Amplitude Analysis of the Decay $\bar{B}^0 \rightarrow K^0_S \pi^+ \pi^-$ and First Observation of the C_P Asymmetry in $\bar{B}^0 \rightarrow K^{*}(892)^{-}\pi^+$

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.120.261801

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
LHCb Collaboration (2018). Amplitude Analysis of the Decay $\bar{B}^0 \rightarrow K^0_S \pi^+ \pi^-$ and First Observation of the C_P Asymmetry in $\bar{B}^0 \rightarrow K^{*}(892)^{-}\pi^+$. Physical Review Letters, 120(26), [261801].
https://doi.org/10.1103/PhysRevLett.120.261801

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Amplitude Analysis of the Decay $\bar{B}^0 \to K^0_S\pi^+\pi^-$ and First Observation of the CP Asymmetry in $\bar{B}^0 \to K^*(892)^-\pi^+$

R. Aaij et al. (LHCb collaboration)

(Received 8 January 2018; revised manuscript received 15 March 2018; published 25 June 2018)

The time-integrated untagged Dalitz plot of the three-body hadronic charmless decay $\bar{B}^0 \to K^0_S\pi^+\pi^-$ is studied using a pp collision data sample recorded with the LHCb detector, corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The decay amplitude is described with an isobar model. Relative contributions of the isobar amplitudes to the $\bar{B}^0 \to K^0_S\pi^+\pi^-$ decay branching fraction and CP asymmetries of the flavor-specific amplitudes are measured. The CP asymmetry between the conjugate $\bar{B}^0 \to K^*(892)^-\pi^+$ and $B^0 \to K^*(892)^+\pi^-$ decay rates is determined to be -0.308 ± 0.062.

DOI: 10.1103/PhysRevLett.120.261801

The breaking of the invariance of the weak interaction under the combined action of the charge conjugation (C) and parity (P) transformations is firmly established in the K- and B-meson systems [1–3]. In particular, significant CP asymmetries at the level of 10% or more have been measured in the decays of B mesons into two light pseudoscalars. The CP asymmetries in the decays of $\bar{B}^0 \to K^-\pi^+$ and $B^- \to K^-\pi^0$ (CP conjugation is implied in the notation of the decays unless stated otherwise) are observed to be different [4], while, in predictions based on the QCD factorization approach, the two asymmetries are expected to be similar [5]. This apparent discrepancy is often referred to in the literature as the $K\pi$ puzzle [6–9]. The study of the flavor-specific, quasi-two-body amplitudes that contribute to the decay $\bar{B}^0 \to K^0_S\pi^+\pi^-$ offers the possibility to measure CP asymmetries. In particular, the decays with a vector and a pseudoscalar in the final state, such as $\bar{B}^0 \to K^*(892)^-\pi^+$, may help to shed light on the $K\pi$ puzzle.

The decay $\bar{B}^0 \to K^0_S\pi^+\pi^-$ can also proceed via CP-eigenstates, such as $\bar{B}^0 \to f_0(980)K^0_S$ or $\bar{B}^0 \to \rho(770)^0K^0_S$. In the standard model (SM) [10,11], the mixing-induced CP asymmetries in the quark-level transitions $b \to q\bar{q}r$ ($q = u, d, s$), which govern the decay $\bar{B}^0 \to K^0_S\pi^+\pi^-$, are predicted to be approximately equal to those in $b \to c\bar{c}s$ transitions, such as $\bar{B}^0 \to J/\psi K^0_S$. The existence of new particles in extensions of the SM could introduce additional weak phases that contribute along with the SM mixing phase [12–15]. In general, for each of the studied CP eigenstates, the current experimental measurements of $b \to q\bar{q}r$ decays [4] show good agreement with the results from $b \to c\bar{c}s$ decays [4]. There is nonetheless room for contributions from physics beyond the SM and, hence, the need for precision measurements of these weak mixing phases.

