Iron deficiency and red cell indices in patients with heart failure

Tkaczyszyn, Michal; Comin-Colet, Josep; Voors, Adriaan; van Veldhuisen, Dirk; Enjuanes, Cristina; Moliner-Borja, Pedro; Rozentryt, Piotr; Polonski, Lech; Banasiak, Waldemar; Ponikowski, Piotr

Published in:
European Journal of Heart Failure

DOI:
10.1002/ejhf.820

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Iron deficiency and red cell indices in patients with heart failure

Michał Tkaczyszyn¹,², Josep Comin-Colet³,⁴, Adriaan A. Voors⁵, Dirk J. van Veldhuisen, Cristina Enjuanes³,⁴, Pedro Moliner-Borja³,⁴, Piotr Rozentryt⁶, Lech Poloński⁶, Waldemar Banasiak², Piotr Ponikowski²,⁷, Peter van der Meer⁵, and Ewa A. Jankowska¹,²*

¹Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; ²Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland; ³Heart Diseases Biomedical Research Group, Program of Research in Inflammatory and Cardiovascular Disorders, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; ⁴Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ⁵Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; ⁶3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Silesian Centre for Heart Disease in Zabrze, Poland; and ⁷Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland

Received 19 July 2016; revised 29 January 2017; accepted 24 February 2017; online publish-ahead-of-print 6 April 2017

Aims
To investigate the prevalence of iron deficiency (ID) in heart failure (HF) patients with normal vs. abnormal red cell indices (RCI), the associations between iron parameters and RCI, and prognostic consequences of ID independently of RCI.

Methods and results
We analysed clinical data of 1821 patients with HF [mean age 66 ± 13 years; 71% men; New York Heart Association class I/II/III/IV (11%/39%/44%/6%); left ventricular ejection fraction >45%: 19%]. Iron deficiency (ferritin <100 μg/L or ferritin 100–299 μg/L with transferrin saturation <20%) was common irrespective of the presence of anaemia (haemoglobin <12 g/dL in women and <13 g/dL in men) or low RCI, from 75% in anaemic subjects with low mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), and MCH concentration (MCHC), to 36% in non-anaemic subjects with MCV, MCH, and MCHC above the lower limit of normal. After adjustment for clinical variables, iron parameters remained independently associated with haemoglobin, MCV, MCH, MCHC, mean reticulocyte haemoglobin content (CHR), and red cell distribution width (RDW). In multivariable hazard regression models there was a trend towards higher mortality in patients with vs. without ID when adjusted for relevant HF prognosticators and MCH or MCHC (but not haemoglobin, CHR or RDW).

Conclusions
Patients with HF should be routinely screened for ID irrespective of the presence of anaemia or abnormal RCI. The detrimental impact of ID on long-term survival in HF is partially independent of RCI.

Keywords
Heart failure • Iron deficiency • Anaemia • Red cell indices • Complete blood count

Introduction
In recent years much attention has been paid to disordered iron status and its adverse consequences for the symptomatology and prognosis in heart failure (HF).¹–⁴ The prevalence of iron deficiency (ID) in chronic HF patients ranges from 50% in Europe⁵ to 61% in a multi-ethnic Asian population.⁶ Iron deficiency predicts decreased exercise capacity,⁷ worse prognosis,⁴,⁵,⁸ and, importantly, appears to be a promising therapeutic target.⁹–¹３ Given the importance of sufficient availability of iron for unrestricted erythropoiesis within the bone marrow,¹⁴,¹⁵ ID has been traditionally perceived as an aetiological factor of anaemia.¹⁶ Indeed, in daily clinical practice haemoglobin concentration and automatically measured red cell indices (RCI) are considered sensitive indicators of systemic iron status,¹⁴,¹⁷ and HF patients without anaemia and with normal RCI are rarely screened for ID. We compared the prevalence of ID in HF patients with normal and abnormal RCI, and assessed the associations between different iron parameters and

*Corresponding author. Tel/Fax: +48 261 660 661, Email: ewa.jankowska@umed.wroc.pl

© 2017 The Authors
European Journal of Heart Failure © 2017 European Society of Cardiology
particular RCI. Furthermore, we evaluated the prognostic consequences of ID independently of abnormal RCI or anaemia.

