Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions

Theard, Delphine; Steiner, Magdalena; Kalicharan, Dharamdajal; Hoekstra, Dick; van IJzendoorn, Sven C. D.

Published in:
Molecular Biology of the Cell

DOI:
10.1091/mbc.E06-11-1040

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Cell Polarity Development and Protein Trafficking in Hepatocytes Lacking E-Cadherin/β-Catenin–based Adherens Junctions

Delphine Théard,* Magdalena Steiner,* Dharamdajal Kalicharan,† Dick Hoekstra,* and Sven C.D. van IJzendoorn*

*Section of Membrane Cell Biology and †Section of Electron Microscopy, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands

Submitted November 28, 2006; Revised March 19, 2007; Accepted March 29, 2007

Monitoring Editor: Keith Mostov

Using a mutant hepatocyte cell line in which E-cadherin and β-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical–basolateral polarity development and polarized membrane trafficking. It is shown that these hepatocytes retain the capacity to form functional tight junctions, develop full apical–basolateral cell polarity, and assemble a subapical cortical F-actin network, although with a noted delay and a defect in subsequent apical lumen remodeling. Interestingly, whereas hepatocytes typically target the plasma membrane protein dipeptidyl peptidase IV first to the basolateral surface, followed by its transcytosis to the apical domain, hepatocytes lacking E-cadherin–based adherens junctions target dipeptidyl peptidase IV directly to the apical surface. Basolateral surface-directed transport of other proteins or lipids tested was not visibly affected in hepatocytes lacking E-cadherin–based adherens junctions. Together, our data show that E-cadherin/β-catenin–based adherens junctions are dispensable for tight junction formation and apical luminal biogenesis but not for apical lumen remodeling. In addition, we suggest a possible requirement for E-cadherin/β-catenin–based adherens junctions with regard to the indirect apical trafficking of specific proteins in hepatocytes.

INTRODUCTION

Epithelial cells are characterized by their asymmetric cell surface organization, which includes an apical domain that faces the lumen, a basolateral domain facing the underlying tissue, and a lateral domain facing neighboring cells. Cell surface asymmetry, coupled to the polarized distribution of intracellular organelles and cytoskeleton, as well as to cellular processes such as proliferation, is crucial for epithelial functioning. Perturbed or loss of epithelial asymmetry is a hallmark of many epithelial diseases, including carcinogenesis. The process by which epithelial cells develop apical–basolateral surface asymmetry is still poorly understood (Le Bivic et al., 2005). Nectin- and E-cadherin–mediated cell-cell adhesion is thought to serve as an initial cue for the development of apical–basolateral cell polarity by first defining the lateral plasma membrane. Studies in cultured epithelial cells (Vega-Salas et al., 1987, McNeill et al., 1990; Miyoshi and Takai, 2005) and Drosophila (Tepass and Hartenstein, 1994) suggest that E-cadherin induces the formation of a primordial junction complex that subsequently matures (i.e., forms a multiprotein complex) and eventually evolves into distinct and spatially separated adherens junctions (AJs) and tight junctions (TJs; Miyoshi and Takai, 2005). TJs then allow for the spatial segregation of apical and basolateral surface-enriched proteins and lipids within the plasma membrane bilayer by acting as a physical barrier, and the separation of the extracellular apical and basolateral milieu by acting as a diffusion barrier (van Meer and Simons 1986). It is thought that the formation of TJs generally requires prior formation and maintenance of AJs (Miyoshi and Takai, 2005, and references herein).

In addition to a role for E-cadherin in the assembly of AJs and TJs, E-cadherin–mediated cell–cell adhesion and the subsequent remodeling of the actin and microtubule cytoskeleton have been proposed to give rise to basolateral but not apical targeting patches for intracellular trafficking pathways originating from the Golgi apparatus (Yeaman et al., 1999; 2004). This is exemplified by autosomal dominant polycystic kidney disease, characterized by perturbations in the polarized phenotype and function of epithelial cells, in which mutated polycystin disrupts E-cadherin–dependent cytoarchitecture, and, in this way, adversely affects protein assemblies that are crucial for basolateral but not apical trafficking (Charron et al., 2000).

