrEF was thyroid dysfunction, while in HFrEF, CKD, diabetes mellitus, thyroid dysfunction, COPD and anaemia were significantly associated with increased hospitalisation risks. HFrEF showed similar results as in HFrEF.

Furthermore, in all HF subgroups the presence of CKD was associated with increased risk of mortality (HFrEF Hazard ratio (HR) 1.39, 95% CI 1.03 to 1.87, P = 0.032, HFrEF HR 1.79, 95% CI 1.32 to 2.43, P < 0.001 and HFrEF HR 1.49, 95% CI 1.25 to 1.77, P < 0.001, respectively). In HFrEF, diabetes mellitus, anaemia and COPD were all associated with significantly higher event rates. In HFrEF, besides anaemia (P < 0.001), no other comorbidities were significantly related with higher mortality rates. In HFrEF, COPD and thyroid dysfunction were both associated with significantly increased event rates. For obesity, a decreased mortality risk was seen in HFrEF (HR 0.60, 95% CI 0.44 to 0.80, P < 0.001) and in HFrEF (HR 0.66, 95% CI 0.48 to 0.89, P = 0.008). A significant interaction between comorbidity and LVEF as a continuous variable were seen for diabetes mellitus (P = 0.031) and anaemia (P = 0.043). Diabetes and anaemia had a stronger association with poor outcomes in HFrEF and HFrEF, compared with HFrEF.

4. Discussion

We studied 8 non-cardiac comorbidities in a broad cohort of patients with HF. Comorbidities with the greatest prevalence were the presence of CKD, anaemia, diabetes and obesity. For all comorbidities, except for stroke, the prevalence was the highest in patients with HFrEF. We have further shown that most comorbidities were associated with lower QoL, although the difference compared with not having the comorbidity was generally larger in patients with HFrEF compared with HFrEF.
patients with HFrEF or HfPEF. Furthermore, most comorbidities were associated with an increased risk of mortality, although the presence of diabetes was only associated with higher mortality risks in HfPEF.

4.1. Prevalence of non-cardiac comorbidities

The most common comorbidities in this cohort were CKD and anaemia. These findings are in line with previous studies, where a prevalence of CKD in different cohorts of patients with HF is seen, ranging from 28% up to 55% [1,4,15]. Prevalence of anaemia varies widely in the literature, with numbers ranging from 5 to 60%, in concordance with our study [16,17]. Obesity was present in 33% of our cohort, and its prevalence varied from 5 to 55% [1,4,15]. Prevalence of anaemia varies widely in the literature, with numbers ranging from 5 to 60%, in concordance with our study [16,17]. Obesity was present in 33% of our cohort, and its prevalence was particularly high in patients with HfPEF. Obesity is more often seen in patients with HfPEF, and could trouble the diagnosis of HF in these patients [18]. However, in our study, patients with HfPEF also had increased levels of NT-proBNP, making misdiagnosis of HF much more unlikely. Diabetes was present in 33% of patients, which is similar to previous studies which report a prevalence ranging from 22% up to 45% [7,19,20]. Novel findings were the prevalences of non-cardiac comorbidities in patients with HfMrEF. To the best of our knowledge, this has not been described before. Prevalences of comorbidities showed a gradual increase from HfReEF to HfMrEF to HfPEF. One of our consistent findings was the fact that comorbidities were more prevalent in patients with HfPEF. Although two previous studies have depicted that non-cardiac comorbidities were more prevalent in patients with HfPEF [6,7], our study additionally focused on the individual association of each of the comorbidities with QoL and all-cause mortality. To assess whether the higher prevalence of comorbidities in patients with HfPEF was driven by age, we calculated age-standardized prevalences, showing largely similar results. Only for CKD, the similarity in

![Fig. 1. Prevalence of non-cardiac comorbidities in heart failure groups.](image)

Table 2: Quality of life in HF subgroups.