The mixing-induced CP-violating phase can be measured by means of a decay-time-dependent analysis of the Dalitz plot (DP) [16] of the decay $\bar{B}^0 \to K^0_S\pi^+\pi^-$ [17–20]. Such an analysis requires the initial flavor of the \bar{B}^0 meson to be determined or “tagged.” A recent study of the yields of the charmless three-body decays $\bar{B}^0 \to K^0_S\pi^+\pi^-$ has been reported in Ref. [21]. The $\bar{B}^0 \to K^0_S\pi^+\pi^-$ yields are comparable to those obtained at the BABAR and Belle experiments, but the lower tagging efficiency at LHCb does not yet allow a precise flavor-tagged analysis to be performed. The decay-time-integrated untagged DP of this mode is studied in this Letter. The DP of the decay $\bar{B}^0 \to K^0_S\pi^+\pi^-$ is modeled by a sum of quasi-two-body amplitudes (the isobar parametrization), and the model is fit to the LHCb data to measure the relative branching fractions and the CP asymmetries of flavor-specific final states.

The analysis reported in this Letter is performed using pp collision data recorded with the LHCb detector, corresponding to integrated luminosities of 1.0 fb$^{-1}$ at a center-of-mass energy of 7 TeV in 2011 and to 2.0 fb$^{-1}$ at a center-of-mass energy of 8 TeV in 2012. The LHCb detector [22,23] is a single-arm forward spectrometer covering the pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks. Signal candidates are accepted if one of the final-state particles from the signal decay deposits sufficient energy transverse to the beam line in the hadronic calorimeter to pass the hardware trigger. Events that are triggered at the hardware level by another particle in the event are also
 retained. In a second step, a software trigger requires a two-, three-, or four-track secondary vertex with a significant displacement from any primary pp interaction vertex (PV). At least one charged particle must have a large transverse momentum and be inconsistent with originating from a PV. A multivariate algorithm [24] is used for the identification of secondary vertices consistent with the decay of a b hadron.

The selection procedure is described in detail in Ref. [21]. Decays of $K^0_S \rightarrow \pi^+\pi^-$ are reconstructed in two different categories: the first involving K^0_S mesons that decay early enough for the resulting pions to be reconstructed in the vertex detector; and the second containing those K^0_S mesons that decay later, such that track segments of the pions cannot be formed in the vertex detector. These categories are referred to as Long and Downstream, respectively. Downstream K^0_S were not reconstructed in the software trigger in 2011, but they were reconstructed and used for triggering in 2012. Furthermore, an improved software trigger with larger b-hadron efficiency, in particular in the Downstream category, was used for the second part of the 2012 data taking. To take into account the different levels of trigger efficiency, the data sample is divided into 2011, 2012a, and 2012b data-taking periods, and each period is further divided according to the K^0_S reconstruction category, giving a total of six subsamples. The 2012b sample is the largest, corresponding to an integrated luminosity 1.4 fb$^{-1}$, and it has the highest trigger efficiency.

The events passing the trigger requirements are then filtered in two stages. Initial requirements are applied to further reduce the size of the data sample and increase the signal purity, before a multivariate classifier, based mostly on topological variables derived from the vertexing of the candidates, is implemented [21]. The selection requirement placed on the output of the multivariate classifier is defined for each data subsample to yield a signal purity close to 90%. Particle identification (PID) requirements are applied in order to reduce backgrounds from decays where either a proton, kaon, or muon is misidentified as a pion. These criteria are optimized to reduce the cross-feed background coming from the decays $B^0 \rightarrow K^0_S K^\pm \pi^\mp$, where the kaon is misidentified as a pion. The same invariant-mass vetoes on charmed and charmonium resonances as in Ref. [21] are used in this analysis. The invariant-mass distribution of signal candidates from the six aforementioned subsamples is displayed in Fig. 1, with the result of a simultaneous fit. The candidates selected for the subsequent DP analysis are those in the $K^0_S\pi^+\pi^-$ mass range [5227, 5343] MeV/c^2.

