The Coulomb and Coulomb-like off-shell Jost functions
van Haeringen, H

Published in:
Journal of Mathematical Physics

DOI:
10.1063/1.524161

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1979

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
The Coulomb and Coulomb-like off-shell Jost functions

H. van Haeringen

Citation: Journal of Mathematical Physics 20, 1109 (1979); doi: 10.1063/1.524161
View online: https://doi.org/10.1063/1.524161
View Table of Contents: http://aip.scitation.org/toc/jmp/20/6
Published by the American Institute of Physics
The Coulomb and Coulomb-like off-shell Jost functions

H. van Haeringen

Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands
and Institute for Theoretical Physics, P.O. Box 800, University of Groningen, The Netherlands
(Received 29 August 1978)

The off-shell Jost functions are studied for a potential which is the sum of the Coulomb potential and an arbitrary local short-range central potential. We derive their singular on-shell behavior and their connection with the pure Coulomb off-shell Jost functions. For the latter we derive a large variety of interesting explicit analytic expressions which are useful for various purposes.

1. INTRODUCTION

In this paper we investigate the off-shell Jost functions $f_{\alpha}(k,q)$ for the Coulomb potential and the off-shell Jost functions $f_{l}(k,q)$ for a Coulomb plus short-range potential, $V = V_c + V_s$, where V_c is assumed to be local and central. As is now well known, these off-shell Jost functions are particularly interesting in connection with the transition matrices.

In Sec. 2 we show that $f_{\alpha}(k,q)$ is a basic constituent of $f_{l}(k,q)$. In particular, we prove that $f_{l}(k,q)$ has exactly the same singularity in $q = k$ as $f_{\alpha}(k,q)$. In order to obtain the most convenient formula for $f_{\alpha}(k,q)$, a regrouping of certain hypergeometric function expressions has to be performed. By doing this we supply the supplementary proof of the simple formula for $f_{\alpha}(k,q)$ that we have given before.1 This formula contains Jacobi polynomials and certain polynomials of two variables, $A_{l,\alpha}$.

In Sec. 3 we derive a large number of interesting expressions for these polynomials $A_{l,\alpha}$. Each of these is useful for different purposes, as is clearly illustrated at the end of Sec. 3. We shall use the notation of Ref. 1.

2. THE OFF-SHELL JOST FUNCTIONS

In this section we will express the off-shell Jost function $f_{l}(k,q)$ for a Coulomb-like potential in terms of the Coulomb off-shell Jost function $f_{\alpha}(k,q)$. By using this expression the on-shell behavior at $q = k$ is easily obtained. Further, we shall sketch the derivation of a simple closed formula for $f_{l}(k,q)$.

We start by noting that

$$f_{l}(k,q) = 1 + \frac{1}{\sqrt{2\pi}} \text{sgn}(q/k) \mathcal{F}_l(k) \langle q|l|V_l|kl+\rangle. \quad (2.1)$$

Here $f_{l}(k)$ is the Jost function and $|kl+\rangle$ the “outgoing” scattering state, with energy k^2, for the potential $V_l = V_{el} + V_{si}$. We use the Coulomb analog of Eq. (2.1) and apply the two-potential formalism. In this way we get the convenient expression

$$f_{l}(k,q)f_{l}(k,q) = f_{l}(k,q) + \langle kl - |V_{el}G_l|X_l\rangle. \quad (2.2)$$

Here G_l is the partial-wave Green operator for V_l, and $|X_l\rangle$ is defined by

$$|X_l\rangle = \frac{1}{\sqrt{2\pi k G_{0l}}} \left[(q/k)^l + |q|l\rangle_0 - |kl\rangle_0 \right].$$

By inserting

$$\langle p|q|l\rangle_0 = 2\pi (\pi)^{-1} (p/q)^l (p^2 - q^2)^{-1},$$

we obtain a simple expression for $|X_l\rangle$ in the momentum representation,

$$\langle p|X_l\rangle = (p/k)^l (k^2 - q^2)/(p^2 - q^2). \quad (2.3)$$

Equation (2.2) is very interesting, since it clearly shows that $f_{l}(k,q)$ has exactly the same singularity in $q = k$ as $f_{\alpha}(k,q)$. As a matter of fact, by using Eq. (2.3) we have

$$\lim_{q \to k} \text{sgn}(q/k) f_{l}(k,q) = 1, \quad k > 0,$$

and therefore,

$$\lim_{q \to k} \langle q|l|X_l\rangle = 0, \quad k > 0. \quad (2.4)$$

Here

$$\omega \equiv \left(\frac{q - k}{q + k} \right) \text{sgn}\left(\frac{q - k}{q + k} \right) = \frac{f_{\alpha}(k)}{f_{\alpha}(k,q)},$$