In this study, we have investigated AJ requirement for apical–basolateral polarity development and polarized membrane trafficking, by taking advantage of a mutant hepatocyte cell line, HepG2-AJ−, in which E-cadherin and β-catenin are completely depleted from the cell surface; consequently, they fail to form AJs. Specifically, HepG2-AJ− cells express a mutant form of the cell cycle regulatory protein p27(Kip1) that cannot be phosphorylated at its serine-10. In these cells, β-catenin interacts with p27 and is prevented from interacting with E-cadherin (Théard, Raspe, Kalicharan, Hoekstra, and van IJzendoorn, unpublished data). This coincides with the intracellular retention of E-cadherin, in accordance with the proposed role of β-catenin...
acting as a chauffeur to facilitate the transport of E-cadherin out of the endoplasmic reticulum to the plasma membrane (Chen et al., 1999). By using these cells, it is shown that E-cadherin-mediated cell–cell adhesion is dispensable for TJ formation and apical–basolateral polarity development. Subsequent apical lumen remodeling, however, is inhibited in these cells. In addition, it is shown that in these cells the initial basolateral targeting of specific apical proteins is inhibited and that these proteins are targeted directly to the apical surface. The implications of these findings with regard to our understanding of cell polarity and polarized membrane trafficking are discussed.

MATERIALS AND METHODS

Cell Culture
HepG2 cells (ATCC HB8065) were cultured in DMEM with 4500 mg/l glucose and supplemented with 10% fetal calf serum and antibiotics. Culture media were changed every other day. The creation of the clonal HepG2-AJ cell line will be described in another study. HepG2-AJ cells were cultured in medium supplemented with 1 mg/ml G-418 (Genetecin; Invitrogen, Carlsbad, CA).

Fluorescence Microscopy
Cells cultured on glass coverslips for 3 d were fixed and stained as described in van der Wouden et al. (2002). The antibodies used were mouse mononclonal anti-β-catenin (BD Transduction Laboratories, Lexington, KY), rabbit polyclonal anti-E-cadherin (kindly provided by M. Wheelock, Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE), mouse mononclonal anti-multidrug resistance protein 1 (MDR1) (C219; Abcam, Cambridge, MA), polyclonal anti-radixin (Sigma-Aldrich, St. Louis, MO), mouse monoclonal anti-5 nucleotidase, mouse monoclonal anti-dipeptidylpeptidase (DPPIV) (gift from Dr. Hauti, Biozentrum der Universitat Basel, Basel, Switzerland), mouse monoclonal anti-zonula occludens (ZO)-1 (Zymed Laboratories, South San Francisco, CA), rabbit polyclonal anti-protease-activated receptor-3 (PARD) (Upstate Biotechnology, Lake Placid, NY), and Alexa-Fluor 488 or 560 goat anti-rabbit or anti-mouse (Invitrogen, Carlsbad, CA) as secondary antibodies. Hoechst 33342 (5 ng/ml) was used to stain the nuclei. In the E-cadherin blocking experiments, cells were cultured in presence of E-cadherin blocking antibodies (1:50; gift from M. Whee-}

Electron Microscopy
Cells were washed with 6.8% saccharose to remove serum in 0.1 M cacodylate buffer, pH 7.4, at room temperature (RT) and fixed for 30 min at RT with 2% glutaraldehyde in 0.1 M cacodylate buffer. The cells were rinsed in the same buffer with 6.8% sucrose and postfixed in 2% OsO4/3% K4Fe(CN)6 in 0.2 M cacodylate buffer at 4°C for 1 h. After rinsing in 0.1 M cacodylate buffer and dehydration in a graded alcohol series, the cells were embedded in Epon 812 and polymerized at 58°C. Finally, ultrathin sections (60 nm) were cut and stained with uranyl acetate and lead citrate. The sections were examined using a Philips CM 100 electron microscope operating at 80 kV, and micrographs were taken.

Determination of the TJ "Barrier" Function
To determine whether TJs restrict paracellular diffusion of solutes from the BC lumen to the basolateral medium, cells were incubated with 0.5 μM 5-carboxyfluorescein diacetate (CFDA; Sigma-Aldrich) at 37°C for 30 min to allow diffusion of the lipid probe had occurred from the apical to the basolateral ice and then examined under the fluorescence microscope to detect whether fluorescent lipids remaining at the basolateral surface was removed by a back-exchange procedure at 4°C as described in van der Wouden et al. (2002). The cells were incubated for another 15 min on ice and then examined under the fluorescence microscope to detect whether diffusion of the lipid probe had occurred from the apical to the basolateral surface.

