Distributed fault detection observer design for linear systems

Weixin Han, Harry L. Trentelman, Zhenhua Wang and Yi Shen

Abstract—This paper investigates the distributed fault detection problem for linear time-invariant (LTI) systems with distributed measurement output. We propose a distributed fault detection observer (DFDO) design method to detect actuator faults of the monitored system in the presence of a bounded process disturbance. The DFDO consists of a network of local fault detection observers, which communicate with their neighbors as prescribed by the given network graph. A systematic algorithm for DFDO design is addressed, enabling the residual to be robust against the effects of the external bounded process disturbance. Based on $L¥$ analysis, a bank of linear matrix inequalities is presented to calculate the gain matrices and residual thresholds in our distributed fault detection scheme. Finally, we illustrate the effectiveness of the proposed distributed fault detection approach by means of a numerical simulation.

Keywords: Distributed fault detection, linear system observers, LMIs, sensor networks.

I. INTRODUCTION

In the past three decades, fault detection and isolation (FDI) have been extensively studied to improve the reliability of modern control systems (see, e.g., [1], [2], [3], [4] and the references therein). Model-based fault detection has attracted considerable attention and numerous results have been reported [5], [6], [7], [8], [9]. Among the model-based fault detection schemes, observer-based fault detection is well-established and plays an important role in research and application domains. However, most of the existing FDI methods developed up to now assume that measurement outputs are obtained from sensors that are centrally located.

As the size and complexity of systems increase, several practical systems are large-scale and/or physically output distributed. For these systems, some fault diagnosis approaches have been proposed in the literature. For example, in [10], a robust centralized fault estimation method based on the sliding mode observer technique was proposed for multi-agent system exchanging relative information. Considering probabilistic performance, an FDI filter was designed for high dimensional nonlinear systems in [11]. We note that the fault diagnosis and fault estimation schemes proposed in the above literature are still in a centralized form. Some research on decentralized or distributed FDI was carried out in the literature as well [12], [13], [14]. In [15] fault tolerant decentralized $H¥$ control for symmetric composite systems was presented. In [16], a decentralized FDI scheme was studied for a network system. A multi-layer distributed FDI scheme was proposed for large-scale systems in [17]. In addition, a distributed fault detection approach for interconnected second-order systems was studied in [18]. The monitored plant discussed in the above literature can be separated into several interconnected subsystems. Each fault filter or observer is designed for the corresponding subsystem. For large-scale systems that do not physically consist of some subsystems or can not be separated into several interconnected subsystems, distributed fault diagnosis was studied only in few publications. For a single monitored discrete-time system, a distributed fault diagnosis algorithm was proposed by using average-consensus techniques in [19].

Motivated by the above, this paper studies the distributed fault detection problem for continuous-time linear time invariant (LTI) systems with actuator faults. The measured output of the original plant is physically distributed and the proposed distributed fault detection observer (DFDO) consists of a network of local fault detection observers with a priori given network graph (see Fig. 1 for an illustration). Each local fault detection observer has access to only a portion of the output of the known monitored system, and communicates with its neighboring fault detection observers. The local fault detection observer at each node is designed to generate a residual which is robust against process disturbances. The gain matrices in the DFDO are obtained by solving linear matrix inequalities (LMIs). In this paper, the residual generation and residual threshold calculation are integrated together by using $L¥$ analysis.
II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Notation: For a given matrix M, its transpose is denoted by M^T and M^{-1} denotes its inverse. The symmetric part of a square real matrix M is sometimes denoted by $\text{Sym}(M) := M + M^T$. The rank of the matrix M is denoted by rank M. The identity matrix of dimension N will be denoted by I_N. The vector 1_N denotes the $N \times 1$ column vector comprising of all ones. For a symmetric matrix P, $P > 0$ ($P < 0$) means that P is positive (negative) definite. For a set $\{A_1, A_2, \ldots, A_N\}$ of matrices, we use $\text{diag}\{A_1, A_2, \ldots, A_N\}$ to denote the block diagonal matrix with the A_i’s along the diagonal, and the matrix $[A_1^T \ A_2^T \ \cdots \ A_N^T]^T$ is denoted by $\text{col}(A_1, A_2, \ldots, A_N)$. The Kronecker product of the matrices M_1 and M_2 is denoted by $M_1 \otimes M_2$. For a linear map $A : \mathcal{X} \rightarrow \mathcal{Y}$, ker $A := \{x \in \mathcal{X} | Ax = 0\}$ and im $A := \{Ax | x \in \mathcal{X}\}$ will denote the kernel and image of A, respectively. For a real inner product space \mathcal{Z}, if \mathcal{Y} is a subspace of \mathcal{Z}, then \mathcal{Y}^\perp will denote the orthogonal complement of \mathcal{Y}. For a signal $x(t) \in \mathbb{R}^n$, its L_2 norm is defined as $\|x\|_2 = \sup_{t \geq 0} \sqrt{\|x(t)\|^2}$, where $\|x(t)\|$ denotes the Euclidean norm of $x(t)$, i.e., $\|x(t)\| = \sqrt{x^T(t)x(t)}$.