Methods

Patients

The study population comprised 1821 patients with chronic HF, from five cohorts from: (i) Poland (two cohorts, n = 735),7,8 (ii) Spain (one cohort, n = 789),18 and (iii) the Netherlands (two cohorts, n = 297),19,20 as previously described by Klip et al.5 Detailed information on inclusion and exclusion criteria for each cohort are available online in the appendix to aforementioned paper.5 No patient received blood transfusions, erythropoietin therapy, or intravenous iron therapy at the time of inclusion. All study protocols have been approved by the local ethics committees, and all patients gave written informed consent. The study was conducted in accordance with the Helsinki declaration.

Haematological parameters, iron status, and other laboratory measurements in peripheral blood

Laboratory measurements were performed in the laboratories of participating centres. Haematological measurements were made in fresh venous blood with ethylenediaminetetraacetic acid (EDTA). After centrifuging, the material was collected and frozen at −70°C until further laboratory analyses. The definition of anaemia, particular RCI evaluated in this study, and cut-offs applied for the diagnosis of abnormal RCI are presented in Table 1. Mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), and MCH concentration (MCHC) were not measured in the Dutch cohorts, and red cell distribution width (RDW) and reticulocyte haemoglobin content (CHR) were not measured in the Dutch cohorts and in one Polish cohort (Tables 1 and 2). Both CHR and RDW were measured in a limited number of subjects (Table 2). The following blood biomarkers reflecting systemic iron status were measured directly: ferritin (μg/L), serum iron (μg/dL), total iron binding capacity (TIBC, μg/dL), and transferrin (mg/dL). Serum ferritin was measured using an immunoassay based on electrochemiluminescence method. Serum iron and TIBC were assessed using a substrate method. Transferrin measurements were available for most patients and transferrin saturation (TSAT) was reported as a ratio of 0.7217 × serum iron and transferrin, multiplied by 100.21 When transferrin was not available, TSAT was calculated as a ratio of serum iron and TIBC, multiplied by 100. Iron deficiency was defined as a ferritin level <100 μg/L or serum ferritin 100–299 μg/L in combination with a TSAT <20%, absolute ID as ferritin <100 μg/L, and functional ID as ferritin 100–299 μg/L with transferrin saturation <20%.9,10 Plasma level of N-terminal pro-B-type natriuretic peptide (NT-proBNP, pg/mL) was measured using an immunosassay based on electrochemiluminescence with the Elecsys System (Roche Diagnostics GmbH, Mannheim, Germany). Renal function was assessed estimating creatinine clearance (CrCl, mL/min) using the Cockcroft–Gault equation.22

Clinical follow-up

Information regarding survival was obtained directly from patients or their relatives, from the HF clinic databases or from the hospital systems, and was available for 1519 patients (83%). The all-cause death was considered as the primary endpoint in the survival analyses. For the survival analyses the length of follow-up of survivors and patients who died later than 6 years after the enrolment was censored at 2190 days.

Statistical analyses

Most continuous variables had a normal distribution, and were expressed as a mean ± standard deviation (SD) of the mean. The inter-group differences were tested using the analysis of variance (ANOVA) with post hoc Scheffé’s tests. NT-proBNP, ferritin, and TSAT had a skewed distribution, and were log-transformed (a natural logarithm, ln) before inclusion in further analyses. These variables were expressed as a median with an interquartile range, and the inter-group differences were evaluated after the ln transformation. Categorized variables were expressed as a number and a proportion (%), and the inter-group differences were tested using the chi-square test.