Transcytosis Assay
Three-day-old HepG2 and HepG2-AJ cells were washed with HBSS buffer and incubated in HBSS supplemented with antibodies against extracellular epitopes of DPPIV, MDR1, or 5 nucleotidase, at 4°C for 30 min. After extensive washes, the bound antibodies were chased at 37°C for 30 min. Cells were then fixed on ice and processed for immunofluorescence analyses as described above.

Protein Gel Electrophoresis and Western Blotting
HepG2 or HepG2-AJ cells were washed and scraped in ice-cold KCl/HEPES buffer (140 mM KCl and 20 mM HEPES, pH 7.4), supplemented with a cocktail of protease inhibitors. The cells were homogenized with a tight douncer and centrifuged at 2000 rpm at 4°C for 10 min. The supernatant (cytosol and membranes) was centrifuged at 100,000 g for 30 min, and the pellet (membrane fraction) was resuspended in 0.1 M cacodylate buffer, pH 7.4, at room temperature (RT) and centrifuged at 2000 rpm at 4°C for 10 min. After extensive washes, the bound antibodies were chased at 37°C for 30 min. Cells were then fixed on ice and processed for immunofluorescence analyses as described above.

RESULTS

HepG2-AJ-, A Mutant HepG2 Cell Line Lacking E-Cadherin/β-Catenin–Based Adherens Junctions
We have obtained in our laboratory a human hepatocyte HepG2 cell line that displays a striking reduction in cell–cell adhesion strength compared with parental HepG2 cells. Detailed analyses revealed that in these mutant cells, β-catenin and E-cadherin are sequestered intracellularly. Consequently, β-catenin and E-cadherin do not form adherens junctions (Figure 1). Note that these cells do not necessarily

Figure 1. The HepG2-AJ cell line presents a defect in E-cadherin and β-catenin localization. The parental HepG2 and AJ-defective HepG2-AJ cell lines were grown for 72 h, fixed, and immunolabeled for β-catenin (A) and E-cadherin (B). Arrows highlight the presence of β-catenin (A) and E-cadherin (B) at the cell–cell contact in parental HepG2 cells, whereas these proteins are retained intracellularly in HepG2-AJ cells. Bar, 20 μm.
IJzendoorn and Hoekstra, 2000). 1-fluoro-2,4-dinitrobenzene (FDNB) was used to determine the number of cells interacting with each other predominantly through adhesive contacts other than adherens junctions (see below). Details of this mutant HepG2 cell line, which in this article is referred to as HepG2-AJ− cells, will be described in a separate study.

HepG2-AJ− Cells Develop Intercellular Apical Lumens

Parental HepG2 cells display a typical hepatocellular polarity characterized by the presence of an apical surface domain, representing the BC surface, which is enclosed by adjacent cells. BCs can be readily visualized by light and electron microscopy, and they typically occur as intercellular spherical structures containing numerous microvilli (van IJzendoorn et al., 1997; van IJzendoorn and Hoekstra, 2000).

We examined HepG2-AJ− cells with regard to their ability to develop apical BC surface domains. HepG2-AJ− cells were cultured as described in Materials and Methods for 3 d, fixed, and processed for microscopy. Light microscopical analysis of 1-µm-thick sections (Figure 2A) as well as transmission electron microscopical evaluation (Figure 2B) demonstrates that HepG2-AJ− cells developed intercellular BCs. The BCs in HepG2-AJ− cells were filled with microvilli (Figure 2B), confirming their apical nature. To further confirm the apical identity of the membranes lining the BCs, we examined the localization of proteins that are known to reside at the bile canalicular surface in vivo. The peripheral ERM-family protein radixin, the glycosylphosphatidylinositol (GPI)-anchored ectoenzyme 5′nucleotidase, and the membrane-spanning protein DPPIV and the microvillar actin cross-linking protein villin (see below). Note that groups of cells interact with each other predominantly through areas of the cell surface close to the location of the apical surface domain (Figure 2C, arrows).

