Field-dependent permittivity in metal-semiconducting SrTiO3 Schottky diodes
van der Berg, R. A.; Blom, P. W. M.; Cillessen, J. F. M.; Wolf, R. M.

Published in:
Applied Physics Letters

DOI:
10.1063/1.114103

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Field dependent permittivity in metal-semiconducting SrTiO₃ Schottky diodes

Citation: Appl. Phys. Lett. 66, 697 (1995); doi: 10.1063/1.114103
View online: https://doi.org/10.1063/1.114103
View Table of Contents: http://aip.scitation.org/toc/apl/66/6
Published by the American Institute of Physics

Articles you may be interested in
Fabrication and characterization of Ba₁₋ₓKₓBiO₃/Nb-doped SrTiO₃ all-oxide-type Schottky junctions
Journal of Applied Physics 81, 6830 (1997); 10.1063/1.365242

Permittivity of Strontium Titanate
Journal of Applied Physics 43, 2124 (1972); 10.1063/1.1661463

Bulk electronic structure of SrTiO₃: Experiment and theory
Journal of Applied Physics 90, 6156 (2001); 10.1063/1.1415766

Intrinsic electrical properties of Au/SrTiO₃ Schottky junctions
Journal of Applied Physics 85, 7244 (1999); 10.1063/1.370539

Electric field and temperature dependence of dielectric permittivity in strontium titanate investigated by a photoemission study on Pt/SrTiO₃:Nb junctions

Determination of Schottky barrier profile at Pt/SrTiO₃:Nb junction by x-ray photoemission
Strontium titanate (SrTiO$_3$) single crystals are widely used as a substrate for epitaxial growth of ferroelectrics such as lead- and barium titanate, ferromagnetics such as lanthanum strontium manganate, and superconductors such as yttrium barium copper oxide. Furthermore, because of its high dielectric constant, SrTiO$_3$ single crystals are also used as an active gate in dielectric-base tunnel diodes. SrTiO$_3$ is also attractive as dielectric in thin-film applications the question arises whether the high permittivity of SrTiO$_3$ is affected by a large electric field, since in thin films high electric fields are produced even at low applied voltages. The permittivity of single-crystal SrTiO$_3$ was studied by Neville et al., who reported that above 60 K the dielectric constant is characterized by a Curie–Weiss law with a Curie temperature of 30 K. Also, for temperatures below 65 K a field dependent permittivity was found, which was attributed to the hardening of the motion of the titanium ions. In this study, only electric fields up to 23 kV/cm were applied and due to these low fields no field dependent permittivity for temperatures above 65 K was observed.

The application of Schottky barriers enables the determination of the dielectric constant at electric fields which are not addressable by other methods. The field dependence of the dielectric constant modifies the capacitance–voltage (C–V) characteristics of a Schottky barrier. From the capacitance data of a gold-(reduced) potassium tantalate (KTaO$_3$)–SrTiO$_3$–In Schottky diode a strong decrease of the permittivity with increasing interface field was obtained. Differential capacitance results for Schottky barriers formed between indium and reduced SrTiO$_3$ (SrTiO$_3$–In) at room temperature by Hayashi and Aoki, however, are well explained by a field independent dielectric constant. Only at low temperatures (<4.2 K) a discrepancy between the experimental and calculated results appears. This discrepancy is attributed to the electric field dependence of the dielectric constant of SrTiO$_3$ at low temperature. However, as a result of the low carrier concentration (<4x1018 cm$^{-3}$) and the small maximum reverse bias (−4 V) applied in this study, the maximum electric fields obtained at the interface of the In–SrTiO$_3$–In Schottky diodes are relatively low (<250 kV/cm). Finally, in tunneling measurements at $T=4.2$ K by Stroube et al. through niobium doped SrTiO$_3$–indium (SrTiO$_3$:Nb–In) Schottky barriers an effective dielectric constant of about 10 is used in order to obtain reasonable barrier widths. This reduction of the dielectric constant is partly attributed to the high electric field present in the depletion layer of the Schottky diode. Thus, the dielectric constants of SrTiO$_3$ reported so far have only been measured at relatively low fields and no dependence on the electric field has been observed at room temperature. In the present study the field dependent permittivity of SrTiO$_3$ up to very high fields is obtained from capacitance voltage measurements on mercury-(Hg) and gold (Au)-SrTiO$_3$:Nb Schottky diodes. By varying the Nb-donor density the electron concentration in the various SrTiO$_3$:Nb single crystals ranges from 2x1018 to 1x1020 cm$^{-3}$. As a result we are able to obtain a permittivity profile for interface fields ranging from 200 kV/cm to 10 MV/cm. We observe that for electric fields larger than 300 kV/cm the relative dielectric constant starts to decrease gradually from 300 to 25 at 10 MV/cm. From our temperature dependent capacitance voltage measurements we obtain that at low fields the measured permittivity is in agreement with the predictions of the Curie–Weiss law. For electric fields larger than 500 kV/cm the permittivity is temperature independent. The field dependence of the dielectric constant is shown to be relevant for the spatial distribution of the built-in electric field and the resulting depletion width in a Schottky diode.

