Dietetic and Professional Practice

Evaluation of change in dietitians’ perceived comprehensibility and difficulty of the Patient-Generated Subjective Global Assessment (PG-SGA) after a single training in the use of the instrument

M. J. Sealy, F. D. Ottery, C. P. van der Schans, J. L. N. Roodenburg & H. Jager-Wittenaar

1Research Group Healthy Ageing, Allied Health Care and Nursing, HANZE University of Applied Sciences, Groningen, The Netherlands
2Department of Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
3Ottery & Associates, Oncology Care Consultants, Vernon Hills, Chicago, Illinois, USA
4Department of Rehabilitation Medicine, Department Health Psychology Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Keywords
dietetic practice, education, malnutrition, nutritional assessment, nutritional status, PG-SGA.

Correspondence
Martine J. Sealy, HANZE University of Applied Sciences, School of Health Care Studies Eysoniusplein 18, 9714 CE Groningen, The Netherlands.
Tel.: +31 (0) 50 595 3604
E-mail: m.j.sealy@pl.hanze.nl

How to cite this article
https://doi.org/10.1111/jhn.12491

Abstract
Background: The Patient-Generated Subjective Global Assessment (PG-SGA) is an instrument used to assess malnutrition and its risk factors. Some items of the PG-SGA may be perceived as hard to comprehend or as difficult by healthcare professionals. The present study aimed to determine whether and how dietitians’ perceptions of comprehensibility and difficulty of the PG-SGA change after a single training in PG-SGA use.

Methods: In this prospective evaluation study, Dutch PG-SGA-naive dietitians completed a questionnaire regarding perceived comprehensibility and difficulty of the PG-SGA before (T0) and after (T1) receiving a single training in the use of the instrument. Perceived comprehensibility and difficulty were operationalised by calculating item and scale indices for comprehensibility (I-CI, S-CI) and difficulty (I-DI, S-DI) at T0 and T1. An item index of 0.78 was considered acceptable, a scale index of 0.80 was considered acceptable and a scale index of 0.90 was considered excellent.

Results: A total of 35 participants completed the questionnaire both at T0 and T1. All item indices related to comprehensibility and difficulty improved, although I-DI for the items regarding food intake and physical examination remained below 0.78. Scale indices for difficulty and comprehensibility of the PG-SGA changed significantly (P < 0.001) from not acceptable at T0 (S-CI = 0.69; S-DI = 0.57) to excellent for comprehensibility (S-CI = 0.95) and acceptable for difficulty (S-DI = 0.86) at T1.

Conclusions: The findings of the present study suggest that significant improvement in PG-SGA-naive dietitians’ perception of comprehensibility and difficulty of the PG-SGA can be achieved quickly by providing a 1 day of training in the use of the PG-SGA.
Introduction

The Scored Patient-Generated Subjective Global assessment (PG-SGA; Copyright FD Ottery, 2005, 2006, 2015) was developed as a modification of the Subjective Global Assessment (1) and can be used to assess malnutrition in the sense of undernutrition, as well as its underlying risk factors. (2,3) The PG-SGA includes a patient-generated component and a professional component, thus providing cumulative insight from both perspectives with respect to the nutritional status of the patient. The PG-SGA was first validated in the oncology setting (3–6) and has subsequently been validated in other settings, such as nephrology and geriatric settings (7,8).

Recently, the PG-SGA has been translated and culturally adapted for the Dutch setting (9). During the pilot testing of the prototype of the Dutch version, the perceived level of difficulty and comprehensibility of the PG-SGA were explored. Although patients perceived the patient-generated component of the PG-SGA as sufficiently easy and comprehensible, healthcare professionals perceived comprehensibility of the professional component as acceptable but the level of difficulty as not acceptable. The concept of comprehensibility reflects the level of clarity of an instrument as perceived by the user. The related concept of difficulty reflects the level of both knowledge and skills of the user of the instrument. Perceived lack of comprehensibility of an item (e.g. as a result of the use of vocabulary that does not correspond with the respondents’ education level) reduces understandability and may increase perceived difficulty of this item (10–12).

