Th17 cells in primary Sjogren's syndrome

Verstappen, Gwenny M.; Corneth, Odilia B. J.; Bootsma, Hendrika; Kroese, Frans G. M.

Published in:
Journal of Autoimmunity

DOI:
10.1016/j.jaut.2017.11.003

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
https://doi.org/10.1016/j.jaut.2017.11.003

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-06-2019
Th17 cells in primary Sjögren’s syndrome: Pathogenicity and plasticity

Gwenny M. Verstappen a, *, 1, Odilia B.J. Corneth b, 1, Hendrika Bootsma a, Frans G.M. Kroese a

a Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
b Department of Pulmonary Medicine, Erasmus Medical Center, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands

ARTICLE INFO

Article history:
Received 13 November 2017
Accepted 14 November 2017
Available online 27 November 2017

Keywords:
Sjögren’s syndrome
Th17 cells
IL-17
Plasticity
Autoimmunity

ABSTRACT

Th17 cells play an important physiological role at mucosal barriers, and are involved in inflammatory responses to pathogens. Th17 cells and their signature cytokine IL-17 are also present in salivary gland lesions of primary Sjögren’s syndrome (pSS) patients and can be elevated in their peripheral blood. In pSS patients, clear correlations between increased Th17 cell activity and symptoms of the disease have not been found, but Th17 cells may contribute to disease progression, for example by supporting autoreactive B cell responses. In mouse models of pSS, Th17 cells play an important role in pathogenesis, particularly at disease onset, when there is a disturbed balance between T effector and T regulatory cells. Studying the pathogenicity of Th17 cells in humans is complicated due to the plasticity of this cell subset, allowing them to obtain different effector functions depending on the local environment. Th17 cells can develop towards Th17.1 cells, producing both IL-17 and IFN-γ, or even towards Th1-like cells producing IFN-γ in the absence of IL-17. These effector subsets may be more pathogenic than bona fide Th17 cells. Co-expression of IFN-γ by Th17 cells has been shown to promote chronic inflammation in several autoimmune diseases and may also contribute to pSS pathogenesis. In line with the noticeable role of IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 receptor can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 inhibition) can prevent or ameliorate disease in these models. Th
1. Introduction

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, primarily affecting the salivary and lacrimal glands. Oral and ocular dryness, fatigue, and pain are predominant symptoms of pSS. The disease is clinically heterogeneous and many extra-glandular organs can be involved during the course of the disease [1]. The pathophysiology of pSS is multi-faceted and not completely understood. Both environmental and genetic factors are likely involved in disease initiation, and the few gene polymorphisms that are associated with pSS are related to components of both innate and adaptive immune systems [2]. No polymorphisms in genes encoding salivary or lacrimal components have been identified. Involvement of the adaptive immune system is evident in the affected exocrine glands of pSS patients, where main histopathological findings include periductal focial infiltration of mononuclear cells, largely consisting of CD4+ T cells and B cells [3]. These periductal infiltrates can be organized into ectopic lymphoid structures with segregated T and B cell areas. In approximately 25% of the patients, these structures contain germinal centers, which promote local expansion of (auto)antigen-specific (memory) B cells [4,5]. The occurrence of ectopic germinal centers, together with hypergammaglobulinemia and presence of autoantibodies underlines the important role of B cell hyperactivity in pSS pathogenesis [6]. It is, however, important to note that CD4+ T cells predominate the periductal infiltrates in patients with mild lesions [3]. Growing evidence suggests that the crosstalk between CD4+ T cells and B cells forms a crucial step in pSS pathogenesis and a suitable target for treatment [7,8].

Different CD4+ T cell subsets seem to contribute to pSS pathogenesis, including T helper 1 (Th1) cells, follicular helper T (Tfh) cells and T helper 17 (Th17) cells, although the relative importance of each subset remains a matter of debate. After the first discoveries of a link between Th17 cells and autoimmunity, several human and murine studies investigated the role of Th17 cells in pSS pathogenesis, as summarized in Table 1. In 2008, the first studies showed that IL-17, the signature cytokine of Th17 cells, is present within lymphocytic infiltrates of minor salivary gland tissue from pSS patients [9,10]. Presence of IL-17 was predominantly observed in CD4+ T cell-rich areas of the periductal infiltrates [10]. Also IL-17 mRNA levels were elevated in minor salivary glands of pSS patients, compared with non-SS sicca patients [11]. Subsequent studies focused on the presence of Th17 cells within the glands. However, there is not a single marker that identifies Th17 cells exclusively. In current literature, Th17 cells have been identified either by expression profiles of their signature cytokines IL-17 and IL-22, by the expression of chemokine receptors (CCR6, CCR4, CD161, podoplanin) and/or by means of transcription factors (RORγ, STAT3). To complicate matters further, Th17 cells can acquire functional characteristics of regulatory T (Treg) cells, Th1 cells and Tfh cells and even can downregulate IL-17 production, illustrating the plasticity of this cell subset [12].

In this review we will discuss current knowledge of Th17 cells in pSS pathogenesis and mouse models of pSS, including their phenotype, localization, function and correlation with clinical features of the disease. We will focus on the relation between pathogenicity and plasticity of Th17 cells and postulate that plasticity towards Th1-like cells in pSS may enhance pathogenicity of Th17 cells at the main target sites of the disease, i.e. salivary and lacrimal glands.