To establish the associations between haemoglobin concentration, RCI (MCV, MCH, MCHC, CHR, and RDW) and iron status (the presence of ID, serum iron, serum ferritin, and TSAT) we constructed a set of multivariable linear regression models (haematological parameter as dependent variable in the model) in which the power of these associations was adjusted for the following clinical variables: (i) age, gender, body mass index (BMI); (ii) the severity [New York Heart Association (NYHA) functional class, left ventricular ejection fraction (LVEF), NT-proBNP] and aetiology of HF (ischaemic vs. non-ischaemic); (iii) renal function (as assessed using CrCl); and (iv) major comorbidities (arterial hypertension and diabetes).

The impact of ID (also absolute and functional ID separately), serum ferritin, and TSAT on long-term mortality was tested: (i) unadjusted (univariable models), and (ii) after the adjustment for key clinical HF prognosticators (predefined: NT-proBNP, NYHA class and CrCl) and either haemoglobin or one of RCI (MCV, MCH, MCHC, CHR, and RDW) (five-variable models). The associations between variables analysed and long-term mortality were evaluated using multivariable Cox proportional hazard regression models.

A P-value of <0.05 was considered statistically significant. Statistical analyses were performed using the STATISTICA 12 data analysis software system (StatSoft Inc, Tulsa, OK, USA).

Results

Baseline characteristics of examined patients with heart failure: prevalence of iron deficiency in patients with anaemia or abnormal red cell indices

Clinical characteristics, iron status, and haematological parameters of 1821 examined patients with HF are presented in Table 2. Absolute and functional subtypes of ID were detected in 33% and 19% of patients, respectively. Iron deficiency (either absolute or functional) without anaemia, anaemia without ID, and the combination of both [iron deficiency anaemia (IDA)] were diagnosed in 32%, 12%, and 20% of subjects, respectively. In comparison with non-anaemic patients without ID, subjects with IDA were older, had more severe HF symptoms, higher LVEF and plasma NT-proBNP, and lower CrCl (Table 2). MCV, MCH, MCHC, and CHR below the lower limit of normal were detected in 4%, 9%, 29%, and 10% of patients, respectively, whereas RDW above the upper limit of
normal was present in 49% of subjects. Iron deficiency was common comorbidity in HF patients irrespective of either the presence of anaemia or low RCI (Figures 1 and 2), from 75% in anaemic subjects with low MCV, MCH, and MCHC, to 36% in patients without anaemia and with these three RCI above the lower limit of normal (Figure 2).

Associations between iron status and haemoglobin concentration and red cell indices

In univariable linear regression analyses the presence of ID and lower iron parameters (serum iron, serum ferritin, and TSAT) correlated with lower haemoglobin concentration, MCV, MCH, MCHC, and CHR, and with higher RDW (all \(P < 0.001 \), Table 3).

After the adjustment for relevant clinical variables (age, gender, BMI, severity and aetiology of HF, renal function, and comorbidities), in multivariable linear regression models ID and lower iron parameters remained independently associated with lower haemoglobin, MCV, MCH, MCHC, and CHR, and with higher RDW (all \(P < 0.001 \), Table 3).

Iron status, haematological parameters, and survival in patients with heart failure

Patients without available follow-up (compared with subjects with available follow-up) were more often female (42 vs. 26%, respectively, \(P < 0.001 \)), had less severe HF symptoms (NYHA class I or II: 66% vs. 46%, \(P < 0.001 \)), were older (73 ± 11 years vs. 64 ± 13 years, \(P < 0.001 \)), had higher BMI (28.4 ± 6.1 kg/m² vs. 27.5 ± 4.8 kg/m², \(P = 0.007 \)), LVEF (46 ± 16% vs. 33 ± 13%, \(P < 0.001 \)), and CrCl (103 ± 77 vs. 91 ± 55, \(P < 0.001 \)), and lower haemoglobin (12.5 ± 1.8 vs. 13.6 ± 1.8 g/dL, \(P < 0.001 \)), and were more often iron-deficient (60% vs. 50%, \(P = 0.002 \)). Importantly, these two groups of patients had similar NT-proBNP (median 1837 vs. 1395 pg/mL, \(P = 0.09 \)).

