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A B S T R A C T

In contrast to the paradigms used in most laboratory experiments on interval timing, everyday tasks often
involve tracking multiple, concurrent intervals without an explicit starting signal. As these characteristics are
problematic for most existing clock-based models of interval timing, here we explore an alternative notion that
suggests that time perception and working memory encoding might be closely connected. In this integrative
model, the consolidation of a new item in working memory initiates cortical oscillations that also signal the onset
of a time interval. The objective of this study was to test whether memory consolidation indeed acts as the
starting signal of interval timing. Participants performed an attentional blink task in which they not only re-
ported the targets, but also the estimated target onsets, allowing us to calculate estimated lag. In the attentional
blink task, the second target (T2) in a rapid serial visual presentation is often not reported when it follows
quickly after the first target (T1). However, if this fast T2 is reported, memory consolidation of T2 is presumably
delayed. Consequently, if memory consolidation determines interval onset, we would expect a later estimated
onset when consolidation is delayed. Furthermore, as the P3 ERP component is assumed to reflect memory
consolidation, we expect that the estimated onsets and subjective lag are functions of the P3 latencies. The
behavioral data show that the presumed delay in memory consolidation did not lead to later estimated onsets. In
addition, the EEG results suggest that there was no relationship between P3 latency and subjective lag or esti-
mated onset. Overall, our results suggest that there is no direct link between the encoding of items in working
memory and sub-second interval timing of these items in the attentional blink task.

1. Introduction

Timing is an indispensable part of our system of cognitive functions.
The temporal precision with which sequences of actions are undertaken
is crucial in reaching our goals in complex tasks. Often, however, the
tasks do not require time perception explicitly. One situation that il-
lustrates the automaticity with which we use timing is contactless
payments with bank- or credit cards or electronic devices. We quickly
learn how long we need to hold our card or devices next to the scanner
for a successful transaction. Our experience with this method of pay-
ment teaches us how long this interval is supposed to last and, im-
portantly, makes us able to set off alarm bells when the transaction is
taking too long, indicating that something is wrong with either our
payment or the device.

Humans can distinguish remarkably well between time intervals of
different lengths. Several theories have emerged that model how we
keep track of time in the seconds to minutes range. One of the most
influential cognitive models of interval timing is the Scalar Timing

Theory (STT; Gibbon, 1977; Gibbon et al., 1984). STT proposes that
timing behavior in humans and animals is controlled by three pro-
cesses: the clock, memory, and decision process. The clock process
consists of a pacemaker that outputs pulses at a regular rate and an
accumulator that assembles these pulses over time. In between, there is
a gate, or switch, component that allows the pulses to reach the accu-
mulator when a salient starting signal is provided. The accumulated
amount of pulses can be stored in memory and decisions about dura-
tions can be made by comparing the output of the accumulator with
other interval durations stored in memory. Although the STT model
does not make any assumptions about its neurobiological im-
plementation, it has proven difficult to map its processes to specific
brain mechanisms (van Rijn et al., 2014).

Whereas STT focuses on a description of interval timing at a func-
tional level, the striatal beat-frequency (SBF) model offers a model of
the internal clock that is inspired by neurobiological mechanisms
(Matell and Meck, 2004). In this way, an extended version of the SBF
model (van Rijn et al., 2014) can explain the most important behavioral
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findings, while also making explicit assumptions about the neural me-
chanisms that implement the timing behavior and, roughly, in what
brain regions these functions are carried out. In the SBF model, groups
of neurons in the cortex act as oscillators that have their own stable
oscillating frequency. Through the influence of dopaminergic input,
salient events can act as the starting signal by resetting the phases of
these oscillators. Because the oscillators have their own frequency, the
oscillators will drift out of phase after onset and this will result in
predictable patterns of desynchronization corresponding to the time
that has passed. The SBF model proposes that these patterns are then
detected by medium spiny neurons in the striatum (Buhusi and Meck,
2005). In this way, for example, a specific group of striatal neurons
always becomes active 2 s after the phase reset, while another group
activates generally after 3 s.

Independent of the actual implementation, however, these models
of interval timing face two problems in explaining timing in the real
world, in which most forms of interval timing happen continuously and
implicitly (Taatgen et al., 2007). First, they can only time a single in-
terval and predict that timing multiple events is difficult (van Rijn and
Taatgen, 2008), whereas complex real-world tasks require keeping
track of several simultaneous intervals. That is, humans are often faced
with keeping track of different concurrent tasks that have their own
implicit temporal regularities. Second, these internal clock models re-
quire an explicit starting signal. The onset and offset of an interval need
to be consciously perceived in order to observe the passage of time,
requiring attention to be directed to the events that mark the interval.
For example, during the contactless payment described earlier, the
customer is not anticipating a timing task when initiating the payment,
as typically the payment will proceed before attention was drawn to the
lack of confirmation. Nevertheless, as humans can detect that the
transition takes too long, elapsed time must be actively monitored as it
progresses and be compared to interval lengths stored in memory to
notice that at some point one knows for sure the payment has not
succeeded. We therefore have to keep track of how much time has
elapsed since the introduction of the card until the point we hear a beep
indicating the confirmation, while at the same time, for example, re-
gistering the temporal patterns in the social talk that is exchanged with
the cashier.