To add a quantitative measure to apical polarity in HepG2-AJ− cells, cells were cultured for 72 h, fixed, and stained with a monoclonal antibody raised against the microvilli-associated protein villin, and 4′,6-diamidino-2-phenylindole (DAPI) to visualize the nuclei. We then determined by immunofluorescence microscopy the number of BCs and cells in several microscopical fields, and we expressed cell polarity as the ratio BC/100 cells (van IJzendoorn and Hoekstra, 1998). As depicted in Table 1, HepG2-AJ− cells had developed 25.8 ± 0.5 BCs/100 cells. In comparison, parental HepG2 cells developed 48.6 ± 2.0 BCs/100 cells.

Together, the data indicate that cells lacking E-cadherin/β-catenin–based AJs are capable of developing apical bile canalicular lumens, albeit to a lesser extent.

Apical Lumens Occur Intracellularly before Their Exposure at the Extracellular Space in HepG2-AJ− Cells

Evidently, the formation of an intercellular apical lumen requires the participation of at least two cells, and, hence, cell–cell interactions. When examining cell polarity under phase contrast, it was observed that microvilli-lined lumens displayed a transient intracellular appearance in HepG2-AJ− cells at earlier time points. On prolonged culture, these lumens seem to move vectorially to the cell surface facing adjacent cells where they “dock” and eventually merge with the plasma membrane to establish a single intercellular lumen. Such intracellular lumens resemble the VAC described in epithelial cells cultured in low-calcium medium (Vega-Salas et al., 1987), and they typically arise in epithelial cells that are prevented from establishing cell–cell adhesion (Vega-Salas et al., 1988). To address the appearance of VACs and intercellular lumens (BCs) in a quantitative manner as a function of time, cells were cultured for 48 or 72 h and then they were fixed. Apical lumens were then identified by microvilli appearance under phase-contrast microscopy (Figure 3B) and categorized as either located intracellularly (VAC), docked to the cell surface, or located intercellularly (BC) (Figure 3A). In parental HepG2 cells, >75 and 80% of the identified apical structures were intercellular after 48 and 72 h, respectively (Figure 3B, 1 and 2, and C). Most of the remaining apical structures were categorized as docked and only few (<10%) intracellular lumens were observed. In striking contrast, in HepG2-AJ− cells, only 25 and 45% of the apical structures occurred intercellularly after 48 and 72 h of culture, respectively (Figure 3B, 3–5). Forty-five and 28% of the apical structures were categorized as intracellular after

Table 1. Appearance of apical lumens in HepG2 and HepG2-AJ− cells

<table>
<thead>
<tr>
<th></th>
<th>HepG2</th>
<th>HepG2-AJ−</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. BC/100 cells</td>
<td>48.6 ± 2.0</td>
<td>25.8 ± 0.5</td>
</tr>
</tbody>
</table>

HepG2 and HepG2-AJ− cells were cultured for 72 h, fixed with acetone at −20°C for 5 min, and immunostained with monoclonal anti-villin antibodies and the nuclear stain DAPI (see Materials and Methods). The ratio BC/100 cells was then determined from several fields (minimal 500 cells) and expressed as mean ± SD of at least two independent experiments carried out in duplicate.

remain as single cells and that they can engage in cell-to-cell interactions that are mediated by adhesive contacts other than adherens junctions (see below). Details of this mutant HepG2 cell line, which in this article is referred to as HepG2-AJ− cells, will be described in a separate study.
and 72 h, respectively, and the remainder was categorized
as docked (Figure 3C). These data indicate that apical lu-
men structures (arrows) were detected with light
microscopy and categorized as intracellular (VAC),
docked, or intercellular (BC) (see schematic represen-
tation in A). (B) Apical lumen structures in 48-h-
old HepG2 cells were predominantly intercellular,
whereas, by contrast, many apical lumen structures
were intracellular in 48-h-old HepG2-AJ− cells. (C)
Quantification of the distribution of apical lumen
structures that were immunolabeled for the mi-
crovilli protein villin (mean ± SD of at least 500
cells).