2. Role of Th17 cells in pSS

Th17 cells play an important physiological role at mucosal sites of healthy individuals. The main effector cytokines of Th17 cells are IL-17 and IL-22. These cytokines support the epithelial barrier integrity by stimulation of tight junction protein formation [13], and IL-22 has an important role in epithelial cell survival and proliferation [14]. Th17 cells also act as first defense against microbes by stimulating the production of antimicrobial peptides and chemokines to attract leukocytes when the epithelial barrier is breached [15]. Initially, activation and polarization of Th17 cells may be initiated by dendritic cells in lymph nodes draining the salivary and lacrimal glands, whereas in later phases of the disease this may also happen locally in the inflamed glandular tissue. These dendritic cells secrete Th17 cell polarizing cytokines, including TGF-β and IL-23 (Fig. 1). Ductal epithelial cells of the glands may also produce cytokines important for Th17 polarization, such as IL-1β [16]. Activated Th17 cells promote inflammation by stimulating release of pro-inflammatory cytokines in the inflamed exocrine glands, including IL-6 and TNF, by virtue of IL-17 and IL-22 secretion and its binding to their receptors expressed on stromal and epithelial cells [17] (Fig. 1). Expression of IL-17R was observed in a neoplastic parotid gland cell line [10], and is likely also expressed by ducetal epithelial cells in pSS patients. IL-17 was also shown to induce matrix metalloproteinase 1 (MMP-1) and MMP-3 release from synovial fibroblasts in rheumatoid arthritis, which may cause tissue destruction [18]. In salivary gland tissue of pSS patients, particularly MMP-9 expression is increased and is associated with acinar damage [19]. Interleukin-17 also promotes MMP-9 production by epithelial cells [20].

In addition to their role in tissue inflammation, Th17 cells also may contribute more specifically to autoimmune processes by the following mechanisms (i) supporting isotype class switching upon B cell receptor stimulation, both via IL-17 and IL-21 production [21,22], (ii) regulating glycosylation of autoreactive antibodies [23], (iii) affecting trafficking of B cells within the GC resulting in disturbed selection of B cells and formation of autoantibodies [24] and (iv) supporting formation of ectopic lymphoid tissue and ectopic germinal centers (GCs) [24–26] (Fig. 1). Whether these functions of Th17 cells are involved in pSS pathogenesis is currently unknown. There is some support for a role of IL-22 in ectopic lymphoid tissue formation in pSS. Administration of luciferase-encoding replication-defective adenovirus (Ad5) through intraductal cannulation into the salivary glands of C57BL/6 mice leads to lymphocytic infiltration of these glands, and ectopic lymphoid tissue formation. Knockout or blockade of IL-22 in this model impaired ectopic lymphoid tissue formation [27]. This was probably caused by reduced IL-22-mediated CXCL12 and CXCL13 production by stromal cells in these IL-22 deficient animals. In summary, numerous potential effector functions of Th17 cells may contribute to pathogenesis in autoimmune conditions in general, and pSS in particular [28].

3. Th17 cells and glandular inflammation in pSS

Interleukin-17 protein and mRNA, as well as cells expressing the Th17-associated transcription factor RORγt, are present in minor
Table 1
Evidence for the involvement of Th17 cells in pSS pathogenesis.

<table>
<thead>
<tr>
<th>Reference Publication</th>
<th>Study population</th>
<th>Key observations related to Th17 cells</th>
</tr>
</thead>
</table>
| Human
| [8] Verstappen et al., 2017 | pSS patients before and after abatacept treatment | Patients with pSS have elevated frequencies of circulating Th17 cells (CCR6+CCR4+), compared with controls. These cells are not affected by abatacept treatment. |
| [9] Nguyen et al., 2008 | pSS patients | Protein expression of IL-17 and IL-23 in lymphocytic foci in minor salivary glands of pSS patients. IL-17 levels in serum and saliva of pSS patients comparable to non-SS sicca patients. |
| [10] Sakai et al., 2008 | pSS patients | Protein expression of IL-17 in minor salivary glands was predominantly found in CD4+ T cell areas, but also co-localized to some extent with CD8+ T cells and ductal epithelial cells. |
| [11] Katsiflis et al., 2009 | pSS patients | Local IL-17 protein and mRNA levels, together with IL-6 and IL-23 mRNA, increase with progression of lesion severity in minor salivary glands of pSS patients. Plasma IL-17 levels were significantly higher in pSS patients, compared with controls. |
| [29] Ciccia et al., 2014 | pSS patients before and after RTX treatment | Salivary gland expression of IL-17, but not of IL-23p19 and p-STAT3, decreased by rituximab treatment. |
| [30] Liu et al., 2017 | pSS patients | IL-17A conjunctival mRNA and protein expression in tears higher in pSS, compared with non-SS group with dry eye disease. |
| [33] Ciccia et al., 2012 | pSS patients | IL-22 is present in minor salivary gland tissue of pSS patients and Th17 cells are a major source of this cytokine. |
| [44] Blokland et al., 2017 | pSS patients | Percentages of peripheral IL-17-producing CD4+ T cells were similar between pSS patients and controls. CCR9+ Th-cells produced IL-17 upon antigen and IL-7 stimulation. |
| [54] Verstappen et al., 2017 | pSS patients before and after RTX treatment | Frequency of IL-17-producing CD4+ T cells in BMMCs from pSS patients at baseline was similar to controls, but these cells significantly decreased by rituximab treatment, together with serum levels of IL-17. |
| [55] Bikker et al., 2012 | pSS patients | Higher frequency of IL-17-producing CD4+ T cells in BMMCs from pSS patients, compared with controls. |
| [56] Kwok et al., 2012 | pSS patients | Higher levels of Th17-associated cytokines (IL-17, GM-CSF, IL-1β) were significantly elevated in pSS patients, compared with controls. |
| [57] Pollard et al., 2013 | pSS patients | Several Th17-related cytokines (IL-17, GM-CSF, IL-1β) were significantly elevated in pSS patients, compared with controls. |
| [58] Reiksten et al., 2009 | pSS patients | Higher levels of Th17-associated cytokines in pSS patients with germinal center (GC) formation in their salivary glands, compared with GC-negative patients. |
| [62] Alunno et al., 2013 | pSS patients | IL-17-producing CD4+ CD8+ T cells are expanded in BMMCs from pSS patients, are also present in minor salivary glands and are resistant to in vitro dexamethasone suppression. |
| [63] Fei et al., 2014 | pSS patients | Glandular IL-17 protein expression increased with progression of lesion severity. CD4+ IL-17+ cells in peripheral blood of pSS patients and serum IL-17 were significantly increased, compared with controls. |