In this paper, a weighted directed graph is denoted by $\mathcal{G} = (\mathcal{N}, \mathcal{E}, \mathcal{A})$, where $\mathcal{N} = \{1, 2, \ldots, N\}$ is a finite nonempty set of nodes, $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ is an edge set of ordered pairs of nodes, and $\mathcal{A} = \{a_{ij} \} \in \mathbb{R}^{N \times N}$ denotes the adjacency matrix. The (i, j)-th entry a_{ij} is the weight associated with the edge (i, j). We have $a_{ij} \neq 0$ if and only if $(i, j) \in \mathcal{E}$. Otherwise $a_{ij} = 0$. An edge $(i, j) \in \mathcal{E}$ designates that the information flows from node i to node j. A graph is said to be undirected if it has the property that $(i, j) \in \mathcal{E}$ implies $(j, i) \in \mathcal{E}$ for all $i, j \in \mathcal{N}$. We will assume that the graph is simple, i.e., $a_{ii} = 0$ for all $i \in \mathcal{N}$. For an edge (i, j), node i is called the parent node, node j the child node and j is a neighbor of i. A directed path from node i_1 to i_l is a sequence of edges (i_k, i_{k+1}), $k = 1, 2, \ldots, l-1$ in the graph. A directed graph \mathcal{G} is strongly connected if between any pair of distinct nodes i and j in \mathcal{G}, there exists a directed path from i to j, $i, j \in \mathcal{N}$.

The Laplacian $\mathcal{L} = [l_{ij}] \in \mathbb{R}^{N \times N}$ of \mathcal{G} is defined as $\mathcal{L} := \mathcal{A} - \mathcal{D}$, where the i-th diagonal entry of the diagonal matrix \mathcal{D} is given by $d_i = \sum_{j=1}^{N} a_{ij}$. By construction, \mathcal{L} has a zero eigenvalue with a corresponding eigenvector 1_N (i.e., $\mathcal{L}1_N = 0_N$), and if the graph is strongly connected, all the other eigenvalues lie in the open right-half complex plane.

For strongly connected graphs \mathcal{G}, we review the following lemma.

Lemma 1. [20], [21], [22] Assume \mathcal{G} is a strongly connected directed graph. Then there exists a unique positive row vector $r = [r_1, \ldots, r_N]$ such that $r \mathcal{L} = 0$ and $r 1_N = N$. Define $\mathcal{K} := \text{diag}\{r_1, \ldots, r_N\}$. Then $\mathcal{L} \mathcal{K} := \mathcal{R} \mathcal{L} + \mathcal{L}^T \mathcal{R}$ is positive semidefinite, $\mathcal{L} \mathcal{K} 1_N = 0$ and $\mathcal{L} \mathcal{K} 1_N = 0$.

We note that $\mathcal{R} \mathcal{L}$ is the Laplacian of the balanced digraph obtained by adjusting the weights in the original graph. The matrix \mathcal{L} is the Laplacian of the undirected graph obtained by taking the union of the edges and their reversed edges in this balanced digraph. This undirected graph is called the mirror of this balanced graph [20].