In 1519 patients studied the mean duration of follow-up (after censoring) was 855 ± 571 days (median: 699 days) whereas the mean time to death (after censoring, \(n = 422 \)) was 604 ± 501 days (median: 480 days). Higher NYHA class and NT-proBNP, and lower CrCl were independent (of each other) predictors of increased all-cause mortality in patients studied [for the three-variable Cox proportional hazard regression model (\(\chi^2 = 213.4, P < 0.001 \)); NYHA class hazard ratio (HR) per 1 class increase 1.51, 95% confidence interval (CI) 1.29–1.77, \(P < 0.001 \); NT-proBNP HR = 1.48 per 1 ln pg/mL increase, 95% CI 1.36–1.62, \(P < 0.001 \); CrCl HR = 0.95 per 10 mL/min increase, 95% CI 0.93–0.98, \(P = 0.002 \)]. The MCV, MCH, MCHC, CHR, and RDW were measured in 1136, 1114, 1114, 276, and 605 patients with available follow-up, respectively. In univariable Cox proportional hazard regression analyses the following haematological parameters were associated with increased all-cause mortality: lower haemoglobin concentration (HR = 0.86 per 1 g/dL increase, 95% CI 0.81–0.91, \(P < 0.001 \)), MCH (HR = 0.94 per 1 pg increase, 95% CI 0.90–0.98, \(P = 0.008 \)), MCHC (HR = 0.89 per 1 g/dL increase, 95% CI 0.83–0.95, \(P < 0.001 \)), CHR (HR = 0.91 per 1 pg increase, 95% CI 0.86–0.97, \(P = 0.002 \)), and higher RDW (HR = 1.16 per 1% increase, 95% CI 1.10–1.24, \(P < 0.001 \)).

In univariable Cox proportional hazard regression analyses the presence of ID (also absolute and functional ID separately) and lower TSAT (but not serum ferritin) predicted higher long-term all-cause mortality in patients with HF (Table 4, all \(P < 0.05 \)). Importantly, when adjusted for aforementioned relevant HF prognosticators (NT-proBNP, NYHA class, CrCl) and either MCH or MCHC (but not haemoglobin concentration, CHR, or RDW) there was still a trend towards higher mortality in patients with either ID or lower TSAT (all \(P < 0.1 \)) (Table 4).

Discussion

The major findings of this study are: (i) despite evident associations between iron status and RCI, ID is a common comorbid condition in HF patients irrespective of the presence of anaemia and/or abnormal RCI; (ii) ID predicts increased long-term mortality in these patients, which is partially independent of low RCI.

Owing to the traditional view of ID as a nutritional deficiency leading to IDA, low RCI have been considered sensitive indicators of decreased iron availability for haematopoietic tissues for more than 50 years.21 Indeed, low MCV, MCH, and MCHC reflect the advanced stage of iron-restricted erythropoiesis within the bone marrow, and the picture of microcytic and hypochromic anaemia constitutes the typical laboratory presentation of IDA.14,15,17