Now we are going to summarily derive explicit expressions for $f_{l}(k,q)$ [cf. Eqs. (4) and (7) of Ref. 1]. In order to evaluate $\langle q|l|V_{el}|kl+\rangle$, which occurs in

$$f_{l}(k,q) = 1 + \frac{1}{\sqrt{2\pi}} \text{sgn}(q/k) f_{l}(k) \langle q|l|V_{el}|kl+\rangle,$$

we use the well-known expressions,

$$\langle q|l|\rangle = (2\pi)^{-i/2} \left(\Gamma(1 + q) \right) f_{l}(k,q).$$

We obtain

$$\langle q|l|\rangle = (-1)^{(q+1)/2} e^{-iqr/2} (\pi)^{-1/2} e^{-iqr} F_{l}(l + 1 - i\gamma;2l + 2;ikr).$$

By using Ref. 3, p. 278, one obtains

$$\langle q|l|V_{el}|kl+\rangle = 2i\pi \left[\pi G_{0l} \langle q|l|V_{el}|kl+\rangle \right]^{-1} \times F_{l}(l + 1 - i\gamma;2l + 2;ikr).$$

where $z = 2k/(q + k)$. The important step now is to separate off that part which contains the branch-point singularity in $q = k$. To this end we apply two transformations to the hypergeometric function F_{l} on the right-hand side of Eq. (2.5) and find (Ref. 3, p. 47),

$$F_{l}(l + 1 - i\gamma;2l + 2;ikr) = (1 - z)^{m - i\gamma} \left(\Gamma(2l + 2) \Gamma(i\gamma - m) \right) \left(\Gamma(l + 1 - m) \Gamma(l + 1 + i\gamma) \right) z^{2l + 1},$$

1099 J. Math. Phys. 20(6), June 1979 0022-2488/79/061109-06$01.00 © 1979 American Institute of Physics 1109
The hypergeometric series for the \(F_i \)'s on the right-hand side break off. Therefore, these \(F_i \)'s can be rewritten in terms of Jacobi polynomials. One has, with \(z = 2/(1 + x) \),

\[
P_{\nu}^{(\gamma - m, - \nu - m)}(x) = \frac{(1 + m) P_{\nu}^{(\gamma - m, - \nu - m)}(z)}{(l + m)!} F_i(- m - l, i \gamma - l; 1 + i \gamma - m; z - 2).
\]

and so

\[
P_{\nu}^{(\gamma - m, + \nu - m)}(x) = \frac{(l - m) P_{\nu}^{(- l - m, + \nu - m)}(z)}{(l - m)!} F_i(- m - l, - i \gamma - l; 1 - i \gamma + m; z - 2).
\]

When we insert all this in Eq. (2.5) we get a complicated expression. In order to simplify this expression we introduce the polynomials \(A_i \),

\[
A_i(q'^2/k^2, z'^2) = \sum_{m=0}^{\infty} \left(\frac{l + m}{l} \right) \left(\frac{q^2 - k^2}{4kq} \right)^m P_{\nu}^{(\gamma - m, - \nu - m)}(x).
\]

Furthermore, we shall now prove that

\[
\frac{1}{x} \int_0^x (1 + t)^{- \nu - 1} (1 - t)^{- \nu - 1} \, dt
\]

For this proof we use

\[
P_n^{(a, b)}(\xi) = \binom{n + a}{n} F_n(- n, n + 1 + a + b, 1 + \alpha \xi + \frac{b - \alpha}{2} \xi),
\]

and the well-known integral representation

\[
\nu F_i(a, b; c; \xi) = \frac{\Gamma(c) \Gamma(l + 1)}{\Gamma(b) \Gamma(c - b)} \left(\frac{\Gamma(c - b)}{\Gamma(c)} \right) \nu \sum_{m=0}^{\infty} \left(\frac{l + m}{l} \right) \left(\frac{\nu}{4kq} \right)^m dt.
\]