The DP analysis technique [16] is employed to study the dynamics of the three-body decay $B^0 \rightarrow K^0_S \pi^+\pi^-$. A decay-time-integrated untagged probability density function (PDF) is built to describe the phase space of the decay as a function of the DP kinematical variables. Neglecting the unobserved to date CP violation in $B^0 - \bar{B}^0$ mixing, the untagged PDF describing the signal does not exhibit any dependence on the mixing parameters [4,25], and it simply reduces to an incoherent sum of the $A(s_+, s_-)$ and $\bar{A}(s_+, s_-)$ Lorentz-invariant transition amplitudes of the decays $B^0 \rightarrow K^0_S \pi^+\pi^-$ and $\bar{B}^0 \rightarrow K^0_S \pi^+\pi^-$, respectively.

$$P(s_+, s_-) = \frac{|A(s_+, s_-)|^2 + |\bar{A}(s_+, s_-)|^2}{\int_{DP} (|A(s_+, s_-)|^2 + |\bar{A}(s_+, s_-)|^2) ds_+ ds_-},$$

(1)

where the kinematical variables s_{\pm} denote the mass squared, $m^2_{K^0_S\pi^+\pi^-}$.

The total amplitude $\bar{A}(s_+, s_-)$ of the decay $\bar{B}^0 \rightarrow K^0_S \pi^+\pi^-$ is described as a coherent sum of the amplitudes of possible intermediate resonances and nonresonant contributions. The decay amplitudes for B^0 and \bar{B}^0 are given by

$$A = \sum_{j=1}^{N} c_j F_j(s_+, s_-), \quad \bar{A} = \sum_{j=1}^{N} \bar{c}_j \bar{F}_j(s_+, s_-),$$

(2)

where F_j and \bar{F}_j are the DP spin-dependent dynamical functions for the resonance, while j and c_j are complex coefficients that account for the relative magnitudes and phases of the N intermediate (resonant and nonresonant) components. The spin-dependent functions $F_j(s_+, s_-)$, embedding the resonance line shape and the angular distributions, are constructed in the Zemach tensor formalism [26]. The weak-phase dependence is included in the c_j coefficients. The results obtained for each isobar amplitude are expressed in this paper as a magnitude and a phase. The magnitude includes any potential B-meson production and experimental asymmetries.
The analysis method consists of a simultaneous DP fit to the six data subsamples defined above, with the shared isobar parameters determined using an unbinned maximum likelihood fit. The DP model is built starting from the most stable DP fit. The phases of the reference amplitude and its conjugate are fixed to zero, and the magnitude of the reference amplitude is arbitrarily fixed at 2.

Two dominant backgrounds contaminate the $B^0 \to K_S^0 \pi^+ \pi^-$ candidate samples: a combinatorial background and a cross-feed background from the decay $B^0 \to K_S^0 K^+ \pi^-$. The fractions of these backgrounds are measured from the invariant-mass fits performed in Ref. [21], and their DP distributions are determined from the data. The combinatorial background DP model is built from the DP histogram of the $B^0 \to K_S^0 \pi^+ \pi^-$ candidates with an invariant mass in the range $[5450, 5800]$ MeV/c^2. The DP model of the cross-feed background is measured from $B^0 \to K_S^0 K^+ \pi^-$ candidates, where the K^\pm is reconstructed under the π^\pm hypothesis [21]. The signal fraction depends on the reconstruction category; it is determined from the fit to the invariant-mass distribution and ranges from 85% (Downstream) to 95% (Long). The PDF in Eq. (1) is modified to account for the background components and the signal reconstruction efficiency across the DP, as determined from simulated events.