<table>
<thead>
<tr>
<th>Comorbidity present?</th>
<th>HFrEF</th>
<th>P-value</th>
<th>HfMrEF</th>
<th>P-value</th>
<th>HfPEF</th>
<th>P-value</th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comorbidity present?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RCCQ overall score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>50</td>
<td>32–65</td>
<td>37</td>
<td>25–53</td>
<td><0.001</td>
<td>45</td>
<td>31–61</td>
<td>36</td>
</tr>
<tr>
<td>Stroke</td>
<td>43</td>
<td>31–64</td>
<td>41</td>
<td>24–60</td>
<td><0.001</td>
<td>44</td>
<td>30–60</td>
<td>39</td>
</tr>
<tr>
<td>Diabetes</td>
<td>50</td>
<td>33–66</td>
<td>41</td>
<td>26–58</td>
<td><0.001</td>
<td>45</td>
<td>31–61</td>
<td>39</td>
</tr>
<tr>
<td>Obesity</td>
<td>48</td>
<td>32–64</td>
<td>44</td>
<td>28–62</td>
<td>0.011</td>
<td>46</td>
<td>32–62</td>
<td>39</td>
</tr>
<tr>
<td>Thyroid dysfunction</td>
<td>47</td>
<td>31–64</td>
<td>44</td>
<td>29–60</td>
<td>0.202</td>
<td>45</td>
<td>31–60</td>
<td>34</td>
</tr>
<tr>
<td>CKD</td>
<td>51</td>
<td>33–67</td>
<td>43</td>
<td>28–60</td>
<td><0.001</td>
<td>46</td>
<td>31–64</td>
<td>41</td>
</tr>
<tr>
<td>Anaemia</td>
<td>49</td>
<td>33–66</td>
<td>42</td>
<td>27–58</td>
<td><0.001</td>
<td>46</td>
<td>32–62</td>
<td>39</td>
</tr>
<tr>
<td>PAD</td>
<td>48</td>
<td>31–64</td>
<td>42</td>
<td>27–58</td>
<td>0.001</td>
<td>45</td>
<td>31–61</td>
<td>37</td>
</tr>
</tbody>
</table>

EQ-5D VAS score

<table>
<thead>
<tr>
<th>Comorbidity present?</th>
<th>HFrEF</th>
<th>P-value</th>
<th>HfMrEF</th>
<th>P-value</th>
<th>HfPEF</th>
<th>P-value</th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>60</td>
<td>45–70</td>
<td>50</td>
<td>40–65</td>
<td><0.001</td>
<td>60</td>
<td>49–70</td>
<td>50</td>
</tr>
<tr>
<td>Stroke</td>
<td>56</td>
<td>43–70</td>
<td>50</td>
<td>40–70</td>
<td>0.039</td>
<td>60</td>
<td>49–70</td>
<td>50</td>
</tr>
<tr>
<td>Diabetes</td>
<td>60</td>
<td>45–70</td>
<td>50</td>
<td>40–70</td>
<td><0.001</td>
<td>60</td>
<td>49–70</td>
<td>55</td>
</tr>
<tr>
<td>Obesity</td>
<td>55</td>
<td>43–70</td>
<td>59</td>
<td>40–70</td>
<td>0.737</td>
<td>60</td>
<td>48–70</td>
<td>55</td>
</tr>
<tr>
<td>Thyroid dysfunction</td>
<td>55</td>
<td>40–70</td>
<td>55</td>
<td>40–70</td>
<td>0.708</td>
<td>60</td>
<td>49–70</td>
<td>50</td>
</tr>
<tr>
<td>CKD</td>
<td>60</td>
<td>45–70</td>
<td>52</td>
<td>40–70</td>
<td>0.003</td>
<td>59</td>
<td>49–70</td>
<td>59</td>
</tr>
<tr>
<td>Anaemia</td>
<td>60</td>
<td>45–70</td>
<td>50</td>
<td>40–70</td>
<td><0.001</td>
<td>60</td>
<td>50–71</td>
<td>50</td>
</tr>
<tr>
<td>PAD</td>
<td>55</td>
<td>41–70</td>
<td>50</td>
<td>40–70</td>
<td>0.266</td>
<td>50</td>
<td>47–70</td>
<td>50</td>
</tr>
</tbody>
</table>

Values are given as median [25th to 75th percentiles]; HFrEF = Heart failure with reduced ejection fraction; HfMrEF = Heart failure with mid-range ejection fraction; HfPEF = Heart failure with preserved ejection fraction; RCCQ = Kansas city cardiomyopathy questionnaire; COPD = Chronic obstructive pulmonary disease; CKD = Chronic kidney disease; PAD = Peripheral arterial disease; EQ-SD = EuroQol five dimensions questionnaire.
Fig. 2. Forest plot with hazard ratios for all-cause mortality (top) and hospitalisation (bottom) and each comorbidity; corrected for age, sex, NYHA class and physical limitation. On the right is P-value for interaction with heart failure group.
prevalences among HF phenotypes could be argued to be at least partly age driven, as after age adjustment CKD was more frequently observed in patients with HFrEF. For all other comorbidities the prevalence remained greater in patients with HFrEF. Furthermore, multimorbidity was a common finding in our cohort, especially in patients with HFrEF. Braunstein et al. previously showed that nearly 40% of chronic HF patients had 5 or more comorbidities [2]. The prevalence of (multiple) comorbidities increased rapidly during the past two decades [21–23]. In our present study, multiple comorbidities were more often present in patients with HFrEF. This could partly be due to an older age, however, precise mechanisms behind non-cardiac comorbidities and HF are still unclear. However, they do seem an important target for a more holistic approach in the treatment of HFrEF patients [24].