The left-hand side of Eq. (2.7) then becomes

\[
\Gamma(l + 1 - i \gamma) \Gamma(l - i \gamma - 1) \Gamma(l + 1) \nu \frac{(1 - t)^{i \gamma - 1} (1 + t)^{i \gamma - 1} \nu}{(1 - t)^{i \gamma - 1} (1 + t)^{i \gamma - 1} \nu}\nu \sum_{m=0}^{\infty} \left(\frac{l + m}{l} \right) \left(1 - \frac{\nu}{4kq} \right)^m dt.
\]

By performing the summation and using again Eqs. (2.8) we obtain the desired expression, i.e.,

\[
(1 - i \gamma) F_i(- l, l + 1; 1 - i \gamma, - (q - k)^2) = \frac{\nu}{4kq} \nu \sum_{m=0}^{\infty} \left(\frac{l + m}{l} \right) \left(1 - \frac{\nu}{4kq} \right)^m dt.
\]

This completes the proof of Eq. (2.7).

By inserting the above expressions in Eq. (2.5) and using Eqs. (2.6) and (2.7) we obtain

\[
\sum_{l=0}^{\infty} |x^{l+1} F_i(l+1; l+1; 1; \xi)|^2 = 2c_{\nu}(q')^{-\nu} f_{\nu}(k, q')^{-\nu} f_{\nu}(k, q')^{-\nu} f_{\nu}(k, q')^{-\nu},
\]

for the polynomials \(A_i \).

In Sec. 3, we will derive a large number of useful expressions for the polynomials \(A_i \).

3. THE TWO-VARIABLE POLYNOMIALS \(A_i \)

In this section, we shall derive a number of interesting explicit expressions for the polynomials \(A_i \), that occur in the Coulomb off-shell Jost functions \(f_{\nu}(k, q') \).

To start with, we have

\[
A_i = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(l + n)}{l} \left(\frac{q^2 - k^2}{4kq} \right)^m P_{\nu}^{(l + n, - \nu - n)}(x)
\]

Substitution of

\[
P_{\nu}^{(l + n, - \nu - n)}(x) = \frac{\Gamma(l + 1 + i \gamma) \Gamma(l + n + 1) \Gamma(l - n + 1) \Gamma(i \gamma - 1)}{\Gamma(l + 1 + i \gamma) \Gamma(l + i \gamma) \Gamma(l - n - 1) \Gamma(i \gamma - l)} - 1
\]

yields

\[
A_i = \Gamma(l + 1 + i \gamma) \Gamma(l + n + 1) \Gamma(l - n + 1) \Gamma(i \gamma - 1) - 1
\]

The sum is easily carried out. We then get

\[
A_i = 4 \nu c_{\nu} \nu \sum_{n=0}^{\infty} \nu \sum_{m=0}^{\infty} \frac{(l + n)}{l} \left(\frac{q^2 - k^2}{4kq} \right)^m dt.
\]

\[
\sum_{n=0}^{\infty} \nu \sum_{m=0}^{\infty} \frac{(l + n)}{l} \left(\frac{q^2 - k^2}{4kq} \right)^m dt.
\]

It is well known that

\[
(1 - 2\tau^2 + \tau^4)^{\nu} = \sum_{n=0}^{\infty} \nu \sum_{m=0}^{\infty} \frac{(l + n)}{l} \left(\frac{q^2 - k^2}{4kq} \right)^m dt.
\]