Two additional observables are formed from the isobar complex coefficients and are measured in the simultaneous DP fit. The asymmetry observables A_{raw} are derived from the measured isobar parameters of an amplitude j, c_j and \tilde{c}_j

$$A_{raw} = \frac{|\tilde{c}_j|^2 - |c_j|^2}{|\tilde{c}_j|^2 + |c_j|^2}.$$

These observables are directly measured for flavor-specific final states. By contrast, the asymmetry of the mode $B^0 \to f_0(980)K^0_S$ is determined using the patterns of its interference with flavor-specific amplitudes. The CP asymmetry is related to the raw asymmetry by $A_{CP} = A_{raw} - A_{\Delta}$. The correction asymmetry is defined at first order as $A_{\Delta} = A_P(B^0) + A_D(\pi)$, where $A_P(B^0)$ is the production asymmetry between the B^0 and \bar{B}^0 mesons and $A_D(\pi)$ is the detection asymmetry between π^+ and π^- mesons. The production asymmetry $A_P(B^0)$ has been determined to be $A_P(B^0) = (0.35 \pm 0.01)\%$ [34]. Using $D_s^+ \to \pi^+ K^0$ decay modes [35], the pion detection asymmetry is measured to be consistent with zero, with a 0.25% uncertainty. The difference in the nuclear cross sections for K^0 and K^0 interactions in material results in a negligible bias [36]. The uncertainty due to the correction asymmetries and the experimental systematic uncertainty are added in quadrature.

The rate of a single process is proportional to the square of the relevant matrix element [see Eq. (1)]. This involves the ensemble of its interferences with other components.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Parameters</th>
<th>Line shape</th>
<th>Value references</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+(892)^-$</td>
<td>$m_0 = 891.66 \pm 0.26$</td>
<td>RBW</td>
<td>[28]</td>
</tr>
<tr>
<td>$\Gamma_0 = 50.8 \pm 0.9$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle K\pi \rangle_0$</td>
<td>$Re(\lambda_0) = 0.204 \pm 0.103$</td>
<td>EFKLMM</td>
<td>[29]</td>
</tr>
<tr>
<td>$Im(\lambda_0) = 0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle K\pi \rangle_0$</td>
<td>$Re(\lambda_1) = 1$</td>
<td></td>
<td>[29]</td>
</tr>
<tr>
<td>$Im(\lambda_1) = 0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^+(1430)^-$</td>
<td>$m_0 = 1425.6 \pm 1.5$</td>
<td>RBW</td>
<td>[28]</td>
</tr>
<tr>
<td>$\Gamma_0 = 98.5 \pm 2.7$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^+(1680)^-$</td>
<td>$m_0 = 1717 \pm 27$</td>
<td>Flatté</td>
<td>[30]</td>
</tr>
<tr>
<td>$\Gamma_0 = 332 \pm 110$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_0(500)$</td>
<td>$m_0 = 513 \pm 32$</td>
<td>RBW</td>
<td>[31]</td>
</tr>
<tr>
<td>$\Gamma_0 = 335 \pm 67$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho(770)^0$</td>
<td>$m_0 = 775.26 \pm 0.25$</td>
<td>GS</td>
<td>[32]</td>
</tr>
<tr>
<td>$\Gamma_0 = 149.8 \pm 0.8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_0(980)$</td>
<td>$m_0 = 965 \pm 10$</td>
<td>Flatté</td>
<td>[33]</td>
</tr>
<tr>
<td>$g_\pi = 0.165 \pm 0.025$ GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g_K = 0.695 \pm 0.119$ GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_0(1500)$</td>
<td>$m_0 = 1505 \pm 6$</td>
<td>RBW</td>
<td>[28]</td>
</tr>
<tr>
<td>$\Gamma_0 = 109 \pm 7$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ_3^0</td>
<td>$m_0 = 3414.75 \pm 0.31$</td>
<td>RBW</td>
<td>[28]</td>
</tr>
<tr>
<td>$\Gamma_0 = 10.5 \pm 0.6$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresonant (NR)</td>
<td>Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Space</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
products tracking and vertexing efficiencies. Finally, a control sample of $D^{(*)+} \to D^{(*)0}(\rightarrow K^{-}\pi^{+})\pi^{+}$ decays is used to quantify the differences of the hardware trigger response in data and simulation for pions and kaons, separated by positive and negative hadron charges, as a function of their transverse momentum [21,38]. The uncertainties assigned to these corrections are taken as a source of systematic uncertainties.