B. Problem formulation

In this paper, we consider a continuous-time LTI system subject to actuator faults and disturbances represented by

$$\begin{cases}
 x = Ax + Bu + Ff + Ed \\
 y = Cx
\end{cases}$$

where $x \in \mathbb{R}^n$ is the state, $u \in \mathbb{R}^r$ is the input, $f \in \mathbb{R}^q$ is the fault, $d \in \mathbb{R}^l$ is the disturbance, and $y \in \mathbb{R}^m$ is the measurement output. $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times r}, F \in \mathbb{R}^{n \times q}, E \in \mathbb{R}^{n \times l}, C \in \mathbb{R}^{m \times n}$ are known constant matrices with appropriate dimensions. We assume that d is unknown but bounded, and that $\|d\|_\infty$ is a known constant. We partition the output y as $y = \text{col}(y_1, \ldots, y_N)$, where $y_i \in \mathbb{R}^{m_i}$ and $\sum_{i=1}^{N} m_i = m$. Accordingly, $C = \text{col}(C_1, \ldots, C_N)$ with $C_i \in \mathbb{R}^{m_i \times n}$. Here, the portion $y_i = C_i x \in \mathbb{R}^{m_i}$ is assumed to be the only information that can be acquired by node i in the DFDO.

In this paper, a standing assumption will be that the communication graph is a strongly connected directed graph. We will also assume that the pair (C, A) is observable. However, (C, A) is not necessarily observable or detectable.

We will design a DFDO for the system given by (1) with the given communication network. The DFDO will consist of N local fault detection observers, and the local fault detection observer at node i has the following dynamics

$$\begin{cases}
 \dot{x}_i = A_1 x_i + L_1 y_i - C_1 \hat{x}_i + Bu + Ff + Ed \\
 y_i = C_1 x_i
\end{cases}$$

where $\hat{x}_i \in \mathbb{R}^n$ is the state of the local observer at node i, $h_i \in \mathbb{R}^q$ is the residual of the local fault detection observer at node i, a_{ij} is the (i, j)-th entry of the adjacency matrix \mathcal{A} of the given network, r_i is defined as in Lemma 1, $y_1 \in \mathbb{R}^q$ is a coupling gain to be designed, and $L_1 \in \mathbb{R}^{q \times m_i}$ and $M_1 \in \mathbb{R}^{m_i \times n}$ are gain matrices to be designed.

To analyze and synthesize observer (2), we define the local estimation error of the i-th observer as

$$e_i := \hat{x}_i - x_i.$$
and R is as defined in Lemma 1. It is noted that \tilde{d} is bounded since d is bounded.

Here, we will discuss how to design gain matrices for the DFDO (2) so that error system (5) is internally stable while attenuating the effect of the extended disturbance signal on the residual. More specifically, we want to design a DFDO such that the following specifications hold:

(i) The error system (5) is internally stable, i.e., it is asymptotically stable if the extended disturbance vector \tilde{d} and the fault f are zero.

(ii) In fault-free condition, the error system (5) satisfies a given L_∞ performance level $\beta_i > 0$, $i \in N$, i.e., for all $t \geq 0$

$$\|h_i(t)\| \leq \beta_i \sqrt{V(0)e^{-\alpha t} + N\|d\|_2^2} \tag{6}$$

where $V(0) = \epsilon(0)^T P e(0), P > 0$ is a positive definite matrix to be specified, $\alpha > 0$ is a given positive scalar and N is the number of nodes.

Since (C_i, A) is not necessarily observable or detectable, L_i cannot be designed using any classical method directly. We use an orthogonal transformation that yields an observability decomposition for the pair (C_i, A). For $i \in N$, let T_i be an orthogonal matrix, i.e., a square matrix such that $T_i^T T_i = I$, such that the matrices A and C_i are transformed by the state space transformation T_i into the form

$$T_i^T A T_i = \begin{bmatrix} A_{io} & 0 \\ A_{ir} & A_{ir} \end{bmatrix}, \quad C_i T_i = \begin{bmatrix} C_{i0} \\ 0 \end{bmatrix}, \quad T_i^T E = \begin{bmatrix} E_{io} \\ E_{i0} \end{bmatrix} \tag{7}$$