Thus, whereas real-world timing often involves continuous, auto-
matic tracking of multiple intervals, most traditional models of time
perception propose a dedicated single clock that requires an explicit
starting signal. As a potential solution to this problem, Gu et al. (2015)
proposed that interval timing and working memory might be based on
the same underlying oscillatory dynamics. It has been suggested that
working memory consists of gamma oscillations entrained within theta
oscillations (Lisman and Idiart, 1995; Lisman, 2010). In this oscillatory
model of working memory, multiple items can be stored in memory
through the reactivation of multiple gamma cycles within the slower
theta cycles. Gu et al. (2015) proposed that, through multiplexing, this
system of updating the semantic information of working memory can
also code for time. In this way, each item in working memory has an
associated oscillatory state that can be detected by medium spiny
neurons, as proposed by the SBF. In contrast to STT-like models, in-
cluding SBF, this integrative model does not require an explicit starting
signal. Instead, the consolidation of a memory trace in and of itself
makes it possible to estimate the time that has passed since an event
was encountered. In addition, the nested oscillations in the working
memory model allow temporal information of multiple items to stay
active concurrently.

The integrative theory of time perception predicts that there is a
tight link between the consolidation and maintenance of items in
working memory and time perception. Indeed, there is cumulative
evidence that working memory representations and working memory
load influence subjective time perception (see Matthews and Meck,
2016 and Gu et al., 2015 for extensive reviews of the relation between
memory and timing). For example, visual stimuli that match the

features of active working memory representations are judged to be
longer (Pan and Luo, 2012). One specific prediction of the integrative
theory of time perception, however, has as of yet remained unexplored:
temporal estimations should be based on the moment when an item is
encoded in working memory. Here, we will test this hypothesis using
the attentional blink (AB) paradigm, in which the temporal aspects of
memory consolidation are well recorded and traceable through elec-
trophysiological markers.

Participants in an AB study are shown a rapid serial visual pre-
sentation (RSVP), a fast stream of stimuli in the same location on a
screen. Within this stream of stimuli, one or two targets are embedded.
The task of the participant is to remember these targets and report them
after each trial. The well-documented AB phenomenon arises when the
second target (T2) is not correctly reported when it is presented in a
period of ~ 200–500ms after the first target (T1) (Raymond et al.,
1992; Vogel and Luck, 2002). This effect has been ascribed to a two-
stage process, in which after an initial detection and identification
stage, targets have to be consolidated in a memory system with limited,
serial encoding capacity in order to create a stable representation that is
available for report (e.g. Chun and Potter, 1995; Jolicœur and
Dell'Acqua, 1998; Akyürek et al., 2017). Therefore, while T1 is con-
solidated, a subsequent target (T2) cannot be processed in working
memory, thereby causing an AB.

In order to study the processing of targets in the AB task, the P3
component of the averaged event related potential (ERP) has been used
as a measure of the latency of memory consolidation (Vogel and Luck,
2002; Kranczioch et al., 2003). The P3 is sometimes referred to as the
P300, because its onset generally occurs ~300ms after the presentation
of a salient target, although the range depends on factors such as
modality and task conditions (Polich, 2007). It has been shown that
targets presented within the window of the AB elicited a P3 when they
were reported, but not when the targets were blinked (Vogel et al.,
1998). In contrast, other ERPs related to early visual processing are still
present when the second target is blinked. Therefore, the P3 component
has been associated with memory consolidation (Donchin, 1981; Vogel
et al., 1998; Kok, 2001; Akyürek et al., 2010).

Interestingly, second targets that are correctly identified despite
being presented within the AB window do elicit a P3, but this P3 ex-
hibits an increased latency and variability. For example, Vogel and Luck
(2002) reported the P3 of T2 during the AB window to be ~100ms later
than the P3 of a T2 that was presented outside the AB window, sug-
gesting that this reflects delayed memory consolidation (see also Sessa
et al., 2007; Martens et al., 2006). In addition, using single-trial ERP
analyses, Chennu et al. (2009) reported that the P3 associated with T2
presented in the AB window were not only delayed, but also showed
more temporal variation compared to trials with a longer T2 lag. Thus,
these studies show that the timing of working memory consolidation is
delayed and more variable when the second target follows quickly after
the first.

In the current study, we will utilize these phenomena associated
with T2 encoding to test whether memory consolidation determines the
onset of temporal estimation. Specifically, we will investigate if the
perceived time interval between T1 and T2 in an AB task will indeed be
longer if the P3 component for T2 is delayed. Two AB experiments were
conducted to explore this question. Crucially, in both experiments,
participants not only report target identity, but also the perceived
temporal positions of the targets. In Experiment 1, we will test the re-
lation between encoding and time perception behaviorally, by com-
paring the perceived duration between targets in trials in which T2 is
presented within the AB window with trials in which T2 is presented
outside this window. We expect that the temporal estimations of the
second targets that are presented in the AB window will be delayed
compared to the estimations for targets outside of this window. As a
result, we also expect that the estimated lag between T1 and T2 will be
larger within the AB window. By measuring EEG in Experiment 2, we
will compare the latency of the P3, as an electrophysiological index of
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memory consolidation, with temporal estimations. We hypothesize that
an increased P3 latency associated with a target will result in a later
temporal estimate for that target.