Novel findings in our study also regard the prevalence and associations of comorbidities within HFmrEF. This entity is often referred to as the middle child, which holds true in our cohort for the prevalence of the different comorbidities. The prevalence for each comorbidity was in between HFrEF and HFrEF. A recent review on HFmrEF studies found that HFmrEF might be more similar to HFrEF, especially with regard to the prevalence of IHD [25]. We also found that hazard ratio’s for the different comorbidities for HFmrEF showed a more similar pattern to HFrEF compared with HFrEF.

4.2. Influence of comorbidities on quality of life

Comorbidities could influence QoL in several ways [26,27]. The majority of these non-cardiac comorbidities require the use of medication, and polypharmacy is associated with a decrease in functional status of the patient [28]. Furthermore, the majority of these comorbidities are accompanied by a variety of (physical) symptoms, such as fatigue, decrease in general condition and/or shortness of breath. These factors not only limit the patients in functional status, but could also influence their social status and with that an even further decline in QoL. Here, we indeed showed that comorbidities were associated with a lower QoL. In a multivariable analysis, there were more individual comorbidities that were independently associated with overall KCCQ score in HFrEF compared with HFrEF patients. Since comorbidities had a higher prevalence in patients with HFrEF, analyses were repeated within a matched cohort for number of comorbidities with HFrEF. This did not yield any significant difference. A plausible explanation could be that the non-cardiac comorbidities were already present before the onset of HFrEF, while in HFrEF the comorbidities were a consequence of the HF itself. Although this cannot be concluded based on these data, Paulus et al. have previously postulated that comorbidities in HFrEF induce a pro-inflammatory state, resulting in alterations in myocardial structure and functions. Consequently, the comorbidity itself might be the cause -or deteriorating factor- in HFrEF [29]. Our findings might be supportive of this theory.

One of the comorbidities consistently associated with QoL in all 3 HF groups was COPD. HF and COPD often co-exist, with a reported prevalence of approximately 20% within patients with HF. COPD is known to be characterized by a low-grade state of inflammation, and may thus be associated with more frequent cardiovascular events and therefore lowering QoL [30].

4.3. Influence of comorbidities on outcome

We found a consistent and strong association between the presence of non-cardiac comorbidities and outcome. This finding is consistent with previous studies in patients with chronic HF [4,31]. Overall, CKD and anaemia were associated with the highest risks of all-cause mortality. In patients with HFrEF, the presence of diabetes mellitus or COPD was significantly associated with a worse outcome. The presence of COPD may be associated with higher mortality risk in HF, which could partially be due to the fact that patients with COPD are less likely to receive treatment with a beta-blocker and have a reduced exercise capacity [32,33]. However, there are common shared denominators such as inflammation, smoking and/or chronic illness which are known to cause both HF and comorbidities such as COPD [34].

Although in our cohort the association was borderline non-significant, the association between a history of stroke and higher mortality risk was previously shown in a cohort of patients with HFrEF [35]. One reason for this association could be the shared risk factor of atherosclerosis, or the development of thromboembolic events in patients with very low ejection fractions [36].

The precise mechanisms behind the increased mortality risks are still unclear, however, there could be several factors involved in the increased mortality risk observed in patients with (multiple) comorbidities. First of all, HF could result in more comorbidities. Due to fatigue and shortness of breath, patients are more inactive which could play a part in the development of for example diabetes and obesity. Furthermore, patients with multiple comorbidities often represent a more severe HF and are therefore associated with higher mortality risks and higher hospitalisation rates. Lastly, comorbidities may cause worsening HF via medication used to treat these comorbidities, or comorbidities may influence the use of HF medication, influencing their effect on outcome in these patients.

The optimal treatment for both HF and the accompanying comorbidities is a clinical challenge. Especially in HFrEF, HF treatment options are very limited. Therefore optimizing treatment of the separate comorbidities might at least improve the QoL of these patients. This hypothesis will be investigated in a clinical trial, OPTIMIZE-HFmrEF, which aims to randomize patients to usual care or intensive treatment of several common comorbidities in HFmrEF [37]. It has been depicted in previous research that, especially in HFrEF patients, a more targeted approach might be necessary and therefore treating different phenotypes of HFrEF by not only focussing on the symptoms of HF but also on concurrent comorbidities [38].