Two categories of systematic uncertainties are considered: experimental and related to the DP model. The former category comprises the uncertainties on the fraction of signal, the fit biases, the variation of the signal efficiency across the DP (including the choice of the efficiency binning), and the background DP models. The DP model uncertainties arise from the limited knowledge of the fixed parameters of the resonance line shape models, the marginal components neglected in the amplitude fit model, and the modeling of the $K^{0}\pi^{-}$ and $\pi^{+}\pi^{-}$ S-wave components.

All of the experimental uncertainties are estimated by means of pseudoexperiments, in which samples for each reconstruction category are simulated and fitted exactly as for the data sample. For each pseudoexperiment, a single parameter governing a systematic effect (e.g., the signal fraction) is varied according to its uncertainty. The standard deviation of the distribution of the fit results in an ensemble of 500 pseudoexperiments is taken as the corresponding systematic error estimate. The largest absolute bias of an individual source of uncertainty is observed at the few percent level. The final result is corrected for any observed bias where it is significant. The dominant contribution to the experimental uncertainty is the efficiency determination.

The mass and the width of each resonance given in Table I are varied individually and symmetrically by one standard deviation to evaluate the impact of the fixed parameters of the isobar resonance line shapes. The Blatt-Weisskopf radius parameter, fixed at 4 GeV$^{-1}$, is varied by ± 1 GeV$^{-1}$ [18].

To evaluate the systematic uncertainties related to the marginal components of the DP model, the effect of adding the resonance $f_2(1270)$ (which is not retained by the previous criteria) and removing of the $f_0(500)$ component (the least significant contribution in the nominal model) is considered by repeating the fit with and without these components. Based upon this new model, a pseudoexperiment with a signal yield much larger than that of the data is then generated and fit back with the nominal model. The related systematic uncertainty estimate is taken as the difference between the generated and fitted values.

A critical part of the isobar model design is the description of $K^{0}\pi^{\pm}$ S-wave components. Two parametrizations of these contributions have been studied: LASS [39] and EFKLLM [29]. The latter provides the best fit to the data. The log-likelihood difference between the two model hypotheses is $-2\Delta \ln \mathcal{L} = 85$, which indicates that the LASS parametrization cannot be used to assign a

It is convenient to define the CP-averaged fit fraction of the process i, $\mathcal{F}_{(CP)}(i)$, as

$$
\mathcal{F}_{(CP)}(i) = \frac{\int_{DP} |c_iF_i(s_+,s_-)|^2 + |\bar{c}_i\bar{F}_i(s_+,s_-)|^2 |ds_+|ds_-}{\int_{DP} (\sum_j |c_jF_j(s_+,s_-)|^2 + |\sum_j \bar{c}_j\bar{F}_j(s_+,s_-)|^2) |ds_+|ds_-}.
$$

Simulation is used to determine the selection efficiency of the signal. The simulation does not perfectly reproduce the detector response, and these imperfections are corrected for in several respects. First, the particle identification and misidentification efficiencies are determined from a calibration sample using reconstructed $D^{(*)+} \to D^{(*)0}\pi^{+}$ decays, where the D^0 meson decays to the Cabibbo-favored $K^{-}\pi^{+}$ final state. The variation of the PID performance with the track kinematics is included in the procedure. The calibration is performed using samples from the same data-taking period, accounting for the variation in the performance of the hadron identification detectors over time. Second, inaccuracies of the tracking simulation are mitigated by a weighting of the simulated tracking efficiency to match that which was measured in a calibration sample [37]. Analogous corrections are applied to the K_S^0 decay-
meaningful systematic uncertainty related to the choice of the model. In absence of a competitive alternative model (to our knowledge), no systematic uncertainty is assigned to the choice of the EFKLLM parametrization. All model uncertainties are combined in quadrature to form the total model of systematic uncertainty.