where $C_{i0} \in \mathbb{R}^{n \times v_i}, A_{io} \in \mathbb{R}^{s \times v_i}, A_{ir} \in \mathbb{R}^{(n-v_i) \times v_i}, A_{ir} \in \mathbb{R}^{(n-v_i) \times (n-v_i)}$, and $n - v_i$ is the dimension of the unobservable subspace of the pair (C_i, A). Clearly, by construction, the pair (C_{i0}, A_{io}) is observable. In addition, if we partition $T_i = \begin{bmatrix} T_{i1} & T_{i2} \end{bmatrix}$, where T_{i1} consists of the first v_i columns of T_i, then the unobservable subspace is given by im $T_{i2} = \ker O_i$, where $O_i = \text{col}(C_i, C_i A, \cdots, C_i A^{n-1})$. Note that im $T_{i1} = (\ker O_i)^\perp$.

III. MAIN RESULTS

A. Distributed fault detection observer design

In this part, we study the DFDO design. Before presenting the main design procedure, we state the following lemmas based on Lemma 1. Our first lemma is as follows:

Lemma 2 [23]. For a strongly connected directed graph G, zero is a simple eigenvalue of $\hat{L} = R \hat{L} + \hat{L}^T R$ introduced in Lemma 1. Furthermore, its eigenvalues can be ordered as $\lambda_1 = 0 < \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_N$. Furthermore, there exists an orthogonal matrix $U = \begin{bmatrix} I_N & U_2 \end{bmatrix}$, where $U_2 \in \mathbb{R}^{N \times (N-1)}$, such that $U^T (R \hat{L} + \hat{L}^T R) U = \text{diag} \{0, \lambda_2, \cdots, \lambda_N\}$. Our second lemma was proven in [24]. The statement of the lemma is as follows:

Lemma 3. Let \hat{L} be the Laplacian matrix associated with the strongly connected directed graph G. For all $g_i > 0$, $i \in N$, there exists $\epsilon > 0$ such that

$$T^T (\hat{L} \otimes L_i) T + G > \epsilon I_{NN} \tag{8}$$

where $T = \text{diag} \{T_1, \cdots, T_N\}$, \hat{L} is defined as in Lemma 1, $G = \text{diag} \{G_1, \cdots, G_N\}$, and $G_i = \begin{bmatrix} g_i I_{b_i} & 0 \\ 0 & 0_{(n-v_i)} \end{bmatrix}$, $i \in N$.

The following theorem now deals with the existence of a DFDO of the form (2) that satisfies (i) and (ii). A condition for its existence is expressed in terms of solvability of an LMI. Solutions to the LMIs yield required gain matrices. Let $r_i > 0$, $i \in N$, and $\epsilon > 0$ be such that (8) holds. Finally, let $\gamma \in \mathbb{R}$. We have the following:

Theorem 4. Given $\alpha > 0$ and $\beta_i > 0$, there exist gain matrices L_i and M_i, $i \in N$, such that the DFDO (2) satisfies the specifications (i) and (ii) if there exist a positive scalar $\gamma > 0$ and positive definite matrices $P_{10} \in \mathbb{R}^{v_i \times v_i}, P_{10} > 0, P_{10} \in \mathbb{R}^{(n-v_i) \times (n-v_i)}, P_{10} > 0$, and a matrix $W_i \in \mathbb{R}^{v_i \times p_i}$ such that

$$\begin{bmatrix} \Psi_{11i} & \Psi_{12i} \\ \Psi_{21i} & \Psi_{22i} \end{bmatrix} < 0, \quad \forall i \in N \tag{9}$$

$$C_{i0}^T C_{io} - \beta_i^2 P_{i0} < 0 \tag{10}$$

where

$$\Psi_{11i} = P_{10} A_{io}^T + A_{io} P_{10} - W_i C_i - C_i^T T_i^T + \alpha P_{10} + \gamma g_i I_{v_i}$$

$$\Psi_{12i} = A_{io}^T P_{10}, \quad \Psi_{21i} = \text{Sym}(P_{10} A_{io}), \quad \Psi_{22i} = P_{10} W_i$$

$$\Psi_{33i} = -\alpha I_i, \quad \text{and} \quad W_i, E_{io} \text{ are defined in (7). In that case, the gain matrices in the distributed observer (2) can be taken as} \quad L_i := T_i \begin{bmatrix} L_{i0} \\ 0 \end{bmatrix}, \quad M_i := T_i \begin{bmatrix} \beta_i^{-1} & 0 \\ 0 & P_{10}^{-1} \end{bmatrix} T_i^T \tag{11}$$

where $L_{i0} = P_{10}^{-1} W_i$, $i \in N$.