Mouse
[9] Nguyen et al., 2008	C57BL/6.NOD-Aec1Aec2 mice	IL-17A, IL-17B and IL-23 expression in salivary glands when infiltrates occur, Tbet is increased in the pre-disease phase.
[68] Voigt et al., 2016	C57BL/6.NOD-Aec1Aec2 x IL-17 KO mice	IL-17 deficient C57BL/6.NOD-Aec1Aec2 mice are protected against disease development.
[69] Wanchoo et al., 2017	C57BL/6.NOD-Aec1Aec2 mice	TCR repertoires of Th1 and Th17 cells in salivary gland infiltrates are restricted.
[71] Lin et al., 2015	C57BL/6j and IL-17 KO mice with ESS	Th17 cells are increased in salivary gland peptide induced disease. IL-17 deficient mice are protected, and transfer of Th17 cells in IL-17 deficient mice restores disease phenotype.
[72] Iizuka et al., 2015	RORγt Tg mice and RAG KO mice	RAG-deficient mice develop pSS phenotype upon transfer of RORγt overexpressing CD4+ T cells, but not when these cells are IL-17 deficient.
[74] Lee et al., 2012	C57BL/6.NOD-Aec1Aec2 with IL27 expression in salivary glands	IL-27 expression through rAAV2-IL27 vector injection, which induces Th1 and inhibits Th17 cells is most effective after onset of glandular disease
[81] Contreras-Ruiz et al., 2017	TSP1 KO mice with TSP1 peptide treatment	Treatment of TSP1 KO mice with TSP1 derived peptide increases Treg cells and reduces Th17 cells, and attenuates disease symptoms.
[82] Coursey et al., 2017	NOD.B10.H2b	Treg cell function is hampered and Treg cells cells start to produce IL-17 and IFN-γ in spleen and LN.
[91] Tahara et al., 2017	M3R KO and RAG KO mice	Transfer of M3R deficient splenocytes in RAG deficient mice leads to Th17.1 infiltration in salivary glands and pSS-like symptoms.
[98] Nguyen et al., 2010	C57BL/6j with IL-17A expression in salivary glands	IL-17A expression through Adenovirus 5 cannulation in salivary glands leads to pSS-like phenotype

salivary gland tissue of pSS patients, mainly in CD4+ T cell-rich areas [9–11,29,30]. IL-17 is also present in saliva and tears from pSS patients, and in tears, levels are higher compared with non-SS sicca controls [30,31]. Although it is likely that Th17 cells are the main source of IL-17 in the inflamed exocrine glands, γδ T cells, NK cells, innate lymphoid cells (ILCs) including lymphoid tissue inducer cells, and CD8+ T cells are also potent sources of IL-17 [28]. Double negative (CD4+ CD8+) T cells and CD8+ T cells that are positive for IL-17 are actually present in minor salivary glands of pSS patients, albeit in low numbers. Immunohistochemical analysis initially suggested that also mast cells were a source of IL-17 in inflamed salivary glands [29]. Recent findings show, however, that mast cells do not produce IL-17 themselves, but actively capture IL-17 by endocytosis [32]. The number of IL-17-positive cells and IL-17 mRNA levels in minor salivary gland biopsies correlate with focus score, a measure of glandular inflammation [11]. Another Th17 cell-associated cytokine that is present in salivary gland tissue of pSS patients is IL-22, which seems to co-localize with mononuclear cells and ductal epithelial cells [33]. The same study showed that, after in vitro stimulation, IL-22 is mainly co-expressed by IFN-γ or IL-17-producing CD4+ T cells isolated from minor salivary glands and only a small proportion of CD4+ T cells expressed IL-22 alone [33]. The IL-22 receptor (IL-22R) is usually expressed by non-hematopoietic cells at barrier surfaces [34]. However, only few ductal and acinar epithelial cells in the salivary glands of pSS and
non-SS sicca patients seem to express IL-22R, and aberrant protein expression of IL-22R was observed among infiltrating mononuclear cells in pSS patients [35]. The nature and function of this IL-22R expression on mononuclear cells is, however, unclear.