In our experiments we use Verneuil grown Nb-doped SrTiO$_3$ crystals, which are obtained in boules with a maximum diameter of about 15 mm and cut into 1 mm thick slices in the (100) direction. One side of the sample is Syton polished. The Nb content as measured by x-ray fluorescence (XRF) and laser ablated inductively coupled mass spectrometry (LA-ICP-MS) amounts to 160, 940, and 2750 wt. ppm, respectively. From Hall measurements the corresponding electron concentrations of 2.5x1019, 2.3x1019, and 1.0x1020 cm$^{-3}$ are obtained, respectively. Schottky contacts are fabricated on the polished side of the samples using evaporated Au contacts as well as a mercury (Hg) probe.
Ohmic contacts on the bottom side are made by ultrasonic soldering or using Ga/In eutect. For a field independent dielectric constant the doping profile can be directly obtained from the $C-V$ measurements, since

$$N_D = \frac{2}{q\varepsilon} \left(\frac{1}{d(1/C^2)/dV} \right)$$

with N_D the donor density at the space charge edge, ε the dielectric constant, C the diode capacitance per area, and V the reverse bias voltage. We expect to see a constant doping profile because SIMS measurements show a homogeneous Nb distribution as a function of depth. In Fig. 1 the dope profiles measured with the Hg diode are shown. We observe an apparent decreasing donor concentration with increasing depletion depth for all crystals. A similar behavior was observed for the Au–SrTiO$_3$:Nb diodes. Furthermore, the profiles of the Nb doped crystals are all below the value of the measured (Hall) carrier density and the discrepancy increases with increasing dopant density. For the highest dopant density (2750 ppm) the difference between the expected (1$	imes$1020 cm$^{-3}$) and measured (1.7$	imes$1019 cm$^{-3}$) dopant density almost amounts to one order of magnitude. However, a field dependence of ε gives rise to appreciable deviations of the standard Schottky theory, as we will now show. For a field dependent dielectric constant ε is defined as

$$\varepsilon(x) = \frac{dD(x)}{dE(x)},$$

with D the dielectric displacement and E the electric field. The capacitance per area is then given by

$$\frac{1}{C} = \int_0^W \frac{dx}{\varepsilon(x)},$$

with $x=0$ at the metal semiconductor interface and $x=W$ at the space charge edge. Assuming now, a uniform charge distribution the electric field at $x=0$ and the corresponding dielectric constant are obtained from

$$E(0) = \frac{qN_D}{C},$$

and

$$-\frac{\partial}{\partial V}(1/C^2) = \frac{2}{qN_D\varepsilon(0)}.$$

Equations (4) and (5) form the equivalent of the dope profile measurements, which assume a field independent permittivity but an arbitrary dope profile. Applying Eqs. (4) and (5) to our Hg diode data of Fig. 1 we observe that the permittivity profiles for the Nb doped SrTiO$_3$ crystals all coincide on a single curve as shown in Fig. 2. This is strong evidence that SrTiO$_3$ has a field dependent permittivity which reveals itself at high electric fields. At fields lower than 200 kV/cm the relative dielectric constant amounts to 300, which is in agreement with the earlier reported values. This also explains the absence of a field dependent ε in earlier measurements on SrTiO$_3$ because the applied electric fields were too low.