Proof. Choose a candidate Lyapunov function for the error system (5)

$$V(e_1, \cdots, e_N) := \sum_{i=1}^{N} e_i^T P_i e_i \tag{12}$$

where $P_i := T_i \begin{bmatrix} P_{i0} & 0 \\ 0 & P_{10} \end{bmatrix} T_i^T$. Clearly then $P_i > 0$.

The time-derivative of V is

$$\dot{V}(e) = e^T (P A + \lambda^T P) e + e^T P \dot{E}_d + \alpha T^T \dot{E}_d e - \gamma e^T (M (R \hat{L} \otimes I) + (\hat{L}^T R \otimes I) M^T) e \tag{13}$$

where $P = \text{diag} \{P_1, \cdots, P_N\}$. Since the matrix M_i in (11) is chosen as $M_i = P_{10}^{-1}$, we have $M = P^{-1}$. Hence, the time-derivative of V becomes

$$\dot{V}(e) = e^T (P A + \lambda^T P - \gamma \hat{L} \otimes I) e + e^T P \dot{E}_d + \alpha T^T \dot{E}_d e \tag{14}$$

where, as before, $\hat{L} = R \hat{L} + \hat{L}^T R$.

On the other hand, from (9) and (8) in Lemma 3, we obtain

$$T^T \begin{bmatrix} \text{diag} \{B_1, \cdots, B_N\} - T^T \gamma (\hat{L} \otimes I) T & T^T P \dot{E} \\ \dot{E}^T P T & -\alpha I_{NN} \end{bmatrix} < 0, \tag{15}$$
where
\[Q_i = \begin{bmatrix} P_i \Phi_i + A_i^T P_i A_i + 2\alpha P_i \end{bmatrix} \], \quad i \in \mathcal{N},
\]
with \(\Phi_i := P_i \Phi_i + A_i^T P_i A_i - \gamma_i \Phi_i + \alpha P_i \).

By taking \(L_i = P_i^{-1} W_i \) and pre- and post- multiplying the inequality (15) with \(\text{diag} \{ T, L_i \} \) and its transpose, we get
\[
\begin{bmatrix} P \Lambda + A^T P - \gamma \hat{\Theta} \otimes I_n & P \hat{E} \\ E^T P & -\alpha L_i \end{bmatrix} < 0,
\]
which implies that
\[
V(e) \leq -\alpha V(e) + \alpha d^T (t) \tilde{d}(t) \tag{17}
\]
which implies that
\[
V(e(t)) \leq V(0)e^{-\alpha t} + \alpha \| d \|^2 \int_0^t e^{-\alpha (t-\tau)} d\tau \\
\leq V(0)e^{-\alpha t} + (1 - e^{-\alpha t})N \| d \|^2 \tag{18}
\]
where \(V(0) = e^T(0) Pe(0) \).

From (10), we have
\[
C_i^T C_i - \beta_i^2 P_i < 0
\]
which implies that
\[
\| h_i(t) \|^2 \leq \beta_i^2 e^T(t) P_i e(t) \\
\leq \beta_i^2 e^T(t) P(t) \\
\leq \beta_i^2 (V(0)e^{-\alpha t} + N \| d \|^2) \tag{20}
\]
That is, \(L_i \) performance index (6) is satisfied. Therefore, conditions (i) and (ii) are both satisfied.