The developmental origin of IL-17- and IL-22-expressing T cells in salivary glands is not exactly known, and both local differentiation from naïve CD4\(^+\) T cells as well as recruitment of Th17(-like) effector cells from the peripheral blood may contribute to the local pool of IL-17- and IL-22-expressing cells (Table 2). Naïve T cells can differentiate locally into Th17 cells in the presence of antigen presenting cells (APCs) and the essential cytokines IL-6 and TGF-\(\beta\) [36]. IL-6 is present in salivary gland tissue and saliva of pSS patients and local IL-6 expression increases with a higher focus score [37]. TGF-\(\beta\) is also produced in salivary gland tissue of both healthy individuals and pSS patients [11], Th17 cell differentiation is further amplified by IL-21 and this cytokine is abundantly expressed in the glandular infiltrate of pSS patients [38,39]. In addition to IL-6 and TGF-\(\beta\), also the pro-inflammatory chemokines CXCL9 and CXCL10 may play a role in local polarization of Th17 cells. Activated CD4\(^+\) T cells may express CXCR3 and ligation of CXCR3 not only leads to upregulation of Tbet, the transcription factor driving Th1 cell differentiation, but also to ROR\(\gamma\) expression and Th17 cell formation [40]. In this context it is relevant to mention that CXCL9 and in particular CXCL10 are secreted in high quantities by ductal epithelial cells from pSS patients in response to IFN-\(\gamma\) [41] and likely also to IFN-\(\alpha\) [42].

Table 2

<table>
<thead>
<tr>
<th>Local polarization of naïve CD4(^+) T cells into Th17 phenotype</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressed by naïve/activated T cell</td>
<td>Ligand</td>
<td>Expressed by</td>
</tr>
<tr>
<td>IL-6 receptor</td>
<td>IL-6</td>
<td>APC, ductal epithelial cells</td>
</tr>
<tr>
<td>TGF(\beta) receptor</td>
<td>TGF(\beta)</td>
<td>APC</td>
</tr>
<tr>
<td>IL-21 receptor</td>
<td>IL-21</td>
<td>Th17 cells/Th17 cells</td>
</tr>
<tr>
<td>CXCR3</td>
<td>CXCL9/CXCL10</td>
<td>ductal epithelial cells (among others)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recruitment of Th17 cells to the salivary glands</th>
<th>Ligand</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR6</td>
<td>CCL20</td>
<td>salivary gland epithelial cells (low expression)</td>
<td>homing of Th17 cells to salivary glands and activation of these cells</td>
</tr>
<tr>
<td>CCR7</td>
<td>CCL19/21</td>
<td>salivary gland stromal cells (high expression)</td>
<td>homing of naïve T cells and central memory Th17 cells to salivary glands</td>
</tr>
<tr>
<td>CCR9</td>
<td>CCL25</td>
<td>inflamed salivary gland tissue (epithelial cells)</td>
<td>homing of CCR9+IL-17+ T cells to salivary glands</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance of Th17 cells in salivary glands</th>
<th>Ligand</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-23 receptor</td>
<td>IL-23</td>
<td>APC</td>
<td>expansion and maintenance of Th17 cells and production of cytokines</td>
</tr>
<tr>
<td>IL-7 receptor</td>
<td>IL-7</td>
<td>salivary gland stromal cells</td>
<td>maintenance of pathogenic Th17 cells</td>
</tr>
<tr>
<td>IL-15 receptor</td>
<td>IL-15</td>
<td>salivary gland epithelial cells</td>
<td>maintenance of pathogenic Th17 cells</td>
</tr>
</tbody>
</table>

Fig. 1. Role of Th17 cells in pSS patients. 1) Environmental factors activate epithelial cells and dendritic cells (in blue). These cells secrete pro-inflammatory cytokines and present antigens, resulting in activation of Th17 cells. 2) Th17 cells infiltrate the salivary gland and may differentiate towards Th17.1 cells or Th1 cells. Pro-inflammatory cytokines (IL-17A, IL-22, IFN-\(\gamma\)) are secreted by these cells and bind to their receptors expressed on stromal and epithelial cells. Tissue inflammation is exacerbated and more pro-inflammatory factors are secreted by epithelial cells. 3) CXCL12 and CXCL13 are expressed by stromal and epithelial cells and, together with antigen presentation by follicular dendritic cells, can induce germinal center (GC) formation in salivary glands. 4) The GC generates plasma cells producing autoantibodies en memory B cells switched to IgG, which is stimulated by IL-17 and IL-21. 5) B cells in secondary lymphoid organs and salivary glands produce IL-6, further stimulating formation of Th17 cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Besides local differentiation of naïve cells and polarization of Th1 cells, Th17 cells can also be recruited from the circulating pool of Th17 cells by chemokines that are secreted in the salivary glands. An important pathway for direct recruitment of Th17 cells to the inflamed tissue is via the CCL20/CCR6 signaling axis [43,44]. CCL20 is not only important for recruitment of Th17 cells, but also for activation of these cells, as binding of CCL20 to CCR6 induces calcium influx in Th17 cells [45]. CCL20-mRNA transcripts were, however, only detected at low levels and in few pSS patients as revealed by qPCR [46,47]. Thus, the role for CCL20 in the recruitment of Th17 cells to the salivary glands seems limited. Th17(-like) cells may, however, also be attracted by other chemokines, such as CCL25/CCR9. Recently it was shown that IL-17-producing CCR9+ T cells home in small numbers to the inflamed salivary gland under the influence of CCL25 [44]. Another signaling axis that may contribute to recruitment of both naïve and central memory (Th17) cells consists of CCR7 and its ligands CCL19 and CCL21, all of which are highly expressed in salivary gland tissue of pSS patients [48,49].