Therefore, these polynomials can be rewritten in terms of Gegenbauer polynomials \(C_\nu^{(l + n, - \nu - n)} \).
Because of
\[C_n^{(a)} \equiv 0, \quad n = 2l + 1, 2l + 2, \ldots, \]
we can apply the above expansion to Eq. (3.2b), the result being,
\[A_l = \left(1 - \frac{x^2}{4}\right)^{\frac{1}{
\mu + i
}} \sum_{l=0}^{2l} \frac{1}{n - l + i
} C_n \left(\frac{x^2 + 1}{x^2 - 1}\right). \quad (3.3a) \]
By using
\[C_i^{(a)}(\xi) \equiv C_i^{(a)}(\xi), \quad l \leq n < l, \]
we recast the above sum in the more convenient form,
\[\sum_{n=0}^{2l} \frac{1}{n - l + i
} C_n \left(\frac{x^2 + 1}{x^2 - 1}\right) = -i
\sum_{n=0}^{\infty} \frac{\epsilon_n}{x^2 + \gamma^2} C_i^{(a)}(\frac{x^2 + 1}{x^2 - 1}). \]
Here \(\epsilon_n \) is the Neumann symbol,
\[\epsilon_n = \begin{cases} 1, & n = 0, \\ 2, & n = 1, 2, 3, \ldots \end{cases} \]
In this way we obtain from Eq. (3.3a),
\[A_l = \left(1 - \frac{x^2}{4}\right)^{\frac{1}{
\mu + i
}} \sum_{n=0}^{l} \frac{\epsilon_n}{x^2 + \gamma^2} C_i^{(a)}(\frac{x^2 + 1}{x^2 - 1}). \quad (3.3b) \]
This expression can be rewritten in terms of the Jacobi polynomials \(P^{(a)}(\mu - n) \). By using
\[C_i^{(a)}(\xi) = (\lambda)_n^a(\xi)^a \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{(x^2 + 1)^n}{x^2 - 1}, \]
we derive the interesting relation,
\[\left(\frac{4\lambda - 1}{x^2 - 1}\right) \Gamma^{-\mu}(\frac{x^2 + 1}{x^2 - 1}) = P_i^{(a)}(\mu - n)(\frac{1}{x^2 + \gamma^2}) \Gamma^{-\mu}(\frac{x^2 + 1}{x^2 - 1}). \quad (3.3c) \]
When \(x > 1 \) the Legendre function here has to be multiplied by \((-1)^n\).

From Eq. (3.2a) one can find an expression containing either \(\mu_{F(n)} \) or \(\mu_{F(n)} \) or \(\mu_{F(n)} \). It turns out that the formula with \(\mu_{F(n)} \) is the more convenient one. We obtain this formula by using the binomial expansion, which yields
\[A_l = 4^{\frac{1}{n}} \sum_{m=0}^{l} (l - m)^{2m}(\frac{x^2 + 1}{x^2 - 1}). \]
By again using the binomial expansion,
\[(2 - t)^{2m} = \sum_{n=0}^{\infty} \frac{(-2)^m}{n!} (-1)^n t^{n+1}, \]
the integration can be performed, with the result,
\[\int_0^1 (1 - t)^{\mu - l} t^{2l - n} dt = \frac{\Gamma(2 - n + 1)(\Gamma(\mu - l))/\Gamma(\mu + l + m + 1)}{\Gamma(2 + m - n + 1)} \]
In this way we get
\[A_l = 4^{\frac{1}{n}} \sum_{m=0}^{l} \left(\frac{1}{n!}\right) (-1)^n x^{2l - 2m} \times P_i^{(a)}(\mu - n)(-1 - iy)^n \]
The sum \(\Sigma_d \) is a terminating hypergeometric series for which we write \(\mu_{F(2 - 2m - l - iy)} \). One should be careful here, since the third parameter, \(-2l \), is a nonpositive integer. By using expression (2.11) for \(c_{r_i} \) we obtain
\[A_l = 4^{\frac{1}{n}} \sum_{m=0}^{l} \left(\frac{1}{n!}\right) (-1)^n x^{2l - 2m} \times P_i^{(a)}(2,l - l + iy; - 2l/2). \]
We note that \(A_l \) is a function of \(\gamma^2 \) rather than of \(\gamma \), as can be seen from Eq. (3.3b). So we have, by replacing \(m \) by \(l - n \),
\[A_l = 4^{\frac{1}{n}} \sum_{m=0}^{l} \left(\frac{1}{n!}\right) (-1)^n x^{2l - 2m} \times P_i^{(a)}(2 + m, - l + iy; - 2l/2). \quad (3.5a) \]
The hypergeometric function \(\mu_{F(2 - 2m - l - iy)} \) can be expressed in terms of a Jacobi polynomial with argument 0. By using Ref. 3, p. 212, we have
\[A_l = 4^{\frac{1}{n}} \sum_{m=0}^{l} \left(\frac{1}{n!}\right) (-1)^n x^{2l - 2m} \times P_i^{(a)}(2 + m, - l + iy; - 2l/2). \]
Further, we have
\[P_i^{(a)}(\mu - n)(\xi) = (\mu + 1)_{\mu}(\mu + 1)_{\mu}(\xi - 1)^{\mu}/(\mu + n)_{\mu}(\xi - 1)^{\mu} \times P_i^{(a)}(\mu + 1)_{\mu}(\xi - 1)^{\mu}, \quad 0 < x < 1. \quad (3.4b) \]
or
\[A_t = \frac{1}{l!} (\frac{4}{x^2})^l \sum_{n=0}^l (2n)! (2l-2n)! (\frac{4}{x^2})^{-n} \times P_{\frac{2n}{2n}}^{(l-2n+iy, l-2n-iy)} (0). \] (3.5c)