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Abnormalities</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin</td>
<td>Hb</td>
<td>g/dL</td>
<td>Anaemia: <12 g/dL for women and <13 g/dL for men</td>
<td>33</td>
</tr>
<tr>
<td>Mean corpuscular volume</td>
<td>MCV</td>
<td>fL</td>
<td>Low MCV: <81 fL for women and <80 fL for men</td>
<td>35, 36</td>
</tr>
<tr>
<td>Mean corpuscular haemoglobin</td>
<td>MCH</td>
<td>pg</td>
<td>Low MCH: <26 pg for women and <27 pg for men</td>
<td>35, 36</td>
</tr>
<tr>
<td>Mean corpuscular haemoglobin concentration</td>
<td>MCHC</td>
<td>g/dL</td>
<td>Low MCHC: <32 g/dL</td>
<td>35, 36</td>
</tr>
<tr>
<td>Mean reticulocyte haemoglobin content</td>
<td>CHR</td>
<td>pg</td>
<td>Low CHR: <28 pg</td>
<td>34, 37, 38</td>
</tr>
<tr>
<td>Red cell distribution width</td>
<td>RDW</td>
<td>%</td>
<td>High RDW: >14.5%</td>
<td>39</td>
</tr>
</tbody>
</table>
Increased RDW is another indicator of IDA, but this parameter is also elevated in megaloblastic anaemia. In comparison with aforementioned parameters, decreased haemoglobin in reticulocytes, as reflected by low CHR, characterizes the very early stages of defective erythropoiesis due to ID, and is of particular clinical importance as it allows one to monitor the response to parenteral iron therapy. Importantly, in the present study, comprising a large international cohort of HF patients with both reduced and preserved LVEF, we have shown that although haemoglobin concentration and particular RCI (MCH, MCHC, CHR, and RDW) closely correlate with different iron parameters (the presence of ID, serum iron, serum ferritin, and TSAT) independently of other clinical and laboratory variables (including aetiology and severity of HF and important comorbidities), ID and anaemia are associated with decreased LVEF independently of other clinical and laboratory variables (including aetiology and severity of HF and important comorbidities), ID and anaemia are associated with decreased LVEF.
also constitutes a frequent comorbidity in patients without any haematological abnormalities. It needs to be emphasized that even in non-anaemic [according to the World Health Organization (WHO) definition] patients with MCV, MCH, and MCHC above the lower limit of normal, the prevalence of ID reached 36%. An observed considerable prevalence of ID irrespective of the presence of anaemia or abnormal RCI suggests that although disordered iron homeostasis represents one of the causes of anaemia in HF,2,25 many patients with cardiac failure and concomitant ID will not develop haematological abnormalities. Indeed, in recent years complex derangements regarding iron status in HF have been elucidated,1,3 and the traditional view of ID as a leading cause of anaemia25 in these patients has been revised.2 With regard to pathophysiology, ID contributes to the cardiorenal–anaemia axis in patients with HF,26 and the complex interplay between cardiac failure, renal dysfunction, ID, and anaemia has been emphasized in a paper by Macdougall et al.,27 in which the authors introduced the term cardiorenal–anaemia–iron deficiency syndrome (CRAIDS). Nevertheless, the aetiology of anaemia in HF is multifactorial,2 with several contributing and overlapping pathomechanisms such as renal impairment, systemic inflammation, ID, and haemodilution, to name but a few.2,28,29 Importantly, the present study confirms that in patients with HF ID should not only be perceived as a cause of anaemia, but an equivalent comorbidity that can occur without haematological abnormalities, and is generally more frequent than anaemia.3,5,30

In the present study we have also demonstrated that in patients with HF with either reduced or preserved LVEF, concomitant ID predicts increased long-term all-cause mortality, which is partially independent of RCI. In univariable Cox proportional hazard regression analyses both iron status (ID and lower TSAT, but not serum ferritin) and RCI (lower haemoglobin, MCH, MCHC, CHR, and higher RDW, but not MCV) predicted increased long-term mortality. Further, in multivariable analyses there was still a trend towards higher mortality in patients with either ID (including functional but not absolute subtype of this comorbidity separately) or lower TSAT (all \(P < 0.1 \)), when adjusted for relevant clinical HF prognosticators (neurohormonal activation, severity of HF symptoms and renal function) and MCH or MCHC (but not haemoglobin, CHR, or RDW). Our results are consistent with previous findings demonstrating the detrimental prognostic consequences of ID in patients with either stable or acute HF.3,6,8,31 Importantly, in the patients with HF studied the trend towards higher mortality was associated more with functional than absolute ID, and serum ferritin, reflecting body iron stores, was not related to survival in this population. From the pathophysiological point of view, functional ID results from reduced availability of iron for iron-utilizing cells (e.g. erythropoietic), and is promoted by increased systemic inflammation.2 Importantly, although patients with more severe HF symptoms are characterized by lower ferritin, TSAT, hepcidin (key regulator of iron metabolism), and haemoglobin, and by increased circulating inflammatory biomarkers, the associations between iron and inflammatory parameters...
Iron deficiency and red cell indices in heart failure