We hypothesised that perception of comprehensibility may change positively by providing an explanation of the meaning of each item of the PG-SGA and perception of difficulty may change positively by providing background information, instruction and/or training regarding the PG-SGA (12). Because, in daily practice, dietitians are healthcare professionals who often work with the PG-SGA, in the present study, we aimed to determine whether and how perceived comprehensibility and difficulty changes after providing training comprising lectures on the PG-SGA (rationale and evidence-base), as well as hands-on practice with the PG-SGA, in an omnifarious sample of dietitians.

Materials and methods

Sample and data collection

In this prospective evaluation study, characteristics of perceived difficulty and comprehensibility of version 3.6 of the Dutch PG-SGA at baseline and after receiving a full day of training in the use of the PG-SGA were evaluated in a convenient sample of dietitians. Dietitians located in The Netherlands were informed about the training via social media and e-mail. The training was developed in collaboration with the originator of the PG-SGA, and accredited for dietitians by the Dutch Foundation on Accreditation of Competence Stimulating Activities for healthcare workers. Because the PG-SGA had only recently become available in the Dutch language, professionals had little to no experience with the Dutch version of the instrument. All 79 individuals who registered for the training were approached to participate in the study. Participants who were not trained at bachelor or higher level as a dietitian were excluded from the study. A lecture that explained the rationale behind the PG-SGA and a lecture demonstrating the use of the PG-SGA and its electronic version were provided in the morning. In a workshop in the afternoon, attendees practiced with the PG-SGA, including the physical examination, and discussed the use and interpretation of the PG-SGA.

Three weeks prior to the training, registered professionals were invited to complete a home assignment and were informed about the project. Professionals provided their written consent before participating in the study. At baseline (T0), participants were asked to first complete both the patient and professional component of the PG-SGA, preferably with a patient, and, subsequently, to complete the online questionnaire. The second measurement (T1) followed directly after the training, at the training site. At T1, attendees were asked to complete a paper version of the questionnaire to stimulate immediate completion of the questionnaire and to prevent loss to follow-up. To further prevent loss to follow-up, 5 days after the training, a reminder was sent to participants who did not complete the questionnaire at the training site. These participants were asked to complete an online version of the questionnaire.

The Medical Ethical Committee of the University Medical Center Groningen ruled that no permission was needed to perform the study (reference M14.165328) because the study was not under the regulation of the ‘Medical Research Involving Human Subjects Act’ (WMO).

Patient-Generated Subjective Global Assessment

The PG-SGA (Appendix 1) consists of a patient-generated and a professional component. First, the patient-generated component includes four topic-specific Boxes designed to be completed by the patient. Box 1 addresses weight history. Box 2 addresses food intake. Box 3 addresses nutrition impact symptoms and other factors hindering food intake. Box 4 includes activity and
function and is based on the Eastern Cooperative Oncology Group (ECOG) performance status (13). Second, the professional component includes five Worksheets and is completed by the healthcare professional. Worksheet 1 instructs on how to score the percentage weight loss. Worksheet 2 addresses conditions that may increase nutritional risk. Worksheet 3 addresses metabolic stress. Worksheet 4 includes a nutrition-focused physical examination. Worksheet 5 categorises the overall global assessment of the patient. Categories include Stage A = Well nourished; Stage B = Moderate/suspected malnutrition; and Stage C = Severely malnourished (4). Finally, a score is generated that guides triage recommendations for interdisciplinary interventions.

Comprehensibility and difficulty
Comprehensibility and difficulty were measured using a questionnaire, which is available upon request. The questionnaire was pretested for clarity in three final year Bachelor Students of Nutrition and Dietetics. The questionnaire opened with four items on demographics. Furthermore, it included 14 items regarding perceived comprehensibility and 14 items on difficulty of the PG-SGA. For both comprehensibility and difficulty, questionnaire items 1–4 referred to Box 1–4 of the PG-SGA. Questionnaire items 5–8 referred to Worksheet 1–3. In our preceding study, we found that Worksheet 4 (Physical Examination) may be perceived as difficult by professionals (9). Therefore, more questions (items 9–12) were posed on Worksheet 4 compared to the other Boxes and Worksheets. Items 13 and 14 related to Worksheet 5 (Global Assessment Categories) and the nutritional triage recommendations, respectively.