4.4. Study limitations

This was a retrospective, post-hoc study, combining two large HF cohorts. In this study in- and exclusion criteria were used, which might result in a more selected population. The majority of patients was recruited in-hospital, which might bias the QoL compared with outpatients included. Another limitation concerns possible underreporting of comorbidities, since they were assessed by the treating physician and/or based on their reported medical history. For COPD, no confirming spirometry was performed which could also result in a false reporting of the comorbidity. Finally, the choice of comorbidities analysed in our study was arbitrary, although this selection allowed us to focus on specific non-cardiac comorbidities. Some comorbidities were not assessed (for example obstructive sleep apnoea syndrome, malignancy, depression and hepatic disease) since data on these comorbidities were not complete.

5. Conclusion

We have studied 8 non-cardiac comorbidities in a broad cohort of patients with HF. The most prevalent non-cardiac comorbidities were CKD, anaemia, diabetes and obesity. The highest prevalence of comorbidities was seen in patients with HFrEF, whereas the prevalence in HFmrEF was consistently in between HFrEF and HFrEF. While in the overall group most of the comorbidities were associated with a lower QoL, this association was more pronounced in patients with HFrEF compared with patients with HFmrEF or HFrEF. Most comorbidities were associated with higher mortality risks, however, the associations with diabetes were only present in patients with HFrEF in contrast to patients with HFmrEF or HFrEF.
Funding
This work was supported by the Netherlands Cardiovascular Research Initiative: an initiative with support of the Dutch Heart Foundation [CVON2014-11 RECONNECT] and a grant from the European Commission [FP7-242209-BIOSTAT-CHF; EudraCT 2010–020808–29].

Disclosures
S.D.A. reports grants from Vifor and Abbott Vascular, and fees for consultation from Vifor, Bayer, Boehringer Ingelheim, Brahms, Cardiorenzis, Janssen, Novartis, Relypsa, Servier, Stealth Peptides, and ZS Pharma. K. D. has received honoraria and/or research support from Medtronic, Boston Scientific St Jude, Biotronik and Sorin (device companies), and Merck, Novartis, Angen, Boehringer Ingelheim, Astra Zeneca, Pfizer, Bayer, GSK, Roche, Sanofi, Abbott, Otsuka, Leo, Servier, and Bristol Myers Squibb (pharmaceutical companies). G.F. has received fees and/or research grants from Novartis, Bayer, Cardiorenzis, Vifor, Servier, Alere, and Abbott. C.C.L. received consultancy fees and/or research grants from Astra Zeneca, MSD, Novartis, and Servier. D.V.V. reports board membership fees/travel expenses from BioControl, Cardiorenzis, Johnson & Johnson, Novartis, Vifor, and Zoll Medical. M.M. has received consulting honoraria from Astra Zeneca, Novartis, Relypsa, and Servier, and speaker’s fees from Abbott Vascular and Servier. A.A.V reports consultancy fees and/or research grants from: Alere, Amgen, Bayer, Boehringer Ingelheim, Cardio3Biosciences, Celladon, GSK, Merck/MSD, Novartis, Servier, Stealth Peptides, Singulex, Sphingotec, Trevena, Vifor, and ZF Pharma. All other authors declare no conflict of interest.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jicard.2018.04.001.

References
[11] N. Eibner, E.A. Jankowska, P. Ponikowski, M. Lainscak, S. Elnser, V. Slizik, S. Steinbeck, A. A.V. reports consultancy fees and/or research grants from: Alere, Amgen, Bayer, Boehringer Ingelheim, Cardio3Bioscience, Janssen, Novartis, Cardio3Bioscience, and Servier. A.A.V reports consultancy fees and/or research grants from: M.M. has received consulting honoraria from Amgen, Astra Zeneca, and Servier. A.A.V reports consultancy fees and/or research grants from: M.M. has received consulting honoraria from Amgen, Astra Zeneca, Novartis, Relypsa, and Servier. A.A.V reports consultancy fees and/or research grants from: M.M. has received consulting honoraria from Amgen, Astra Zeneca, Novartis, Relypsa, and Servier. A.A.V reports consultancy fees and/or research grants from: Alere, Amgen, Bayer, Boehringer Ingelheim, Cardio3Bioscience, Celladon, GSK, Merck/MSD, Novartis, Servier, Stealth Peptides, Singulex, Sphingotec, Trevena, Vifor, and ZF Pharma. All other authors declare no conflict of interest.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jicard.2018.04.001.