Figure 2 The prevalence of iron deficiency in patients with heart failure according to the presence of anaemia and the number of decreased red cell indices (RCI) (of the following three: mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration). LLON, lower limit of normal. For the definition of iron deficiency, anaemia, and decreased RCI, see the Methods section and Table 1.

Table 3 Associations between iron status and haemoglobin concentration and red cell indices in patients with heart failure

<table>
<thead>
<tr>
<th>ID and iron parameters</th>
<th>Applied adjustment</th>
<th>Haemoglobin (g/dL)</th>
<th>MCV (fL)</th>
<th>MCH (pg)</th>
<th>MCHC (g/dL)</th>
<th>CHR (pg)</th>
<th>RDW (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID (yes vs. no)</td>
<td>None</td>
<td>-0.21***</td>
<td>-0.17***</td>
<td>-0.31***</td>
<td>-0.28***</td>
<td>-0.24***</td>
<td>0.21***</td>
</tr>
<tr>
<td>ID (yes vs. no)</td>
<td>10 clinical variables</td>
<td>-0.10***</td>
<td>-0.17***</td>
<td>-0.25***</td>
<td>-0.19***</td>
<td>-0.23***</td>
<td>0.14***</td>
</tr>
<tr>
<td>Iron (μg/dL)</td>
<td>None</td>
<td>0.39***</td>
<td>0.19***</td>
<td>0.38***</td>
<td>0.36***</td>
<td>0.34***</td>
<td>-0.28***</td>
</tr>
<tr>
<td>Iron (μg/dL)</td>
<td>10 clinical variables</td>
<td>0.26***</td>
<td>0.21***</td>
<td>0.30***</td>
<td>0.23***</td>
<td>0.36***</td>
<td>-0.26***</td>
</tr>
<tr>
<td>Ferritin (ln μg/L)</td>
<td>None</td>
<td>0.16***</td>
<td>0.15***</td>
<td>0.25***</td>
<td>0.21***</td>
<td>0.21***</td>
<td>-0.14***</td>
</tr>
<tr>
<td>Ferritin (ln μg/L)</td>
<td>10 clinical variables</td>
<td>0.08***</td>
<td>0.16***</td>
<td>0.22***</td>
<td>0.16***</td>
<td>0.22***</td>
<td>-0.12***</td>
</tr>
<tr>
<td>TSAT (ln %)</td>
<td>None</td>
<td>0.35***</td>
<td>0.29***</td>
<td>0.46***</td>
<td>0.38***</td>
<td>0.48***</td>
<td>-0.33***</td>
</tr>
<tr>
<td>TSAT (ln %)</td>
<td>10 clinical variables</td>
<td>0.22***</td>
<td>0.32***</td>
<td>0.42***</td>
<td>0.27***</td>
<td>0.50***</td>
<td>-0.24***</td>
</tr>
</tbody>
</table>

Data are presented as standardized regression coefficients β (both in univariable and multivariable models) between haematological parameters (dependent variable in the multivariable model) and indices of iron status.

CHR, mean reticulocyte haemoglobin content; ID, iron deficiency; MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular haemoglobin concentration; MCV, mean corpuscular volume; RDW, red cell distribution width; TSAT, transferrin saturation.