Now we come to the derivation of the most elegant formula for \(A_t \), i.e., a generalized hypergeometric function \(F \) with argument \(l - x^2 \). From Eq. (3.2a) we have
\[A_t = \frac{i\gamma}{\sqrt{\pi}} e^{-\frac{1}{2}} \int_0^1 (1-t)^{\gamma-2} [1-t + \frac{1}{2} (1-x^2)t^2] dt. \]

After substitution of
\[(1 - t + \frac{1}{2} (1-x^2)t^2) = \sum_{n=0}^l \binom{l}{n} (1-t)^n t^{2n} - 2n \times (1-x^2)^n, \]
we can perform the integration, the result being
\[\int_0^1 (1-t)^{\gamma-1} - n t^{2n} dt = \Gamma (\gamma - n) \Gamma (2n + 1)/ \Gamma (\gamma + n + 1). \]

In this way we obtain
\[A_t = c_n \frac{1}{l!} \sum_{n=0}^l \frac{(2n)!}{n!} \frac{(1 + i\gamma, n - 1 - i\gamma)}{2^{2n}(1-x^2)^n}. \] (3.6a)

By using the doubling formula for the gamma function we have
\[(2n)! = (\frac{1}{2})_n 2^{2n} n!, \]
and so
\[A_t = c_n \frac{1}{l!} F_2 (-l, 1; \frac{1}{2} l + i\gamma, 1 - i\gamma; 1 - x^2). \] (3.6b)

An alternative expression is
\[A_t = \sum_{n=0}^l \frac{\Gamma (l + 1 + i\gamma) \Gamma (l + 1 - i\gamma)}{\Gamma (n + 1 + i\gamma) \Gamma (n + 1 - i\gamma)} \times \frac{1}{\Gamma (l + 1) \Gamma (l + 1 - n)} \times \frac{1}{\Gamma (\gamma)} \frac{\Gamma (l - n + \frac{1}{2})}{\Gamma (l - n + 1)} \times F_2 (i\gamma, -i\gamma l - n + \frac{1}{2} l l + 1; 1). \] (3.6c)

where we have inserted Eq. (2.11). Furthermore, we have the terminating hypergeometric series,
\[A_t = \frac{1}{l!} (x^2 - 1)^l \sum_{n=0}^l \frac{(\gamma - l) \Gamma (l - 1) \Gamma (l - \gamma - 1)}{(\frac{1}{2} - l)_n \Gamma (l + 1) \Gamma (l + 1 - l)} n! \times \frac{1}{\Gamma (l + 1) \Gamma (l + 1 - l)} \times \frac{1}{\Gamma (\gamma)} \frac{\Gamma (l - n + \frac{1}{2})}{\Gamma (l - n + 1)} \times F_2 (i\gamma, -i\gamma n + \frac{1}{2} l l + 1; 1). \] (3.6d)

From Eq. (3.6c) one can derive an expression involving a \(F \) with argument 1. By inserting
\[(x^2 - 1)^n = \sum_{m=0}^n \binom{n}{m} x^{2m} (-y)^{-m} \]
in (3.6c) and introducing the new summation variable \(v = n - m \), we have
\[\sum_{n=0}^l \sum_{m=0}^l \ldots = \sum_{n=0}^l \sum_{m=0}^l \ldots. \]