Not only pro-inflammatory cytokines that induce or amplify Th17 cell differentiation, but also cytokines that are important for homeostasis of Th17 cells may contribute to Th17-mediated pathology in inflamed tissue. IL-23 is important for expansion and maintenance of Th17 cells by STAT3 activation and is present in glandular infiltrates [9,11,28]. Production of IL-23 by macrophages is at least in part mediated by the activation of interferon regulatory factor 5 (IRF5) [50]. Interestingly, polymorphisms of the IRF5 gene locus are associated with pSS and may enhance IL-23 production [2]. IL-7 and IL-15 can also sustain pathogenic Th17 cells, which is mediated by STAT5/Akt signaling [51]. Elevated levels of IL-7 are observed in minor salivary glands of pSS patients, compared with non-SS sicca patients, and IL-7 is largely produced by stromal cells in the glands [52]. IL-15 can be produced by salivary gland epithelial cells of pSS patients in response to TLR2 stimulation in vitro [53].

Taken together, the inflamed exocrine glands in pSS constitute a microenvironment that enables local polarization and recruitment of (precursor) Th17 cells. Although their contribution to the disease is not clear yet, local Th17 cells can acquire several effector functions that are potentially pathogenic.

4. Th17 cells and systemic inflammation in pSS

In addition to glandular Th17 cell activity, also circulating Th17 cells and serum levels of IL-17 have been studied in the past decade in pSS, but with conflicting results [9,11,54–58]. Some studies report an increase in circulating Th17 cells and/or serum levels of IL-17, whereas others do not find a difference between pSS patients and healthy controls. It should be noted that different definitions of Th17 cells were used in these studies.

Recently, we found in two independent study cohorts that proportions of circulating Th17 cells, as defined by their chemokine receptor expression profile (CD4+CD45RA-FoxP3–CXCR5–CXCR3–CCR4+CCR6+), were increased in pSS patients compared to healthy controls [8,54]. Both studies included patients with moderate systemic disease activity, as measured by ESSDAI, the EULAR Sjögren’s Syndrome Disease Activity Index (median ESSDAI scores in these study cohorts: 11 and 8, respectively). Despite this increase in chemokine-receptor defined Th17 cells in these patients, proportions of circulating CD4+IL-17+ T cells were not elevated [54], consistent with a previous report [55]. The relative increase in Th17 cells, as defined by chemokine receptor expression, was not observed when comparing pSS patients with non-SS sicca patients in a diagnostic cohort that included patients clinically suspected with pSS (Verstappen & Kroese, unpublished data). In this cohort, systemic disease activity in pSS patients was low (median ESSDAI score = 4). These findings indicate that elevated levels of Th17 cells are possibly only seen in pSS patients with moderate to high systemic disease activity.

Alternative definitions of Th17 cells have been adopted to study the prevalence of Th17 cells in peripheral blood of pSS patients. For example, expression of the C-type lectin CD161, in combination with RORγt, the master transcription factor required for generation of Th17 cells and IL-17 production, has been used [59]. In pSS patients, CD4+CD161+RORγt+ T cells were increased and this increase correlated positively with anti-SSA/SSB autoantibody status and serum IgG level, but not with systemic disease activity, as measured by ESSDAI [60]. Recent findings show that, in addition to typical CCR4+CCR6+ Th17 cells, also circulating ‘Th1-like’ CCR9+CD4+ and CXCR5+CD4+ T cells from pSS patients are capable of producing IL-17 [44]. Regarding the latter Th1-like subset, a fraction of these cells appears to co-express CCR6, and thus may also be considered as a Th17 cell subset. These CD4+CXCR5+CCR6+ T cells were elevated in peripheral blood of pSS patients [61]. Lastly, circulating double negative (CD4+CD8−) T cells, which consist largely of γδ T cells, are a potential source of IL-17 in pSS patients [62]. The chemokine receptor profile of double negative T cells still needs to be defined.

Even though definitions of Th17 cells vary, these cells thus seem to be increased in peripheral blood of pSS patients. Likely, both circulating and local Th17 cells contribute to serum levels of IL-17, although, as mentioned before, also other cell types are able to produce this pivotal Th17 cell cytokine. Nearly all studies showed increased IL-17 (i.e. IL-17A) levels in serum of pSS patients. However, a correlation between serum IL-17 levels and disease activity has not been reported [9,11,57,58,63,64]. Reksten et al. showed that serum levels of IL-17 were higher in pSS patients with GCs in their minor salivary gland biopsies compared to GC-negative patients [58]. Subsequently they observed that serum IL-17 levels correlated positively with levels of anti-Ro/SSA and anti-La/SSB autoantibodies, but not with clinical features of the disease [64]. These findings, together with our observations that circulating Th17 cells are increased only in patient cohorts with moderate-to-high systemic disease activity, but not in patients with low systemic disease activity, indicate that numbers of circulating Th17 cell and levels of serum IL-17 are associated with disease severity and/or with certain stages of the disease. In line with this notion, a positive correlation between disease duration and levels of circulating Th17 cells and serum IL-17 was observed in mouse models of pSS [65].