B. Distributed fault detection scheme

For the residual evaluation, one of the commonly used approaches is the so-called threshold method [2]. In this paper, we adopt the following logical relationship for fault detection
\[
H_i(t) \leq H_{th}(t), \quad \forall i \in \mathcal{N} \quad \Rightarrow \text{fault free} \\
H_i(t) > H_{th}(t), \quad \exists i \in \mathcal{N} \quad \Rightarrow \text{fault occurs} \tag{21}
\]
where the residual evaluation function at each node is defined as the 2-norm of the vector \(h_i \), namely \(H_i(t) = \| h_i(t) \| \). Different from the widely-used constant threshold, a time-varying threshold is obtained by \(L_i \) analysis. Therefore we adopt the following time-varying threshold
\[
H_{th}(t) = \beta_i \sqrt{\lambda_{\max} e^{-\alpha t} + N \| d \|^2}
\]
where \(\bar{e}_0 \in \mathbb{R} \) denotes the upper bound of \(\| e(0) \| \), \(\lambda_{\max} \) is the maximum eigenvalue of \(P \in \mathbb{R}^{n_x \times n_x} \), \(P > 0 \) which is obtained by Theorem 4.

Based on the previous lemmas and theorem we have the following result:
Let \(\gamma > 0 \). We assume that \((C, A) \) is observable and \(\mathcal{F} \) is a strongly connected directed graph, then a DFDO (2) that detects faults and attenuates the effect of the disturbance is designed using the following algorithm.

Algorithm 1 Distributed fault detection

1. For each \(i \in \mathcal{N} \), choose an orthogonal matrix \(T_i \) such that
\[
T_i^T A_i T_i = \begin{bmatrix} A_{io} & 0 \\ A_{ir} & A_{ia} \end{bmatrix}, C_i T_i = \begin{bmatrix} C_{io} & 0 \end{bmatrix}, T_i^T E = \begin{bmatrix} E_{io} \end{bmatrix}
\]
with \((C_{io}, A_{io}) \) observable.
2. Compute the positive row vector \(r = [r_1, \ldots, r_N] \) such that \(r \mathcal{L} = 0 \) and \(r \mathcal{I}_N = N \).
3. Solve the LMI’s (9) and (10) for all \(i \in \mathcal{N} \) and get \(\gamma_i \).
4. Solve the LMI’s (9) and (10) for all \(i \in \mathcal{N} \) and get \(\gamma_i \).
5. Define
\[
L_i := T_i \begin{bmatrix} P_i^{-1} W_i \\ 0 \end{bmatrix}, M_i := T_i \begin{bmatrix} P_i^{-1} W_i \\ 0 \end{bmatrix} T_i^T, \quad i \in \mathcal{N}
\]
6. Calculate the local residual signal \(h_i \) at each node \(i \) using local fault detection observer (2).
7. Calculate the local time-varying threshold \(H_{th}(t) \).
8. Make the fault detection decision by comparing the residual evaluation function \(H_i(t) \) with time-varying threshold \(H_{th}(t) \) at each node \(i \).

Remark 5:
In the special case that the communication graph among the observers is a connected undirected graph, we have that \(r = \mathcal{I}_N \) is the unique positive row vector such that \(r \mathcal{L} = 0 \) and \(r \mathcal{I}_N = N \). In the design procedure of Algorithm 1, we can then take \(r_i = 1 \) for all \(i \in \mathcal{N} \).

IV. Simulation Example

In this section, we will use a numerical example borrowed from [25] to illustrate the effectiveness of our approach.
Consider a linear system (1) with coefficient matrices given by
\[
A = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & -2 & -1 & -1 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ -8 & 1 & -1 & -1 & -2 \\ 4 & -0.5 & 0.5 & 0 & -4 \end{bmatrix}, \quad B = F = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},
\]
\[
C = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix}, \quad E = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
\]
The communication network is given by the strongly connected digraph in Fig. 2. The Laplacian of this graph
Fig. 2. The communication graph among nodes is given by
\[
L = \begin{bmatrix}
2 & -1 & 0 & -1 \\
0 & 1 & -1 & 0 \\
-1 & -1 & 2 & 0 \\
-1 & 0 & 0 & 1
\end{bmatrix}.
\]

It can be seen that none of the local systems \((C_i, A)\) is observable, but \((C, A)\) is an observable pair. We will apply the conceptual Algorithm 1 to design a distributed observer. The normalized positive left eigenvector of the Laplacian is computed to be \(r = [0.8 \quad 1.6 \quad 0.8 \quad 0.8]\).