To be able to differentiate between the level of comprehensibility and difficulty, both concepts were included in the questionnaire in the present study. As proposed previously, a four-point scale (1 = very unclear/very difficult; 2 = unclear/difficult; 3 = clear/easy; 4 = very clear/very easy) was used to avoid the possibility of a neutral and ambivalent midpoint (14–16). Scores 1 and 2 were considered ‘not present’ and scores 3 and 4 were considered ‘present’ (14–16). For each item, an item comprehensibility index (I-CI) and an item difficulty index (I-DI) were calculated at T0 and T1. The I-CI and I-DI indicate the level of knowledge and level of clarity of each item as perceived by the respondents, respectively. I-CI and I-DI scores can range from 0 to 1 and were calculated by dividing the number of respondents who considered the item to be ‘present’ by the total number of respondents.

In accordance with our previous study, I-CI and I-DI ≥0.78 were considered acceptable (9). An item score <0.78 requires further analysis of the item (17). I-CI and I-DI scores of all items were averaged into a weighted summarised scale comprehensibility index (S-CI) and a scale difficulty index (S-DI) for the full PG-SGA. The S-CI and S-DI reflect respondents’ perceived overall knowledge and overall comprehensibility level of the instrument, respectively. S-CI ≥ 0.80 and S-DI ≥ 0.80 were considered as acceptable scores, S-CI ≥ 0.90 and S-DI ≥ 0.90 were considered as excellent scores (17,18). Item nonresponse was excluded from calculation of the index scores. Transparency of response was provided by reporting item response and overall response percentages.

Statistical analysis
We performed power analysis for S-DI because, in a pilot study, S-DI was rated at 0.55 by healthcare professionals (i.e. not acceptable), whereas S-CI was rated at 0.81, which is already acceptable (9). A minimal sample of eight dietitians was considered sufficiently powered to detect a change of S-DI from 0.55 to S-DI 0.80 (cut-off for acceptable), with estimated variability of 0.25 (allowing a type I error α = 0.05 and a type II error β = 0.20) (19).

Although S-CI and S-DI scores can range from 0 to 1, they can be considered as nominal scores, transformed to weighted average scores. Therefore, the nonparametric Wilcoxon signed rank test was used to test significance of differences in distribution of participants’ comprehensibility and difficulty indices at T0 and T1. The Mann–Whitney U-test was used to compare the distribution of the T0 results of participants who completed the questionnaire both at T0 and T1 with the distribution of the T0 results of participants who were lost to follow-up. Participants who were lost to follow-up were not included in the analysis. However, to test the robustness of the results, the T0 scores of the missing participants were imputed to the T1 scores, and the Wilcoxon signed rank test was used in a sensitivity analysis. All statistical tests were performed using spss, version 24 (IBM Corp., Armonk, NY, USA). P = 0.05 was considered statistically significant.