5. Th17 cells in mouse models of pSS

Mouse models of pSS are very useful to study aspects of the disease that otherwise cannot be addressed. Although these models often only mimic part of the pathology found in pSS patients, they do give important insights in the role of individual cells or cytokines, and provide the opportunity to study disease kinetics.

The most extensively used animal model to study pSS is the C57BL/6.NOD-Aec1aec2 mouse. These mice harbor two susceptibility loci that promote a spontaneous pSS-like autoimmune phenotype, featuring salivary and lacrimal gland dysfunction leading to decreased saliva production and ocular inflammation [66]. In these mice, RORγt, IL-17 and IL-17R mRNA expression were found in the salivary (submandibular) glands [9]. Elevated IL-17 and IL-17R expression was also seen at the ocular surface [67]. Correspondingly, Th17 cells were present in the immune infiltrates in salivary and lacrimal glands of affected mice [67,68]. However, only low levels of IL-17 were found in serum of these mice [9]. Despite these low serum IL-17 levels, IL-17 seems to play an important role in pSS-like disease in this model. This is illustrated by the
observation that IL-17-deficiency in C57BL/6.NOD-Aec1Aec2 mice significantly reduces the pro-inflammatory response in the salivary glands and restores normal secretory function, particularly in female animals [68]. In addition, these mice exhibit an altered specificity of auto-antibodies compared to IL-17-sufficient C57BL/6.NOD-Aec1Aec2 mice, illustrating the role of IL-17 in promoting autoreactive B cells responses. This effect is probably mediated by affecting the numbers of both GC B cells and plasma cells [68]. These data suggest that IL-17 is particularly pathogenic at the site of inflammation. This is further supported by a model in which SS-non-susceptible C57BL/6j mice received local IL-17A gene transfer in the salivary glands, resulting in glandular inflammation, auto-antibody production and decreased saliva production [69]. In addition to pro-inflammatory roles of IL-17 in C57BL/6.NOD-Aec1Aec2 mice, a recent study also shows that T cell receptor repertoires of Th1 and Th17 cells in the salivary glands are limited compared to wild type controls, particularly in female animals [69], suggesting they may be skewed towards recognition of autoantigens.

In a second mouse model of pSS, disease is induced by immunization with autoantigenic peptides derived from salivary glands [70]. Also in these mice, Th17 cells are abundantly present in the salivary gland infiltrates and draining lymph nodes [70] and are the main IL-17 producing T cell subset [70]. In parallel, these mice have high serum levels of IL-6 and TGFβ, which are essential cytokines for Th17 differentiation. Importantly, IL-17-deficient mice immunized with salivary gland peptides are completely protected from disease development and adoptive transfer of Th17 cells (polarized in culture) to these mice restores the autoimmune phenotype [71]. Also a third mouse model, in which RORγt is overexpressed, illustrates the importance of Th17 cells in development of pSS-like disease [72]. These mice exhibit increased IL-17 production by T cells and concomitantly pSS-like features including salivary and lacrimal gland inflammation and autoantibody production [72]. Increased expression of CCR6 was found on splenic CD4+ T cells in these mice, and the ligand for CCR6 (i.e. CCL20) was abundantly expressed in the salivary glands, enabling homing of circulating Th17 cells to these glands [72].

These models not only reveal that Th17 cells are crucial cells for development of pSS-like disease, but also give important clues about their relevance at different time points of disease onset and progression. In the C57BL/6.NOD-Aec1Aec2 mice, IL-17, IL-23 and RORγt expression increase when the infiltrates arise in the salivary glands, whereas they drop again after development of full-blown disease [9]. These findings suggest that Th17 cells may play a local temporal role at early stages of the disease. However, before the function of Th17 cells becomes apparent, Th1 cells appear to be involved. Even before infiltrates are formed in the salivary glands, levels of Tbet, the transcription factor driving Th1 cell differentiation, are increased in submandibular glands, in line with the crucial role for IFNγ in the pre-clinical onset of disease in NOD mice [9,73]. This temporal balance between Th1 and Th17 cells in the glandular tissue may determine the development of the autoimmune phenotype. This is further illustrated by gene therapy of these C57BL/6.NOD-Aec1Aec2 mice with IL-27, a cytokine that promotes Th1 and inhibits Th17 development. Initiation of treatment after disease onset, i.e. at a time point when Th17 cells are thought to play a role, is more effective than treatment before disease onset, i.e. when Th1 cells are involved [74]. Also in the salivary gland peptide-immunized model, first Th1 cells are increased in the salivary glands, and later on Th17 cells predominate [71].

Taken together, there is strong evidence in mice that Th17 cells are a driving force in the pathogenesis of pSS-like disease. The pSS mouse models further indicate that Th17 cells and IL-17, are particularly involved in the early phase of disease, a finding that may be more challenging to confirm in pre-clinical disease in humans.

6. Th17/Treg imbalance in pSS

Autoimmune diseases are frequently linked to an altered Th17/Treg ratio and commitment to one of these lineages is tightly regulated by distinct signaling molecules [75]. Available evidence indicates that there is, however, no imbalance in proportions of effector Th17 cells and Treg cells in pSS patients, as both subsets are equally increased in the periphery of pSS patients with moderate systemic disease activity [8]. Furthermore, the numbers of both Th17 cells and Foxp3+ cells in minor salivary gland tissue correlate positively with focus score/grade of inflammation [11,76]. It is not known though whether the population of Foxp3+ CD4+ T cells in pSS patients is functionally normal and is able to suppress effector T cells.