HepG2-AJ− Cells Form Tight Junctions with Functional Barrier and Fence Functions

The development of apical surface domains to which apical
resident proteins exclusively localize prompted us to deter-
mine whether functional TJs develop in HepG2-AJ− cells.
For this, the subcellular distribution of two well-established
TJ proteins, ZO-1 and PAR3, was examined. In both HepG2
and HepG2-AJ− cells, a typical ZO-1 and PAR3 staining
pattern, i.e., perpendicular to the basolateral–apical axis,
bordering the apical plasma membrane, was observed (Fig-
ure 4, A and B). Moreover, electron microscopical analysis
revealed the presence of electron-dense tight junction struc-
tures bordering the apical plasma membrane domain (Fig-
ure 4C, arrows). To verify whether these TJs were functional,
we first examined their ability to spatially segregate fluids
present in the BC lumen on the one hand and the basolateral
medium on the other hand (i.e., “gate” or barrier function),
and, second, their ability to prevent lateral diffusion of mem-
brane lipids between apical and basolateral surface domains
(fence function). The gate or barrier function was tested
using CFDA, a fluorescent substrate of apical plasma mem-
brane ABC transporters, which, after cellular loading and
cleavage by intracellular esterases that render it membrane
impermeable, is rapidly translocated by these transporters
into the apical lumen. As shown in Figure 4D, CFDA was
effectively retained in the apical lumen in between adjacent
HepG2-AJ− cells, suggesting that functional TJs are present
that prevent paracellular leakage from the apical to the
basolateral compartment. HepG2-AJ− cells were also incu-
bated with lucifer yellow, a water-soluble fluorescent dye
commonly used to test epithelial monolayer permeability,
at 4°C (to prevent endocytosis) for 30 min. As shown in
Figure 4E, no lucifer yellow could be detected in apical
lumens identified by phase-contrast microscopy, indicat-
ing that no paracellular transport of solute from the ba-
solateral to the apical compartment occurred, and corrob-
orating the existence of an efficient TJ barrier function in
HepG2-AJ− cells.

The fence function of TJs was investigated using the flu-
orescent lipid analogue C6NBD-sphingomyelin. HepG2-AJ−
cells were incubated with C6NBD-sphingomyelin at 4°C for
30 min, which allows the probe to incorporate into the
basolateral plasma membrane without being endocytosed
(van IJzendoorn et al., 1997, Ait Slimane et al., 2003). Cells
were then washed and incubated for an additional 15 min in
buffer at 4°C. As shown in Figure 4F, the presence of the
lipid probe in the basolateral plasma membrane was ob-
served, whereas no labeling of apical plasma membranes
could be detected (arrows), indicating that diffusion of the
lipid probe from the basolateral to the apical plasma mem-
brane was prevented. In an additional experiment, HepG2-
AJ− cells were incubated with C6NBD-sphingomyelin at
37°C for 30 min, which allows its incorporation into the
basolateral plasma membrane and subsequent transcytosis
to the apical surface (van IJzendoorn et al., 1997). Fluorescent
lipids remaining in the basolateral surface were then de-
pleted by a back exchange procedure at 4°C (see Materials
and Methods), leaving the lipid probe only in the apical
plasma membrane and intracellular vesicles. HepG2-AJ−
cells were then incubated in buffer at 4°C for another 15 min. As shown in Figure 4G, fluorescent lipids were retained at the apical surface, and no fluorescent lipids were detected at the basolateral domain, suggesting that lipids do not diffuse from the apical to the basolateral domain. Together, these data show that HepG2-AJ− cells develop TJs with functional barrier and fence functions.

HepG2-AJ− Cells Present a Defect in Apical Lumen Remodeling

In the liver, hepatocytes are arranged into one-to-two-cell-thick plates that allow formation of a tubular bile canalicular network. When parental HepG2 are cultured for 5 d or longer, intercellular BC elongate and they are remodeled to form large multicellular canalicular lumens (Figure 5A; Herrema et al., 2006). In striking contrast, long-term cultures of HepG2-AJ− cells failed to undergo these morphological changes, and BCs remain as small spherical lumens in between two cells (Figure 5B). These data suggest that E-cadherin/β-catenin–based AJs are dispensable for initial apical–basolateral polarity development but that they may be required for subsequent remodeling of BC lumens into multicellular tubes.