†10 clinical variables: age, gender, body mass index, New York Heart Association functional class, aetiology of heart failure, left ventricular ejection fraction, N-terminal pro-B-type natriuretic peptide [natural logarithm (ln)], estimated creatinine clearance, concomitant arterial hypertension, and diabetes. Anaemia was defined as haemoglobin <12 g/dL in women and <13 g/dL in men. ID was defined as ferritin <100 μg/L, or 100–299 μg/L with TSAT <20%.

It should be acknowledged that although current 2016 European Society of Cardiology guidelines for the diagnosis and treatment of acute and chronic HF clearly recommend searching for comorbidities such as ID in all patients with newly diagnosed HF (class of recommendation I, level of evidence C), in daily clinical practice, patients with normal RCI and without anaemia have rarely assessed ferritin and TSAT. The results of the present study confirm that all patients with HF should be routinely screened.
Table 4 Iron status and long-term all-cause mortality in patients with heart failure (univariable and multivariable Cox proportional hazard regression models)

<table>
<thead>
<tr>
<th>Iron status</th>
<th>Iron status</th>
<th>Absolute ID (yes vs. no)***</th>
<th>Functional ID (yes vs. no)****</th>
<th>Ferritin (1 ln μg/L)</th>
<th>TSAT (1 ln %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjustment</td>
<td>HR 95% CI WS P-value</td>
</tr>
<tr>
<td>None (univariable analysis)</td>
<td>1.34</td>
<td>1.10–1.62 8.72 0.0032</td>
<td>1.26 1.01–1.56 4.37 0.0367</td>
<td>1.50 1.16–1.93 9.87 0.0017</td>
<td>1.01 0.91–1.12 0.03 0.8710</td>
</tr>
<tr>
<td>Three clinical variables:</td>
<td>1.12</td>
<td>0.92–1.37 1.31 0.2522</td>
<td>1.06 0.84–1.32 0.23 0.6323</td>
<td>1.25 0.97–1.62 2.91 0.0883</td>
<td>- - - -</td>
</tr>
<tr>
<td>haemoglobin</td>
<td>Three clinical variables:</td>
<td>1.26</td>
<td>0.98–1.61 3.28 0.0703</td>
<td>1.23 0.93–1.62 2.05 0.1518</td>
<td>1.40 0.99–1.96 3.72 0.0537</td>
</tr>
<tr>
<td>MCHC**</td>
<td>Three clinical variables:</td>
<td>1.23</td>
<td>0.97–1.58 2.82 0.0934</td>
<td>1.21 0.92–1.60 1.85 0.1734</td>
<td>1.34 0.95–1.88 2.82 0.0933</td>
</tr>
<tr>
<td>MCHC**</td>
<td>Three clinical variables:</td>
<td>1.25</td>
<td>0.80–1.96 0.93 0.3337</td>
<td>1.30 0.78–2.18 1.03 0.3112</td>
<td>1.29 0.73–2.27 0.77 0.3803</td>
</tr>
<tr>
<td>CHR**</td>
<td>Three clinical variables:</td>
<td>0.90</td>
<td>0.63–1.27 0.37 0.5443</td>
<td>0.88 0.60–1.31 0.38 0.5383</td>
<td>0.91 0.58–1.45 0.14 0.7046</td>
</tr>
<tr>
<td>RDW**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHR, mean reticulocyte haemoglobin content; CI, confidence interval; HR, hazard ratio; ID, iron deficiency; MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular haemoglobin concentration; MCV, mean corpuscular volume; RDW, red cell distribution width; WS, Wald's statistic.