It turns out that the sum \(\Sigma_v \) is a \(F \), and thus we obtain
\[A_t = \frac{1}{l!} \sum_{n=0}^l \frac{x^{2n} (\frac{1}{2})_n \Gamma (l + 1 + i\gamma) \Gamma (l + 1 - i\gamma)}{\Gamma (l + 1) \Gamma (l + 1 - n)} \times \frac{1}{\Gamma (\gamma)} \frac{\Gamma (l - n + \frac{1}{2})}{\Gamma (l - n + 1)} \times F_2 (i\gamma, -i\gamma l - n + \frac{1}{2} l l + 1; 1). \] (3.7)

We transform this \(F \) into a \(F \) with different parameters by applying a generalization of Dixon's theorem, see Slater (Ref. 4, p. 52),
\[F_2 (n - l, n + 1, n + \frac{1}{2} n + 1 + i\gamma; 1 - i\gamma; 1) = \Gamma [l + n + \frac{1}{2}, n + 1 + i\gamma, 1 + n - i\gamma] \frac{1}{\gamma} \frac{1}{l + 1} \times F_2 (i\gamma, -i\gamma l - n + \frac{1}{2} l l + 1; 1). \]

Then we have from (3.7),
\[A_t = \frac{\Gamma (l + 1 + i\gamma) \Gamma (l + 1 - i\gamma)}{\Gamma (l + 1)} \times \frac{1}{\Gamma (\gamma)} \frac{\Gamma (l - n + \frac{1}{2})}{\Gamma (l - n + 1)} \times \frac{1}{\Gamma (l + 1) \Gamma (l + 1 - l)} \times F_2 (i\gamma, -i\gamma n + \frac{1}{2} l l + 1; 1). \] (3.8a)

Note that the hypergeometric series for this \(F \) breaks off when \(i\gamma = 0, -1, -2, \ldots \). The case \(i\gamma = 0 \) corresponds to no Coulomb interaction at all. On the other hand, \(i\gamma = -1, -2, -3, \ldots \) occurs for the Coulomb bound states.

It is not difficult to derive from Eq. (3.8a) the corresponding series with decreasing powers of \(x \). This expression has almost exactly the same form as (3.8a), namely,
\[A_t = \frac{\Gamma (l + 1 + i\gamma) \Gamma (l + 1 - i\gamma)}{\Gamma (l + 1)} \times \frac{1}{\Gamma (\gamma)} \frac{\Gamma (l - n + \frac{1}{2})}{\Gamma (l - n + 1)} \times \frac{1}{\Gamma (l + 1) \Gamma (l + 1 - l)} \times F_2 (i\gamma, -i\gamma n + \frac{1}{2} l l + 1; 1). \] (3.8b)

By comparing this expression with Eq. (3.5c) we get the interesting equality
\[F_2 (i\gamma, -i\gamma n + \frac{1}{2} l l + 1; 1) = \frac{(-4)^l (l - n)! \Gamma (l + 1 + i\gamma) \Gamma (l + 1 - i\gamma)}{\Gamma (l + 1 + i\gamma) \Gamma (l + 1 - i\gamma)} \times \frac{1}{\Gamma (l + 1 + i\gamma) \Gamma (l + 1 - i\gamma)} \times \times \frac{1}{\Gamma (l + 1) \Gamma (l + 1 - l)} \times \times F_2 (i\gamma, -i\gamma n + \frac{1}{2} l l + 1; 1). \]

In the particular case when \(l = 2n \) this expression can be simplified. By using (e.g., Ref. 3, p. 167)
\[\Gamma(1 + \mu)P_{-\mu}(0) = \mathcal{F}(c, d, a + b + 1, 1) \]

\[= \Gamma(1 + \frac{1}{2} \mu) \times [\Gamma(1 + \frac{1}{2} \mu + \frac{1}{2} \nu) / \Gamma(\frac{1}{2} + \frac{1}{2} \mu + \frac{1}{2} \nu)]^2, \]

we get

\[P^{(2n)\mu}(0) = 2^{2n} \Gamma(\frac{1}{2} + \frac{1}{2} \mu + n) / [\Gamma(\frac{1}{2} + \frac{1}{2} \mu - n) \Gamma(2n + 1)]^{-1} \]

\[= (-)^n n! \binom{n}{\frac{1}{2} + \frac{1}{2} \mu} \binom{n}{\frac{1}{2} - \frac{1}{2} \mu}, \]

(3.8c)

and so

\[J_{\nu}(\mu, -\mu, n + \frac{1}{2}, 2n + 1, 1) \]

\[= \frac{\pi \Gamma(n + 1)}{(\frac{1}{2})^n} \]

cf. Eqs. (2.3) and (3.13) of Ref. 4.