Blocking E-Cadherin Function in Parental HepG2 Cells Mimics the Phenotype of HepG2-AJ− Cells

We next investigated cell polarity development in parental HepG2 cells when cultured in the presence of E-cadherin blocking antibodies. Culturing HepG2 cells for 48 h in the presence of E-cadherin blocking antibodies resulted in the intracellular accumulation of E-cadherin (Figure 6A). The absence of E-cadherin from the cell surface did not alter the subcellular localization of β-catenin, which remained at the plasma membrane, even at sites where the plasma membranes of neighboring cells did not physically interact (Figure 6B, inset). Regardless of the intracellular accumulation of E-cadherin, HepG2 cells cultured in the presence of E-cadherin blocking antibodies developed intercellular BC lumens (Figure 6A) that were bordered by ZO-1–positive TJs (Figure 6C), and they contained the apical surface-associated ERM protein radixin (Figure 6D). Moreover, BCs were surrounded by a dense actin meshwork as in the parental HepG2 (Figure 6E). These data support our findings in HepG2-AJ− cells that E-cadherin–based, and, consequently, AJ-based cell–cell adhesions are dispensable for the development of apical–basolateral cell polarity.
HepG2-AJ cells display altered apical plasma membrane-directed trafficking of dipetidyl peptidase IV

In hepatocytes, direct trafficking pathways from the Golgi apparatus to either apical or basolateral plasma membrane domains exist (Zaal et al., 1994). These pathways are selectively used by different apically destined proteins and lipids. Newly synthesized polytopic ABC transporters such as MDR1 and MRP2, and the copper transporter ATP7B, are targeted directly to the BC membranes (Sai et al., 1999; Kipp and Arias, 2000, 2002; Ait Slimane et al., 2003). In contrast, apical resident proteins such as the GPI-anchored protein 5/H11032 NT, and the single transmembrane ectoenzyme DPPIV, are first targeted to the basolateral surface, followed by their internalization and transcytosis to the BC membranes (Bartles et al., 1987; Schell et al., 1992; Ihreke et al., 1998; Bastaki et al., 2002; Ait Slimane et al., 2003). All basolateral proteins are presumed to be targeted to the basolateral surface directly (i.e., without prior delivery to the apical domain). We compared the trafficking itineraries of MDR1, 5/NT, and DPPIV between HepG2 and HepG2-AJ cells to obtain information as to the possible involvement of E-cadherin-mediated cell–cell adhesion in these events. The steady-state distributions of MDR1 (Figure 2C) and 5/NT (Figure 2C) in HepG2-AJ cells revealed extensive and almost exclusive localization of the proteins at the BC. DPPIV was abundantly present at the BC (Figure 7, A and B) and in the basolateral plasma membrane (Figure 7, C and D) of parental HepG2 cells, evidenced by immunostaining in permeabilized and nonpermeabilized cells, respectively. However, in HepG2-AJ cells, DPPIV was only detected at the BC (Figure 7, E and F) and not at the basolateral surface (Figure 7, G and H), suggesting that in these cells DPPIV was delivered to the apical domain without prior basolateral delivery. To further investigate this, the basolateral surface of living HepG2 and HepG2-AJ cells was exposed at 4°C for 30 min to antibodies against extracellular epitopes on DPPIV, followed by a wash and chase of the antibodies at 37°C for 60 min. Cells were then fixed on ice and processed for immunofluorescence analyses. Basolateral staining and basolateral-to-apical transcytosis was observed in HepG2 cells (Figure 8, A–D), consistent with its indirect trafficking in hepatocytes (Bastaki et al., 2002). However, in striking contrast, no basolateral staining and transcytosis of DPPIV was observed in HepG2-AJ cells (Figure 8, E–H), despite its abundant apical localization at steady state (Figure 7, G–I), suggesting that delivery of DPPIV to the apical plasma membrane in HepG2-AJ cells occurs via a direct pathway that does not involve passage through the basolateral domain. Western blot analysis revealed no significant difference in the expression level of DPPIV between HepG2 and HepG2-AJ cells (Figure 8, I and J). Similar transcytosis assays were performed using antibodies raised against extracellular epitopes on MDR1 and 5/NT. In case of MDR1, we detected no basolateral staining (Figure 9A) or basolateral-to-apical transcytosis in HepG2-AJ cells (Figure 9B), consistent with the reported direct trafficking of MDR1 from the Golgi apparatus to the BC in HepG2 cells (Kipp and Arias, 2000; Ait Slimane et al., 2003). With 5/NT, basolateral staining (Figure 9C) and basolateral-to-apical transcytosis (Figure 9D) were observed in HepG2-AJ cells, similarly as
reported in parental HepG2 cells (Ait Slimane et al., 2003). These data may suggest that E-cadherin–mediated cell–cell adhesions in hepatocytes direct the basolateral targeting of DPPIV but not that of other apical proteins such as GPI-anchored 5′/H11032 NT (see Discussion). Moreover, for DPPIV these data suggest that, in contrast to previous suggestions, hepatocytes possess a Golgi-based machinery for directly sorting single transmembrane apical proteins such as DPPIV.