Results
In total, 56/79 (79%) professionals responded at T0, of whom 47 (60%) were considered eligible and gave their consent. Of these 47 professionals, 35 (75%) completed the questionnaire both at T0 and T1 and were included in the analysis. Reasons for not completing the post-training questionnaire were a lack of time and absence during the training. Two out of 35 participants were not currently practicing as dietitians. The characteristics of the participants who completed the questionnaire both at T0 and T1 are presented in Table 1.
Table 1 Characteristics of dietitians that participated in exploration of perceived comprehensibility and difficulty of the Patient-Generated Subjective Global Assessment (PG-SGA) before and after training in its use.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>Dietitian</td>
<td>33</td>
<td>94</td>
</tr>
<tr>
<td>Other*</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Working setting</td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>General hospital</td>
<td>17</td>
<td>38</td>
</tr>
<tr>
<td>Geriatrics/nursing home/rehabilitation</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>Primary care</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Academic hospital</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Tertiary care health centre</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Field of interest†</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Oncology</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Gastroenterology/diabetes</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Lung disease</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Nephrology</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Geriatrics</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Reason for registering for the PG-SGA training†</td>
<td>38</td>
<td>100</td>
</tr>
<tr>
<td>Interest in PG-SGA</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>Interest in malnutrition assessment</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>The opportunity was provided</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Interest in malnutrition screening</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Interest in the electronic version of the PG-SGA (Pt-Global app)</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Interest in improving nutrition care</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Professional development</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Interest in PG-SGA SF</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Median Min–Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of work experience</td>
<td>14</td>
<td>0–38</td>
</tr>
</tbody>
</table>

*One teacher in Program Nutrition and Dietetics; one junior researcher with background in dietetics.

†More than one setting, and/or field of interest, and/or reason for registering possible per participant.
The opportunity was provided 6 (16%); the interest in the electronic version of the PG-SGA (Pt-Global app) is 4 (11%); the interest in improving nutrition care is 3 (8%); Professional development is 2 (5%); Interest in PG-SGA SF is 1 (3%).

SF, Short Form.

Indices and response rates for comprehensibility and difficulty of the PG-SGA are reported in Table 2. Appendix 2 presents the summarised frequency of scores 1, 2, 3 and 4 at both T0 and T1. Overall, comprehensibility and difficulty indices significantly improved after the training ($P < 0.01$). At T0, comprehensibility and difficulty of the PG-SGA were not perceived acceptable on scale level (S-CI = 0.69; overall response 93%; S-DI = 0.57, overall response 92%). After the training, comprehensibility was perceived as excellent on scale level (S-CI = 0.95; overall response 97%) and difficulty of the PG-SGA was perceived as acceptable (S-DI = 0.86, overall response 96%). S-CI improved in 30 participants and remained stable in five participants. S-DI improved in 29 participants, remained stable in two participants and decreased in four participants.

At T0, the lowest I-CI was found on the item concerning Worksheet 2 (Disease and relation to nutritional requirements; I-CI = 0.38) and the highest I-CI were found for the items regarding Worksheet 1 (Scoring Weight Loss; I-CI = 0.94). At T0, the lowest I-DI scores were found on the items regarding Worksheet 4 (Physical Examination; I-DI = 0.13–0.35). Furthermore, the highest I-DI score was found on the item concerning Box 3 (Symptoms; I-DI = 0.80) and the items regarding Worksheet 1 (Scoring Weight Loss; I-DI = 0.84–0.88).

At T1, all items had I-CI scores above the threshold of 0.78. Furthermore, maximum I-CI score of 1.0 was reached in Worksheet 1 items (Scoring Weight Loss), Worksheet 5 (Global Assessment Categories) and Total PG-SGA Score. At T1, the I-DI for items concerning Box 2 [Food intake (I-DI=0.76)] and Worksheet 4 [Physical Examination (I-DI=0.53–0.71)] still scored below the threshold of 0.78. Moreover, maximum I-DI score of 1.0 was reached on items concerning Box 4 (Activity and Function), Worksheet 1 (Scoring Weight Loss), Worksheet 5 (Global Assessment Categories) and Total PG-SGA Score.

Distribution of T0 indices for comprehensibility and difficulty of participants who were lost to follow-up was not significantly different from those of participants who completed the questionnaire both at T0 and T1 ($P = 0.15$ and $P = 0.21$, respectively). After the T0 scores of the missing participants were imputed to the T1 scores, median improvement of comprehensibility and difficulty indices remained significant between T0 and T1 ($P < 0.01$).