The Dalitz plot projections are shown in Fig. 2, with the result of the fit superimposed [40]. The CP-averaged fit fractions related to the quasi-two-body and nonresonant amplitudes are determined to be

\[
\mathcal{F}_{(CP)}(K^+(892)^-\pi^+) = 9.43 \pm 0.40 \pm 0.33 \pm 0.34\%,
\]

\[
\mathcal{F}_{(CP)}((K\pi)^0\pi^+) = 32.7 \pm 1.4 \pm 1.5 \pm 1.1\%,
\]

\[
\mathcal{F}_{(CP)}(K^0_S(1430)^-\pi^+) = 2.45 \pm 0.10 \pm 0.14 \pm 0.12\%,
\]

\[
\mathcal{F}_{(CP)}(K^*(1680)^-\pi^+) = 7.34 \pm 0.30 \pm 0.31 \pm 0.06\%,
\]

\[
\mathcal{F}_{(CP)}(f_0(980)K^0_S) = 18.6 \pm 0.8 \pm 0.7 \pm 1.2\%,
\]

\[
\mathcal{F}_{(CP)}(\rho(770)^0K^0_S) = 3.8 \pm 1.1 \pm 0.7 \pm 0.4\%,
\]

\[
\mathcal{F}_{(CP)}(f_0(500)K_S^0) = 0.32 \pm 0.04 \pm 0.08 \pm 0.19 \pm 0.23\%,
\]

\[
\mathcal{F}_{(CP)}(f_0(1500)K_S^0) = 2.60 \pm 0.54 \pm 1.28 \pm 0.60\%,
\]

\[
\mathcal{F}_{(CP)}(h(1110)K_S^0) = 2.23 \pm 0.40 \pm 0.32 \pm 0.22 \pm 0.13\%,
\]

\[
\mathcal{F}_{(CP)}(K^0_S\pi^+\pi^-)_{NR} = 24.3 \pm 1.3 \pm 3.7 \pm 4.5\%,
\]

where the statistical, experimental systematic and model uncertainties are split accordingly in that order. The results are in agreement with the measurements obtained by the BABAR and Belle Collaborations with decay-time-dependent flavor-tagged analyses [17,18], insofar as the DP model components can be compared.

The measurements of the CP asymmetries are

\[
A_{CP}(K^+(892)^-\pi^+) = -0.308 \pm 0.060 \pm 0.011 \pm 0.012,
\]

\[
A_{CP}((K\pi)^0\pi^+) = -0.032 \pm 0.047 \pm 0.016 \pm 0.027,
\]

\[
A_{CP}(K^0_S(1430)^-\pi^+) = -0.29 \pm 0.22 \pm 0.09 \pm 0.03,
\]

\[
A_{CP}(K^*(1680)^-\pi^+) = -0.07 \pm 0.13 \pm 0.02 \pm 0.03,
\]

\[
A_{CP}(f_0(980)K_S^0) = 0.28 \pm 0.27 \pm 0.05 \pm 0.14,
\]

where the uncertainties are statistical, experimental systematic and from the model. The statistical significance of having observed a nonvanishing CP asymmetry in the decay $B^0 \to K^+(892)^-\pi^+$, built from the likelihood ratio for the null hypothesis, is 6.7 standard deviations and reduces to about 6 standard deviations, taking into account the systematic uncertainties. This measurement constitutes the first observation of a CP-violating asymmetry in the decay $B^0 \to K^+(892)^-\pi^+$. The measured value is in good agreement with the world average $A_{CP}(K^+(892)^-\pi^+) = -0.23 \pm 0.06$ [4] with a similar precision. It is also consistent with SM predictions using different QCD-inspired approaches to handle the hadronic matrix elements of the decays [41–43]. This measurement can also be used with other experimental inputs and theoretical assumptions to set nontrivial constraints on the Cabibbo-Kobayashi-Maskawa parameters [44].