*Three clinical variables: N-terminal pro-B-type natriuretic peptide (unit: 1 ln pg/mL), New York Heart Association class (1 class), and estimated creatinine clearance (1 mL/min).
**MCV, MCH, MCHC, CHR and RDW were not measured in all patients with available follow-up (see the Results section). ID was defined as ferritin <100 μg/L or 100–299 μg/L with transferrin saturation <20%; absolute ID as ferritin <100 μL; and functional ID as ferritin 100–299 μg/L with transferrin saturation <20%. For details see the Methods section.
Patients with functional ID excluded from the analyses. *Patients with absolute ID excluded from the analyses.
for ID, irrespective of the presence or absence of haematological abnormalities, as these pathologies are not simply parallel. Moreover, we have shown that a detrimental impact of ID on long-term prognosis in HF patients is partially independent of haematological abnormalities (i.e., decreased RCI). This is another premise for the routine assessment of iron parameters in HF patients to improve the risk stratification process in subjects who are usually not suspected of ID. An active screening for ID in patients with symptomatic HF with reduced LVEF would allow clinicians to identify more potential beneficiaries of intravenous iron therapy. Importantly, there is no direct evidence of whether intravenous iron therapy improves outcomes in HF patients (also irrespective of baseline haematological status).

Limitations

It should be emphasized that there is no universal lower limit of normal blood haemoglobin concentration (i.e., the definition of anaemia). In the present study the definition of anaemia was based on the WHO report (haemoglobin concentration <12 g/dL for women and <13 g/dL for men) from 1968 and the same definition is mentioned in the 2016 ESC guidelines for the diagnosis and treatment of acute and chronic HF. Although this definition of anaemia is widely accepted and commonly applied in epidemiological studies (including studies regarding HF patients), the appropriateness of these cut-offs remains very controversial and has been criticized. Analogously to haemoglobin, in the present study, the lower limits of normal MCV, MCH, and MCHC were defined according to the WHO document based on US Second National Health and Nutrition Examination Survey (NHANES II) (Table 1), and these cut-offs also may not be optimal for the contemporary Europeans with HF.

Furthermore, the follow-up was available for 1519 patients only (83%), which is a potential source of bias. Compared with subjects included in survival analyses, patients without available follow-up had a different clinical profile: they were older and more often female, had less severe HF symptoms, higher LVEF, better renal function, lower haemoglobin, and, finally, they were more often iron-deficient. Importantly, MCV, MCH, MCHC, CHR, and RDW were not measured in all patients with available follow-up (see the Results section).

Another limitation of the study is that although patients did not receive blood transfusions, erythropoietin therapy, or intravenous iron therapy at the time of inclusion, we do not have data regarding potential iron therapy (either intravenous or oral) or therapy with erythropoiesis-stimulating agents during the follow-up period.

Conclusions

The present study confirms that, in patients with HF, ID should not only be perceived as a cause of anaemia, but an equivalent comorbid condition that can occur without haematological abnormalities regarding RCI or haemoglobin concentration. Importantly, the detrimental impact of ID on long-term survival in HF patients is partially independent of decreased RCI. Patients with HF should be routinely screened for ID irrespective of the presence of anaemia or abnormal RCI.

Funding

This research was financially supported by the National Science Centre (Kraków, Poland) grant allocated on the basis of the decision number DEC-2012/05/E/NZ5/00590.

Conflict of interest: Wroclaw Medical University received an unrestricted grant from Vifor Pharma. J.C.C. received fees for speaking for Vifor Pharma and fees as a member of the steering committee of the FAIR-HF and CONFIRM-HF study from Vifor Pharma. A.A.V. received consultancy fees and an unrestricted educational grant from Vifor Pharma and consultancy fees from Amgen. D.J.v.V. has received board membership fees from Amgen and Vifor Pharma. W.B. reports personal fees from Vifor Pharma. PvdM received consultancy fees and an unrestricted educational grant from Vifor Pharma. P.P. reports receiving consulting fees from Vifor Pharma and Amgen, Inc., and honoraria from Vifor Pharma, and travel/accommodation expenses covered by Vifor Pharma and Amgen, Inc. E.A.J. reports receiving honoraria for lectures and participation in advisory boards from Vifor Pharma and related travel/accommodation expenses covered by Vifor Pharma. All the other authors report no conflict of interest.

References