Although these observations strongly argue that there is no Th17/Treg imbalance in human pSS, several mouse models suggest that an imbalance between Th17 cells and Treg cells could underlie the development of this disease (Fig. 2). This imbalance may be a result of increased IL-6 in the inflammatory environment. TGFβ in the absence of IL-6 induces Treg differentiation, but TGFβ and IL-6 together promote Th17 differentiation [77]. In C57BL/6.NOD-Aec1Aec2 mice, Treg cells are decreased compared to wild-type control mice in the lacrimal gland already at an early pre-clinical disease age, when Th17 cell numbers and IL-17A expression are increased [67]. Consistent with these findings, transient depletion of Treg cells in NOD mice led to increased salivary gland infiltrates [78]. A role for Th17/Treg imbalance in disease induction is further illustrated in mice lacking thrombospandin-1 (TSP1), an important activator of latent TGFβ in vivo [79]. These mice spontaneously develop ocular inflammation accompanied by dry eye symptoms and anti-SSA and anti-SSB antibodies [80]. Increased splenic Th17 cells and lacrimal IL-17 protein levels in these mice were accompanied by a decrease in splenic Treg cells [80]. In vivo administration of TSP1-peptide to TSP1 knockout mice induced formation of Foxp3+ Treg cells, and decreased Th17 cells, attenuating symptoms of disease [81].

In a different NOD model bearing an altered MHC region (NOD.B10.H2K mice), animals spontaneously develop ocular surface disease upon aging. In these aged mice, Foxp3+ Treg cells aberrantly co-express Tbet and RORγt and produce IFN-γ and IL-17. At the same time, aged Treg cells in NOD.B10.H2K mice exhibit lower suppressive capacity compared to Treg cells from young mice. Transfer of CD4+CD25+ Treg cells from these aged mice into T and B cell-deficient (RAG1-deficient) animals induced a similar phenotype of periductal inflammation in the lacrimal glands as transfer of CD4+CD25+ T helper cells [82]. These results confirm that Treg cells can acquire pro-inflammatory features associated with Th1 and Th17 cells.

Together, these murine models illustrate that not only the enhanced pro-inflammatory features of Th17 cells can promote disease, but that changes in Treg cells, both in number or function, may contribute to disease progression. Functional assays with human Treg cells from pSS patients could clarify whether decreased suppressive capacity or even pro-inflammatory capacity of Treg cells also plays a role in the development of disease in patients.

7. Plasticity of Th17 cells in pSS

Both in humans and mice, Th17 cells are not a "fixed" subset, but can acquire features from, or differentiate towards, other effector types, i.e. Th1 and Treg cells [83]. The transformation of typical Th17 cells towards Th17.1 cells is most intensively studied,
especially in the context of autoimmunity [84] (Fig. 2). These Th17.1 cells co-express CXCR3 and CCR6 and produce both IL-17 and IFN-γ. Plasticity of Th17 cells in humans is, however, a relatively unexplored field. In patients with Crohn’s disease, Th17.1 cells are pathogenic and promote chronic inflammation [85]. Furthermore, in patients with multiple sclerosis Th17.1 cells reacted strongly against self-antigens [86]. The factors that drive this plasticity in humans are not fully understood, but some indications may come from a murine model of experimental autoimmune encephalomyelitis. In these mice, transformation of Th17 cells to both IFN-γ single producing Th1 cells and IFNγ/IL-17 double producing Th17.1 cells was driven by high IL-7 expression [87]. Interestingly, in salivary gland tissue of pSS patients, IL-7 is abundantly present [52], and may drive the plasticity of Th17 cells to IFN-γ single or double producing Th17.1 cells. Besides plasticity of Th17 cells, plasticity of other effector T cell subsets may also contribute to the pathology seen in pSS patients. For example, it has been shown in mice with experimental autoimmune encephalomyelitis (EAE) that Th17 cells can aberrantly express IL-17, and these IL-17-producing Th17 cells could augment the formation of autoreactive B cells by stimulating ectopic germinal center formation and impairing chemotactic migration of B cells out of the germinal center [26]. Aberrant expression of IL-17 by Th17 cells may also play a role in later phases of pSS pathogenesis when germinal center containing ectopic lymphoid tissue is present.

The possible contribution of Th17 cell plasticity to pathogenicity in pSS is further illustrated by a Sjögren mouse model driven by an immune response against the M3 muscarinic acetylcholine receptor (M3R) [88]. Under physiological conditions, cholinergic stimulation of these receptors leads to an increase of saliva secretion. Immunization of M3R-deficient mice with M3R peptides induces a strong immune response that results in formation of autoantibodies directed against M3R, that block the cholinergic stimulation and lead to reduced saliva production. Such blocking autoantibodies against these receptors have also been described in human pSS patients [88,89]. Besides autoantibody formation, the M3R immunized mice exhibit an increase in IL-17A and IFNγ producing Th17.1 cells in the spleen [90]. Adoptive transfer of splenocytes from these mice into T- and B-lymphocyte deficient animals induced severe pSS-like disease with anti-M3R autoantibody formation and Th17.1 cells infiltrating the salivary glands associated with decreased saliva production [90]. Treatment of these mice with a RORγt antagonist after the transfer of splenocytes, reduced both IL-17 and IFNγ in vivo, and partially abrogated disease [91]. These data suggest that Th17 cells could co-produce IL-17 and IFNγ, or that Th17 cells might convert to Th1 cells post-transfer. Although this model is not completely equivalent to pSS pathogenesis, it does show many similarities with human disease, including inflammation specifically of the salivary and lacrimal glands, but not of the