DISCUSSION

In this study, we demonstrate that hepatic HepG2-AJ− cells develop functional tight junctions and apical–basolateral polarity in the absence of E-cadherin–mediated cell–cell adhesions. Earlier studies with cultured cells suggested that E-cadherin–dependent cell–cell adhesion is the founding event of epithelial polarity (for reviews, see Le Bivic et al., 2005; Miyoshi and Takai, 2005, and references herein). These studies were mostly based on monitoring the ordered recruitment of specific AJ and TJ proteins in time after disruption of the epithelial monolayer by calcium deprivation. Expression of a mutant of E-cadherin that lacks only the adhesive extracellular domain, however, was shown to increase TJ assembly, and it suggested that the hierarchical regulation of apical junction complexes is not absolute (Troxell et al., 2000). More recently, Baas et al. (2004) demonstrated that single intestinal epithelial cells that overexpress an inducible activator of LKB1/PAR4 develop an apical “brush-border” domain with apical proteins that are segregated from basolateral proteins by TJs, indicating polarity development without the need for prior E-cadherin–based cell–cell contact establishment. Harris and Peifer (2004, 2005) demonstrated that polarity of epithelial cells in early stages of Drosophila development can be established without formation of E-cadherin complexes. Capaldo and Macara (2007) recently showed that depletion of E-cadherin from kidney epithelial Madin-Darby canine kidney (MDCK) cells disrupts the establishment but not maintenance of apical–basolateral polarity and cell junctions. Our data, obtained in human hepatic cells, which, in contrast to cells used in other studies, do express endogenous wild-type E-cadherin but are incapable of establishing E-cadherin-based AJs, provide new evidence for and underscore the concept that E-cadherin function at the cell surface is dispensable for TJ formation and apical–basolateral polarity development per se.

Although apical–basolateral polarity establishment was evident, development of intercellular apical lumens in freshly plated HepG2-AJ− cell cultures was delayed, and microvilli-lined BCs were observed intracellularly before their appearance in between adjacent cells. This is consistent with earlier reports that showed that loss of cell–cell adhesion precludes the activation of a signaling cascade that is required for the efficient delivery of apical vesicles to the plasma membrane. Instead, apical vesicles accumulate in the cytoplasm, and, by means of homotypic fusion, give rise to intracellular VACs that functionally and structurally resemble intercellular apical lumens (Vega-Salas et al., 1987, 1988, 1993). In contrast to the cells in those studies, which lacked any type of cell–cell adhesion, intracellular apical lumens in
HepG2-AJ− cells evidently dock with the cell surface and form functional intercellular apical lumens. Conceivably, a delay in the acquisition of cell–cell adhesion strength due to the lack of functional E-cadherin is responsible for the temporary impediment of intercellular apical lumen formation in HepG2-AJ− cells.

Whereas E-cadherin–mediated cell–cell adhesion seems dispensable for formation of functional TJ and apical–basolateral polarity with a correct orientation, it is not for subsequent apical lumen morphogenesis and remodeling. Thus, whereas prolonged culturing of parental HepG2 cells results in the development of elongated and multicellular apical lumens, this does not occur in HepG2-AJ− cell cultures, in which apical lumens remain as spherical lumens in between mostly two cells. Apical lumen remodeling in HepG2 cells is mediated by the deposition of extracellular matrix and subsequent inhibition of Rho kinase and myosin II signaling, which, in turn, are instrumental for cell multilayering and cell-to-cell reorientation or cell patterning (Herrema et al., 2006). Our data indicate that E-cadherin–regulated cell–cell adhesion is essential for dynamic cell-to-cell (re)orientation and apical lumen remodeling. Indeed, loss of E-cadherin in vivo prevents the development of epithelial tissues and is embryonically lethal (Johnson et al., 1986; Harris et al., 2005).