Discussion

The results of the present study show that perceived comprehensibility and difficulty of the PG-SGA improved significantly in a sample of PG-SGA-naive dietitians, after providing information and hands-on training in the use of the PG-SGA. Although perceived comprehensibility improved to an acceptable level for all components of the PG-SGA, perceived difficulty for the physical examination and food intake remained under the predefined cut-off for acceptability. Overall scores for comprehensibility improved from not acceptable at baseline to excellent after training. Overall scores for difficulty improved from not acceptable at baseline to acceptable after training.

The items related to the physical examination were perceived as the most difficult component of the PG-SGA, in accordance with the findings of the pretesting of the Dutch version of the PG-SGA (9). Scores on difficulty
improved after a single training but not to an acceptable level, implying that perceived difficulty of the physical examination could still improve. Scores on comprehensibility for items related to the physical examination did improve to an acceptable level, implying that the explanation of the physical examination was helpful with respect to clarifying Worksheet 4 (Physical examination). It is unclear why participating dietitians regarded the physical examination of the PG-SGA clear but difficult. A possible explanation would be that some dietitians did not feel confident to examine and interpret signs of loss or deficit of muscle and/or fat in their own patients after a single training. These dietitians may need repeated hands-on training and practice. It is not reported how often professionals actually receive training in the use of nutritional assessment tools such as PG-SGA or the SGA, and how a lack of training may influence the results of the physical examination. We hypothesise that sufficient knowledge and experience could improve perceived difficulty of the physical examination and, additionally, may lead to more reliable results. A recent study showed that dietitians who received training in the use of the PG-SGA presented good reliability in assessment (intraclass correlation of 0.90; \(P < 0.001\)) \(^{20}\). Results from a study on inter-rater reliability (IRR) utilising the SGA indicate in the same direction \(^{21}\). In that study, more experienced professionals (>5 years after graduation) utilising the SGA showed similar results (IRR range of 89–100%) compared to a well-trained and experienced dietitian (>20 years after graduation), whereas less experienced professionals (1–2 years after graduation) showed an IRR range of 56–100% compared to the same dietitian \(^{21}\).

Notably, dietitians experienced some difficulty in interpreting an item from the patient-generated component. Although scores for item comprehensibility for Box 2 (Food intake) improved to an acceptable level after training, scores on difficulty remained slightly below an acceptable level, with an I-DI of 0.76. Box 2 is one of the four Boxes designed to be completed by patients. Difficulty of these items may be perceived differently when tested in a patient population compared to a sample of professionals. During the pilot testing of the prototype of the Dutch version in a small sample of patients, the level of difficulty and comprehensibility of Box 2 was perceived as acceptable \(^{9}\). Additionally, a different study reported that patients with cancer found the patient-generated component of the PG-SGA not difficult and not hard to understand \(^{22}\). We suggest testing the patient-generated component of the PG-SGA in a larger sample of patients, representing different patient populations, aiming to evaluate whether adjustment or further explanation is needed.

Interestingly, some participants perceived the PG-SGA as more difficult after the training, despite an improvement in perceived comprehensibility. These participants may have been unaware of a lack of knowledge or experience in performing the PG-SGA assessment prior to the training. After the training, they may have improved their
understanding of the PG-SGA and, consequently, may be more conscious of a possible lack of knowledge or experience. In that case, dietitians may also profit from repeated practice and hands on training with the PG-SGA.