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (The Netherlands); MNISW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland), and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), ANR, Labex P2IO, ENIMGASS and OCEVU, and R´egion Auvergne-Rhône-Alpes (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, the Royal Society, the English-Speaking Union, and the Leverhulme Trust (United Kingdom).

[18] B. Aubert et al. (BABAR Collaboration), Time-dependent amplitude analysis of $K^0_L \pi^+ \pi^-$, Phys. Rev. D 80, 112001 (2009).

[34] R. Aaij et al. (LHCb Collaboration), First Observation of CP Violation in the Decays of B^0_S Mesons, Phys. Rev. Lett. 110, 221601 (2013).

[40] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.261801, for the two-dimensional projection of the DP model.

(LHCb collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
10Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13School of Physics, University College Dublin, Dublin, Ireland
14Sezione INFN di Bari, Bari, Italy
15Sezione INFN di Bologna, Bologna, Italy
16Sezione INFN di Cagliari, Cagliari, Italy
17Università e INFN, Ferrara, Ferrara, Italy
18Sezione INFN di Firenze, Firenze, Italy
19Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
20Sezione INFN di Genova, Genova, Italy
21Università & INFN, Milano-Bicocca, Milano, Italy
22Sezione di Milano, Milano, Italy
23Sezione INFN di Padova, Padova, Italy
24Sezione INFN di Pisa, Pisa, Italy
25Sezione INFN di Roma Tor Vergata, Roma, Italy
26Sezione INFN di Roma La Sapienza, Roma, Italy
27Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
28AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
29National Center for Nuclear Research (NCBJ), Warsaw, Poland
30Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
31Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35Yandex School of Data Analysis, Moscow, Russia
36Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
37Institute for High Energy Physics (IHEP), Protvino, Russia
38ICCUB, Universitat de Barcelona, Barcelona, Spain
39Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40European Organization for Nuclear Research (CERN), Geneva, Switzerland
41Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
42Physik-Institut, Universität Zürich, Zürich, Switzerland
43Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
44Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
45NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
46Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
47University of Birmingham, Birmingham, United Kingdom
48H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
49Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
50Department of Physics, University of Warwick, Coventry, United Kingdom
51STFC Rutherford Appletton Laboratory, Didcot, United Kingdom
52School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Cincinnati, Cincinnati, Ohio, USA
University of Maryland, College Park, Maryland, USA
Syracuse University, Syracuse, New York, USA

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
University of Chinese Academy of Sciences, Beijing, China, associated to Center for High Energy Physics, Tsinghua University, Beijing, China
School of Physics and Technology, Wuhan University, Wuhan, China, associated to Center for High Energy Physics, Tsinghua University, Beijing, China
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to Center for High Energy Physics, Tsinghua University, Beijing, China
Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France

Deceased.

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
Laboratoire Leprince-Ringuet, Palaiseau, France.
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
Università di Bari, Bari, Italy.
Università di Bologna, Bologna, Italy.
Università di Cagliari, Cagliari, Italy.
Università di Ferrara, Ferrara, Italy.
Università di Genova, Genova, Italy.
Università di Milano Bicocca, Milano, Italy.
Università di Roma Tor Vergata, Roma, Italy.
Università di Roma La Sapienza, Roma, Italy.
AGH-University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
Hanoi University of Science, Hanoi, Vietnam.
Università di Padova, Padova, Italy.
Università di Pisa, Pisa, Italy.
Università degli Studi di Milano, Milano, Italy.
Università di Urbino, Urbino, Italy.
Università della Basilicata, Potenza, Italy.
Scuola Normale Superiore, Pisa, Italy.
Università di Modena e Reggio Emilia, Modena, Italy.
Iligan Institute of Technology (IIT), Iligan, Philippines.
Novosibirsk State University, Novosibirsk, Russia.

†