Fig. 2. Insights on Th17 cell plasticity from pSS mouse models. In a healthy situation, there is no inflammation in the salivary glands and at the ocular surface. Treg cells control Th1 cells, Th17 cells and the small number of Th17.1 cells present in the body. However, in mice with pSS-like disease, IL-6 levels increase, shifting the balance between Treg cells and Th17 cells. Treg cells are reduced in number, lose their regulatory capacity and sometimes start producing IL-17 and IFNγ. Simultaneously, the number of Th17 cells increases, and these cells can convert to IL-17 and IFNγ producing Th17.1 cells, or to IFNγ single producing Th1-like cells. Together, these cells can promote germinal center formation, and support differentiation of B cells into class-switched plasma and memory cells.
intestines or liver, and a similar cellular composition of mononuclear infiltrates in the glands.

In summary, although the data are scarce, they indicate that plasticity of Th17 cells towards more pathogenic Th17.1 cells or Th1 cells may contribute to disease progression in pSS.

8. Effect of treatment on Th17 cells/IL-17 in pSS

Immunomodulatory treatment of pSS patients may provide important insights into the role of various cell types in pathogenesis. One of the first biological DMARDs that was clinically tested in pSS patients was the TNF-alpha inhibitor etanercept. Markers of activation on B cells and CD4 T cells were not significantly altered by etanercept treatment, in line with a lack of clinical benefit [92]. Plasma IL-17 levels were also unaffected [11]. Subsequently, several studies assessed the efficacy of B cell depletion therapy with rituximab. Although the clinical benefits are a matter of debate [93], many biological parameters are affected, including Th17 cell-related biomarkers [94]. Rituximab treatment resulted in decreased IL-17 protein expression in minor salivary gland tissue of pSS patients, despite the finding that factors that are important for maintenance of Th17 cell, viz. pSTAT3 and IL-23, were not altered [29]. Dermittic-like changes in salivary gland histopathologies of IL-17- and CXCR5-CXCR3-CCR4+ lymphocytes suggest that Th17 cells are likely not affected by B cell depletion therapy [39]. In addition to reduced IL-17 expression in the salivary glands, we found decreased frequencies of circulating IL-17+ CD4 T cells and to a smaller extent also chemokine receptor-defined Th17 cells after rituximab treatment [54]. The decrease of IL-17+ CD4+ T cells over time correlated with decreasing levels of IgG and autoantibodies, suggesting that IL-17 and autoantibody formation are somehow related. Also serum levels of IL-17 decreased in this study [54]. In a previous study, we found that serum IL-6 levels were also significantly reduced by rituximab treatment [57]. We therefore postulated that the effect of B cell depletion therapy on Th17 cells and IL-17 production is mediated by depletion of IL-6-producing B cells [54]. As mentioned before, IL-6 supports Th17 cell differentiation from naïve T cells and is important for the induction of RORγt and IL-17 [95]. In summary, rituximab affects Th17 cells locally and systemically, although the mechanism of this effect and its contribution to amelioration of disease remains to be established.

As T cell activation and crosstalk between B cells and CD4 T cells are important features in pSS pathogenesis, T-cell co-activation from naïve T cells and is important for the induction of RORγt and IL-17 [94]. As mentioned before, IL-6 supports Th17 cell differentiation from naïve T cells and is important for the induction of RORγt and IL-17 [95]. In summary, rituximab affects Th17 cells locally and systemically, although the mechanism of this effect and its contribution to amelioration of disease remains to be established.

Sections of Th17 cells are involved in local inflammation in pSS and SS-like disease. Their contribution to systemic disease is even enigmatic. Th17 cells are elevated in the periphery of a subgroup of pSS patients and higher systemic Th17 cell activity (serum IL-17 level, CD161+ROTY+CD4+ cell frequency) correlates with increased autoantibody titers. However, it remains to be established if Th17 cells contribute directly to pathogenesis of human pSS. A pathogenic role for Th17 cells is more evident in mouse models of SS, where Th17 cells appear to play a key role in development of the autoimmune phenotype. Pathogenicity of Th17 cells in pSS is possibly linked to plasticity of this cell subset. In particular, plasticity towards Th17.1 cells, co-expressing IL-17 and IFN-γ (and CXCR6 and CX3CR1) may support chronic inflammation and B cell activation in pSS patients (Figs. 1 and 2). Furthermore, mouse models indicate that the major contribution of Th17 cells to disease pathology may be temporal, early and locally in affected tissues. Future studies are needed to elucidate Th17 cell phenotypes in glandular tissue and to address their contribution to disease onset and progression.

References

[10] A. Saka, Y. Sugawara, T. Kuroishi, T. Sasano, Y. Sugawara, Identification of IL-

A. Alunno, O. Bistoni, E. Bartoloni, S. Catber, B. Bigerna, A. Tabarrini, R. Mannucci, B. Falini, R. Gerli, IL-17-producing CD4-CD8- T cells are expanded in the peripheral blood, infiltrate salivary glands and are resistant to corticosteroids in patients with primary Sjögren’s syndrome, Ann. Rheum. Dis. 72 (2013) 286–292.