One can see from Eq. (3.6a) in particular that the degree of the polynomial \(A_i \equiv A \{ x; \nu \} \) is \(i \), both in \(x^2 \) and in \(\gamma^2 \).

\[A_i = \sum_{n=0}^{\infty} x^{2i - 2n} D_{2n}^{(i)}(\gamma^2). \]

(3.9a)

Here \(D_{2n}^{(i)} \) and \(D_{2n}^{(i)} \) are certain polynomials of degree \(n \). It turns out that Eq. (3.9b) is less suitable for practical applications, so we shall mainly restrict ourselves to the expansion in the \(D_{2n}^{(i)} \)'s. One can also write \(A_i \) as

\[A_i = \sum_{n=0}^{\infty} \sum_{m=0}^{n} x^{2i - 2n} \gamma^{2m} a_{n,m}^{(i)}. \]

(3.10)

Here the coefficients \(a_{n,m}^{(i)} \) are real positive numbers, as can be proven with the help of Eq. (3.8).

It is of interest to discuss a number of special cases. In the first place we consider the zero-energy case, \(k = 0 \). Recalling \(x \equiv \mu/\kappa \) and \(\gamma \equiv -s/\kappa \), we have from Eq. (3.6c),

\[A_i \gamma^2 (l - 2)^{i} \mathcal{F}(l - 1, 1, 1; -x^2/\gamma^2), \]

\[\text{for } k \rightarrow 0, \]

and so

\[\lim_{k \rightarrow 0} \gamma^{2i} A_i = (l - 2)^{i} \mathcal{F}(l - 1, 1, 1; -x^2/\gamma^2). \]

(3.11)

On the other hand, for \(k \rightarrow \infty \) we have \(x \rightarrow 0 \) and \(\gamma \rightarrow 0 \). In this case we get from Eq. (3.8),

\[A_i(0, 0) = a_{0,0}^{(i)} = \frac{(l - 2)}{l} \mathcal{F}(l - 1, 1, 1; -x^2/\gamma^2). \]

(3.12)

For \(x = 1 \) one easily derives from Eq. (3.6b),

\[A_i(1; \gamma^2) = c_{\gamma^2} = \frac{(l + i \gamma)^{l} (l - i \gamma)^{l}}{l!}. \]

(3.13)

The numbers \(a_{n,m}^{(i)}(n, m = 0, 1, \ldots, l) \) can be considered as a matrix, which is triangular because of

\[a_{n,m}^{(i)} = 0, \quad n < m. \]

The matrix elements on the principal axis are given by

\[a_{n,n}^{(i)} = \frac{4^m \gamma^m (2l - 2n)!}{l! (l - n)!}. \]

(3.14)

In particular for \(n = l \) one has

\[a_{l,l}^{(i)} = F_{l,l}^{(i)} = (l - 1)^{-1}. \]

Equation (3.14) is obtained by considering

\[D_{n}^{(i)}(\gamma^2) = \sum_{m=0}^{n} \gamma^{2m} a_{n,m}^{(i)} \]

and

\[D_{l}^{(i)}(\gamma^2), \]

\[= (-)^n 4^{n} - l (2n)(2l - 2n)! / l! (l - n)! \]

\[p_{n}^{(i)}(2l - 2n + i \gamma, l - 2n - i \gamma) (0). \]

(3.15)

\[= (-)^n 4^{n} - l (2n)(2l - 2n)! / l! (l - n)! \]

\[p_{n}^{(i)}(2l - 2n + i \gamma, l - 2n - i \gamma) (0). \]

(3.16)

It is interesting to note the connection of \(D_{n}^{(i)} \) with certain known polynomials, namely Krawtchouk’s polynomials \(k_{n}(z) \), which depend in addition on a positive variable \(p < 1 \) and a positive integer \(N \). These polynomials are associated with the binomial distribution in probability theory. According to Refs. 5 and 6 one has, with \(p = \frac{1}{2} \) and \(N = 2l \),

\[k_{n}(i \gamma - l) \]

\[= 4^n \frac{(l - n)(2l - 2n)!}{l! (l - n)!} \]

\[p_{n}^{(i)}(2l - 2n + i \gamma, l - 2n - i \gamma) (0). \]

(3.17)

Since \(k_{n}(z) \) is defined for an integer variable \(z \) only, \(D_{n}^{(i)} \) may be considered as a generalization of \(k_{n}(z) \).