We choose \(\alpha = 8\), \(\beta_1 = 0.0497\), \(\beta_2 = 0.0346\), \(\beta_3 = 0.0387\) and \(\beta_4 = 0.0648\). Following Algorithm 1, a coupling gain is computed to be \(\gamma = 0.6087\). The local observer gain matrices are computed as:

\[
L_1 = \begin{bmatrix}
-6.3380 & 3.7506 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0.6528 & 5.6815 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},
L_2 = \begin{bmatrix}
312.5684 & -736.9605 & -900.7698 & 808.9113 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
L_3 = \begin{bmatrix}
0 \\
0 \\
2.0023 \\
0
\end{bmatrix},
L_4 = \begin{bmatrix}
71.7864 & -0.0000 \\
-670.3341 & 0.0000 \\
-25.2502 & 0.0000 \\
-632.6460 & 0.0000 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
M_1 = \begin{bmatrix}
0.0002 & 0 & 0 & -0.0001 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-0.0001 & 0 & 0 & 0.0003 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix},
M_2 = \begin{bmatrix}
0.1900 & -0.1974 & -0.5356 & 0.2344 & -0.4143 & 0.1628 \\
-0.1974 & 0.7994 & 0.6001 & -1.0203 & 0.7559 & -0.2225 \\
-0.5356 & 0.6001 & 1.5137 & -0.7218 & 1.1901 & -0.4631 \\
0.2344 & -1.0203 & -0.7218 & 1.4085 & -0.8829 & 0.2714 \\
-0.4143 & 0.7559 & 1.1901 & -0.8829 & 1.1172 & -0.3836 \\
0.1628 & -0.2225 & -0.4631 & 0.2714 & -0.3836 & 0.1445
\end{bmatrix},
M_3 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.0002 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix},
M_4 = \begin{bmatrix}
0.0502 & -0.0529 & -0.0245 & -0.0264 & -0.2237 & 0.0635 \\
-0.0529 & 0.6743 & 0.0204 & -0.7865 & 0.5335 & -0.1191 \\
-0.0245 & 0.0204 & 0.0121 & 0.0191 & 0.1062 & -0.0305 \\
-0.0264 & -0.7865 & 0.0191 & 1.1171 & -0.2568 & 0.0334 \\
-0.2237 & 0.5335 & 0.1062 & -0.2568 & 1.1523 & -0.3097 \\
0.0635 & -0.1191 & -0.0305 & 0.0334 & -0.3097 & 0.0852
\end{bmatrix}.
\]

For our simulation, the disturbance is chosen as random noise with bound \(\|d\|_\infty = 0.1\). In addition, we take the following actuator fault:
\[
f(t) = \begin{cases}
0 & 0 \leq t < 5 \\
5 & 5 \leq t \leq 10
\end{cases}
\] (22)
where the time units are seconds.
In the simulation, the initial state of the observed system is taken as \(x(0) = \begin{bmatrix} 1 & 3 & -2 & -3 & -1 & 2 \end{bmatrix}^T \). For each local fault detection observer the initial state is taken to be zero.

The state components and their estimates are depicted in Fig. 3. It can be seen that all estimates converge to the actual state components before the fault occurring. Each local fault detection observer does not track the real state when the actuator has a fault. Figs. 4-7 show the residual evaluation functions and their time-varying thresholds associated with each local fault detection observer. It can be seen that the residual evaluation functions at nodes 1 and 3 exceed their thresholds when the fault occurs.

V. CONCLUSIONS

In this paper, we have presented a distributed observer-based fault detection scheme for LTI systems with a bounded process disturbance. A network of local fault detection observers are built at each measurement node. The information among the local fault detection observers is exchanged by a known strongly connected directed graph. The local fault detection observer at each node is designed to detect the actuator fault of the monitored system. By using \(L_\infty \) analysis, a bank of LMI’s is presented to calculate the gain matrices and residual thresholds in our DFDO. Finally, we have presented a simple algorithm to design a DFDO that achieves fault detection. In future research, we plan to focus on distributed fault isolation and accommodation.

REFERENCES