Interestingly, the indirect apical trafficking pathway of the single transmembrane protein DPPIV in HepG2 cells changes to a direct apical trafficking route in HepG2-AJ− cells. In contrast, the indirect and direct trafficking itineraries of the GPI-anchored 5′NT and the polytopic ABC transporters MRP2 and MDR1/3, respectively, are similar in HepG2 and HepG2-AJ− cells. In different epithelial cell lines, the resident apical membrane protein DPPIV can be targeted to both apical and basolateral surface but with a highly variable apical-to-basolateral ratio (Ait Slimane et al., 2001, and references herein). Thus, whereas in MDCK cells most DPPIV is transported directly to the apical domain (Casanova et al., 1991), in hepatocytes DPPIV is predominantly sorted to the basolateral domain, followed by its transcytosis to the apical surface (Bastaki et al., 2002; Ait Slimane et al., 2003). Consistent with the diversity in polarized trafficking, DPPIV has been proposed to contain both apical and basolateral sorting signals (Weisz et al., 1992), the dominance of which may be a reflection of competing vesicle-targeting machineries (Zurzolo et al., 1992). In contrast to previous suggestions (Bastaki et al., 2002), our data indicate that hepatocytes do harbor the machinery for directly sorting DPPIV, and possibly other single transmembrane proteins, to the apical surface.

Two scenarios can be envisioned to account for the altered trafficking of DPPIV in HepG2-AJ− cells. First, the mutation in the HepG2-AJ− cell line itself may affect the trafficking of multiple cargos, including DPPIV and E-cadherin, to the lateral domain. Whereas E-cadherin is retained intracellularly (Figure 1), the luminal apical trafficking signal in DPPIV (Weisz et al., 1992) could then mediate the protein’s direct trafficking to the apical surface. HepG2-AJ− cells have a serine-10 to alanine substitution in the p27(Kip1) protein, which prevents phosphorylation at this residue. In HepG2-AJ− cells, we find that β-catenin interacts with p27 and is prevented from interacting with E-cadherin (Théard, Raspe, Kalicharan, Hoekstra, and S. van IJzendoorn, unpublished data). The coinciding retention of E-cadherin in intracellular sites resembling the endoplasmic reticulum (Figure 1) is in harmony with the proposed role of β-catenin acting as a chauffeur to facilitate the transport of E-cadherin out of the endoplasmic reticulum (Chen et al., 1999). Although there is no evidence in the literature for the involvement of β-catenin in the trafficking of DPPIV, we can formally not exclude that the p27 mutation, in parallel to inhibiting the trafficking of E-cadherin, somehow inhibits the basolateral trafficking of DPPIV. In the second scenario, the direct apical trafficking of DPPIV in HepG2-AJ− cells may be a consequence of the absence of E-cadherin-mediated AJ-s, suggesting that E-cadherin–mediated AJ-s overrule the direct apical trafficking of DPPIV in hepatic cells. As part of an underlying mechanism, E-cadherin may modulate exocytosis-derived “targeting patches” on the lateral membrane, as has been proposed by Yeaman et al., (2004). The role of the exocyt in polarized trafficking in hepatocytes has not been examined and further studies are thus needed to investigate this. Strikingly, the initial basolateral trafficking of the GPI-anchored 5′NT remains unaltered like the direct trafficking of polytopic ABC transporters in HepG2-AJ− cells, indicating that any influence of E-cadherin on polarized membrane trafficking would be restricted to specific (classes of) proteins, and/or restricted to specific (basolateral surface-directed) transport pathways.

ACKNOWLEDGMENTS

We thank M. Raspe for technical assistance, Dr. K. Ito for expert assistance, Dr. I. Zuhorn for constructive discussions, and K. Klappe and Dr. J. Smitsenová for technical discussions and reagents. We thank Dr. M. Wheelock for providing the E-cadherin antibody and Dr. H. P. Hauri for the DPPIV antibody.

REFERENCES

Kipp, H., and Arias, I. M. (2000). Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J. Biol. Chem. 275, 15917–15925.