This is the first study to evaluate changes in perception of difficulty and comprehensibility of the PG-SGA after training in an omnifarious sample of dietitians. The results are of interest because a single training can be performed quickly and at low expense. The study has some limitations. First, as a result of the design of the study, we did not have access to a control group. The effects of the training may have been positively influenced, and some improvements may have resulted from an increased familiarity of participants with the PG-SGA at T1 compared to T0 because of repetition. However, we attempted to temper the potential positive effect of repetition by incorporating an interval of 3 weeks between inviting participants to complete the questionnaire at T0 and repetition at T1 (23). Second, in the present study, we assessed only the short-term effects of the training. As a result of the ‘single training’ design, we did not acquire data on longer-term effects of the training and thus it is unclear how the level of perceived comprehensibility and difficulty changes over time. Third, the training subject was the PG-SGA, and approximately 40% of participants reported to have registered for the training because of an interest in the (electronic version of the) PG-SGA or PG-SGA Short Form (SF). These dietitians may be more interested in the PG-SGA than average and, subsequently, have a more positive view of the PG-SGA than average. Therefore, some response bias cannot be ruled out. However, we attempted to encourage all types of dietitians to enroll by limiting the registration fee and by awarding accreditation points. Moreover, scale difficulty and scale comprehensibility were well under acceptable scores at T0 (S-CI = 0.69, S-DI = 0.57), indicating that the results were not influenced by a positive attitude prior to the training. Fourth, participants were almost exclusively dietitians, which makes it difficult to generalise the results to other healthcare professionals. However, dietitians are amongst those professionals who are most likely to work with the PG-SGA in practice. Finally, 25% of participants were lost to follow-up. However, the distribution of baseline results for comprehensibility and difficulty of respondents who were lost to follow-up did not significantly differ from those of respondents who completed the questionnaire both times; thus, loss to follow-up appears to be random. If the baseline scores of the missing participants are imputed to the T1 scores, perceived level of comprehensibility and difficulty would still significantly have improved between T0 and T1 (\(p < 0.001 \)).

Perceived comprehensibility and difficulty are concepts related to each other (11,12). We hypothesise that providing sufficient clarity is conditional to be able to accurately identify and overcome concerns with the difficulty of the PG-SGA. A dual approach towards improving clarity and knowledge and skills may lead to greater confidence in the use of the PG-SGA among dietitians, which in turn could further stimulate implementation of the PG-SGA in practice. To further improve perceived level of difficulty, supplemental information such as online materials or instruction videos for dietitians may be helpful. Furthermore, we suggest independently starting training in the use of the skills required to adequately perform a nutrition-focused physical assessment during the education of dietitians, preferably with practice sessions involving actual patients. In The Netherlands, several Programs on Nutrition and Dietetics have already incorporated training in the use of the PG-SGA in their curriculum.

Conclusions

The findings of the present study suggest that significant improvement in PG-SGA-naïve dietitians’ perception of difficulty and comprehensibility of the PG-SGA can be achieved quickly by providing training in the use of the PG-SGA. Although perceived comprehensibility improved to an acceptable level for all components of the PG-SGA, perceived difficulty for the physical examination still required further improvement after a single training, suggesting that supplemental information and/or more training may be needed for PG-SGA-naïve dietitians to ensure an acceptable level of perceived difficulty of all components of the PG-SGA, including the physical examination.

Transparency declaration

The lead author affirms that this manuscript is an honest, accurate and transparent account of the study being reported. The reporting of this work is compliant with STROBE guidelines. The study was not registered in a public trials register because the study did not concern a clinical investigation and was not under the regulation of the ‘Medical Research Involving Human Subjects Act’. However, the lead author affirms that no important aspects of the study have been omitted and that any discrepancies from the study as planned have been explained.

Acknowledgments

The authors would like to thank Anne van der Braak and Danique Haven for their assistance with the acquisition of data.
Conflict of interest, source of funding and authorship

This research received no grant from any funding agency in the public, commercial or not-for-profit sectors. We have read and understood Journal of Human Nutrition and Dietetics policy on declaration of interests and declare the following interests: Martine J. Sealy, Jan L. N. Roodenburg and Cees P. van der Schans declare that they have no conflicts of interest to report. Faith D. Ottery: President of Ottery & Associates LLC, copyright holder of the Patient-Generated Subjective Global Assessment (PG-SGA), co-owner and co-developer of the PG-SGA based Pt-Global app. Harriet Jager-Wittenaar: Co-developer of the PG-SGA based Pt-Global app.

Martine J. Sealy was responsible for the study design, data collection, analysis and interpretation, and the writing of the manuscript. Faith D. Ottery, Jan L.N. Roodenburg, Cees P. van der Schans and Harriet Jager-Wittenaar were responsible for the study design, analysis and interpretation, and critically reviewing the manuscript. All named authors have approved the final version submitted for publication.