A further evidence for the occurrence of a field dependent ε comes from the measurement of the permittivity profiles as a function of temperature, which then are compared with the Curie–Weiss law given by

$$\varepsilon(T) = \frac{A}{T-T_c} \varepsilon_0,$$

with $A=8.9\times10^4$ K and $T_c=30$ K. In Fig. 3 the temperature dependence of the relative permittivity is shown from 140 to 400 K for the low doped (160 wt. ppm) sample, furthermore, the permittivity as expected from the Curie–Weiss law [Eq. (6)] is indicated. The permittivity increases with decreasing temperature and is in excellent agreement with the predictions of the Curie–Weiss law at low fields. The lower permittivities obtained at high electric fields show no strong temperature dependence, at fields higher than 500 kV/cm the permittivity is even independent of temperature.

The positional dependence of the internal field in the space charge region of a Schottky diode implies that the dielectric constant of the semiconducting SrTiO$_3$ will also be
a function of the position. The consequences of the field dependent permittivity for the band bending of a metal-semiconducting SrTiO$_3$ Schottky diode are schematically depicted in Fig. 4. The positive direction of the electric field is defined as pointing from the metal into the semiconductor. At the metal-semiconductor interface, where the built-in electric field reaches its maximum value, the dielectric constant is reduced when the built-in field exceeds 300 kV/cm. The reduction of the dielectric constant in the high-field part of the space charge region then gives rise to a decrease of the depletion width. In Fig. 4 the calculated energy-band diagram [Fig. 4(a)], the electric field [Fig. 4(b)], and dielectric constant [Fig. 4(c)] are shown as a function of distance for constant ε_r (300) and $\varepsilon_r(E)$, as determined from Fig. 2. In our calculation a barrier height of 1.2 eV, a built-in voltage of 1.1 eV, and a carrier concentration of 2×10^{19} cm$^{-3}$ are used. For the field dependent ε_r, a depletion width of 35.7 nm is obtained, whereas $\varepsilon_r=300$ gives rise to a depletion width of 42.7 nm. The difference in capacitance of the space charge region, 1.88 and 1.95 nF, respectively, is smaller because the difference in depletion width is partly compensated by the different dielectric constants. It is evident that for low doped semiconductors, where the internal field at the interface is smaller than 300 kV/cm, the effect of a field dependent dielectric constant is strongly reduced.

In conclusion, we have measured the field dependence of the permittivity of SrTiO$_3$ at room temperature. The electric field ranges from 200 kV/cm up to the very large value of 10 MV/cm by using the built-in field of Schottky diodes fabricated on semiconducting SrTiO$_3$:Nb with various dopant densities. For electric fields larger than 300 kV/cm the permittivity gradually decreases from 300 to 25 at 10 MV/cm. At low fields, the permittivity is governed by the Curie–Weiss law in a temperature range from 140 to 400 K. At fields larger than 500 kV/cm no temperature dependence of the permittivity is observed.

In Fig. 4 the calculated energy-band diagram [Fig. 4(a)], the electric field [Fig. 4(b)], and dielectric constant [Fig. 4(c)] are shown as a function of distance for constant ε_r (300) and $\varepsilon_r(E)$, as determined from Fig. 2. In our calculation a barrier height of 1.2 eV, a built-in voltage of 1.1 eV, and a carrier concentration of 2×10^{19} cm$^{-3}$ are used. For the field dependent ε_r, a depletion width of 35.7 nm is obtained, whereas $\varepsilon_r=300$ gives rise to a depletion width of 42.7 nm. The difference in capacitance of the space charge region, 1.88 and 1.95 nF, respectively, is smaller because the difference in depletion width is partly compensated by the different dielectric constants. It is evident that for low doped semiconductors, where the internal field at the interface is smaller than 300 kV/cm, the effect of a field dependent dielectric constant is strongly reduced.