For \(\gamma = 0 \) we get from Eqs. (3.4a) and (3.6b),

\[A_i(x^2; 0) = x^l P_l(\frac{x}{2} + \frac{x}{2}) \]

\[= \mathcal{F}(l - 1, 1, 1; -x^2). \]

(3.18)

By using these expressions we obtain

\[a_{n,0}^{(i)} = a_{1,0}^{(i)} = D_{0}^{(i)}(0) = 4^{-1} \left(\frac{2l}{l} \right)^{l} \left(\frac{2l - 2n}{l - n} \right). \]

(3.19)

Further we derive from Eqs. (3.8c) and (3.15),

\[D_{n}^{(i)}(\gamma^2) = \left(\frac{n - \frac{1}{2} + \frac{1}{2} i \gamma}{n} \right) \left(\frac{n - \frac{1}{2} - \frac{1}{2} i \gamma}{n} \right) \]

\[\text{which again shows the dependence on } \gamma \text{ rather than on } \gamma. \]

For \(x = 0 \) we have from Eq. (3.15),

\[A_i(0; \gamma^2) = D_{l}^{(i)}(\gamma^2) = (-)^n \left(\frac{2l}{l - i \gamma - 1} \right) (0). \]

(3.21)

In order to obtain explicit expressions for \(A_n, A_{n+1} \ldots \), Eq. (3.6) is very useful. We first recast Eq. (3.6c) in a more explicit form,

\[A_i = \frac{(l + i \gamma)^l (l - i \gamma)^l}{l!} \sum_{n=0}^{l} \frac{(- l)_n (\frac{1}{2})_n}{(1 + i \gamma)_n (1 - i \gamma)_n} (1 - x^2)^n \]

\[= (l - 2)^{l} \sum_{n=0}^{l} (1 - x^2)^n \sum_{n=0}^{l} \frac{(- l)_n (\frac{1}{2})_n}{(1 + i \gamma)_n (1 - i \gamma)_n} \prod_{m=0}^{n-1} \left(m^2 + \gamma^2 \right). \]

(3.22)

Therefore, we have
\[D^{(1)}_n (y^2) = (l)^{1} \sum_{n=1}^{l} \binom{n}{r} \frac{(-y)^r (y^2)^{n-r}}{\Gamma (l+1-n)} \prod_{m=n+1}^{l} (m^2 + y^2). \]

In particular,
\[D^{(0)}_n = \frac{\Gamma (l + \frac{1}{2})}{l! \Gamma (\frac{1}{2})} , \]
\[D^{(1)}_n = \frac{\Gamma (l - \frac{1}{2})}{l! \Gamma (\frac{1}{2})} (y^2 + \frac{1}{4}) , \]
\[D^{(2)}_n = \frac{\Gamma (l + \frac{3}{2})}{l! \Gamma (\frac{3}{2})} \frac{1}{4} \{ \gamma^2 + \gamma^2 (3l - 2) + \frac{3}{2} l (l - 1) \} , \]
\[D^{(3)}_n = \frac{\Gamma (l + \frac{5}{2})}{l! \Gamma (\frac{5}{2})} \frac{1}{6} \{ \gamma^2 + \gamma^2 (\frac{15}{2} l - 10) \}
+ \frac{1}{2} \gamma^2 (45 l^2 - 105 l + 46) + \frac{15}{8} l (l - 1) (l - 2) \].

Finally, we give the first four polynomials \(A_l \) in explicit form,
\[A_0 = 1 , \]
\[A_1 = \frac{1}{8} (x^2 + 1 + 2y^2) , \]
\[A_2 = \frac{1}{8} [3x^4 + 2x^2 (1 + y^2) + 3 + 8y^2 + 2y^4] . \]

\[A_3 = \frac{1}{48} [15x^4 + 3x^2 (3 + 2y^2) + x^2 (9 + 14y^2 + 2y^4) \]
\[+ \frac{1}{2} (45 + 136y^2 + 50y^4 + 4y^6)] . \]