References

Appendix 1
PG-SGA metric version 3.22.15.

Scored Patient-Generated Subjective Global Assessment (PG-SGA)

History: Boxes 1 - 4 are designed to be completed by the patient.
[Boxes 1-4 are referred to as the PG-SGA Short Form (SF)]

1. **Weight (See Worksheet 1)**

 In summary of my current and recent weight:

 I currently weigh about _____kg

 I am about _____ cm tall

 One month ago I weighed about _____ kg

 Six months ago I weighed about _____ kg

 During the past two weeks my weight has:

 - decreased (1)
 - not changed (0)
 - increased (0)

 Box 1

2. **Food intake:**
 As compared to my normal intake, I would rate my food intake during the past month as

 - unchanged (0)
 - more than usual (0)
 - less than usual (1)

 I am now taking

 - normal food but less than normal amount (x)
 - little solid food (2)
 - only liquids (3)
 - only nutritional supplements (3)
 - very little of anything (4)
 - only tube feedings or only nutrition by vein (0)

 Box 2

3. **Symptoms:**
 I have had the following problems that have kept me from eating enough during the past two weeks (check all that apply)

 - no problems eating (0)
 - no appetite, just did not feel like eating (1)
 - vomiting (3)
 - diarrhea (3)
 - constipation (1)
 - dry mouth (1)
 - mouth sores (2)
 - smells bother me (1)
 - things taste funny or have no taste (1)
 - feel full quickly (1)
 - problems swallowing (2)
 - fatigue (1)
 - pain; where? (1)

 Examples: depression, money, or dental problems

 Box 3

4. **Activities and Function:**
 Over the past month, I would generally rate my activity as:

 - normal with no limitations (0)
 - not my normal self, but able to be up and about with fairly normal activities (1)
 - not feeling up to most things, but in bed or chair less than half the day (2)
 - able to do little activity and spend most of the day in bed or chair (3)
 - pretty much bed ridden, rarely out of bed (3)

 Box 4

Additive Score of Boxes 1-4

©FD Ottery 2005, 2006, 2015 v3.22.15
email: faithotterymdphd@aol.com or info@pt-global.org

The remainder of this form is to be completed by your doctor, nurse, dietitian, or therapist. Thank you.
66

© 2017 The British Dietetic Association Ltd.

Appendix 2

Summarised frequency of difficulty and comprehensibility scores 1, 2, 3 and 4 reported by participants before training (T0) and after training (T1)

<table>
<thead>
<tr>
<th>Score</th>
<th>T0 Difficulty total, n (%)</th>
<th>T1 Difficulty total, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Very difficult</td>
<td>33 (7)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>2 Difficult</td>
<td>162 (36)</td>
<td>67 (14)</td>
</tr>
<tr>
<td>3 Easy</td>
<td>225 (50)</td>
<td>335 (71)</td>
</tr>
<tr>
<td>4 Very easy</td>
<td>32 (7)</td>
<td>69 (15)</td>
</tr>
<tr>
<td>Total</td>
<td>452 (100)</td>
<td>472 (100)</td>
</tr>
<tr>
<td>Overall item response</td>
<td>92%</td>
<td>96%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score</th>
<th>T0 Comprehensibility total n (%)</th>
<th>T1 Comprehensibility total n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Very unclear</td>
<td>18 (4)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>2 Unclear</td>
<td>122 (27)</td>
<td>23 (5)</td>
</tr>
<tr>
<td>3 Clear</td>
<td>286 (62)</td>
<td>376 (79)</td>
</tr>
<tr>
<td>4 Very clear</td>
<td>31 (7)</td>
<td>77 (16)</td>
</tr>
<tr>
<td>Total</td>
<td>459 (100)</td>
<td>477 (100)</td>
</tr>
<tr>
<td>Overall item response</td>
<td>93%</td>
<td>97%</td>
</tr>
</tbody>
</table>