2. Experiment 1

2.1. Methods

2.1.1. Subjects
Forty-five participants were recruited for the first experiment (25

female, mean age: 20.7, SD: 2.1). One participant was excluded from
the analysis due to a technical malfunction. All participants were re-
cruited from the University of Groningen Psychology Participant Pool
and received partial course credits for participating. The study was
approved by the Psychology Ethical Committee of the University of
Groningen (15163-NE), and participants gave informed consent before
testing.

2.1.2. Stimuli and apparatus
Each trial consisted of an RSVP followed by a response screen, in

which participants indicated the identity and temporal location of the
targets in the RSVP. The stimuli and response screen were presented on
a 19 in. CRT monitor with a resolution of 800× 600 px and a refresh
rate of 100 Hz, using Psychophysics toolbox running on Matlab 2015b
under Windows 7. The alphanumeric characters in the RSVP were
presented in Courier font in white on a black background with an
average size of 0.8° visual angle. Subjects estimated the temporal po-
sition of the first target by clicking on a line presented on the left half of
the screen and of the second target on a line on the right half of the
screen. Both lines were presented simultaneously in white and spanned
320 pixels each (Fig. 1). The horizontal position of the subjects' mouse
clicks on the lines were transformed into relative temporal position
within the stream of characters. Responses to the identity of the targets
were recorded with a computer keyboard.

2.1.3. Procedure
Participants were instructed that they would see trials consisting of

one or two letters within a fast stream of numbers and that their task
was to report which letters they had seen and when they had seen them.
Each trial consisted of an RSVP preceded by a 1000ms fixation cross,
and followed by a response screen (Fig. 1). The RSVP consisted of 21
characters, presented 100ms each. T1 and T2 were drawn from capital
letters from the alphabet (A, B, C, D, E, F, H, J, K, P, R, T, U, V), the
distractors were drawn from the digits 1–9.

A total of 300 trials was presented, divided into 6 equal size blocks.
In addition, 10 practice trials were presented at the start of the

experiment. In 3% of the trials no target was presented, in 16% of the
trials only one target was presented and in 81% of the trials two targets
were presented. T1 was always presented as the 4th, 5th, 6th, 7th or 8th
character in the stream. T2 was presented lagging 1, 3, 5, 7 or 9 posi-
tions behind T1. Each combination of T1 position and T2 lag was pre-
sented equally often.

After the RSVP, a response screen was shown. First, participants
indicated the temporal positions of the targets relative to the entire
stream. They did so by clicking on a line which length represented the
duration of the RSVP. Second, responses were made pertaining to the
identity of T1 and T2. Subjects were instructed to click the "Second
target not seen'' button if they had not seen T2. The experiment script is
available at: http://osf.io/54xuj/.

2.1.4. Analysis
To analyze T2 accuracy and the temporal estimations, we fitted

linear mixed models (LMMs) using the lme4 package in R (Bates et al.,
2014). We performed model comparisons using likelihood ratio tests to
evaluate whether a fixed factor improved the model fit. In these tests,
subject was always included as a random intercept term. Only fixed
factors that improved the model fit were included in the final model.
Next, we gradually increased the random effect structure of this model
by adding random slopes for the significant fixed factors and comparing
the more complex model with the simpler model using a likelihood
ratio test. In the case of multiple potential random slopes, we first
added the random slope that improved the model fit most, at every step.
To this end, we determined which random slope led to the model with
the lowest AIC. A random slope term was only included if it improved
the model significantly and the statistics of the fixed factors of the best
model are reported here.

To quantify the evidence in favor of the null hypothesis compared to
the alternative hypothesis we calculated Bayes factors. For the binomial
models fitting the accuracy data, we approximated the Bayes factor
using the BIC values of H0 and H1, as described in Wagenmakers
(2007). For the temporal estimation models, Bayes factors were calcu-
lated using the lmBF function from the BayesFactor package in R (Morey
et al., 2014). We will denote the evidence for the null hypothesis (H0)
over the alternative hypothesis (H1) as BF01.

2.2. Results

2.2.1. Attentional blink
The mean accuracy for T1 and for T2 given correct report of T1 is

shown in Fig. 2A. A binomial linear mixed model was estimated with
accuracy of T2 as the dependent variable, lag as a categorical fixed
factor and subject as a random factor. The inclusion of lag improved the

3 to 7 distractors

2100 ms

100 ms

100 ms

100 ms

100 ms

100 ms T1

Masks

T2

0, 2, 4, 6 or 8 distractors

Enter T1 Enter T2

T2 not seen

Response screen

A B

Fig. 1. Overview of a trial in Experiment 1. A trial consisted of an RSVP with 0, 1 or 2 target letters in a stream of distractor digits (Figure A). A fixation cross was
presented before and after the trial. At the end of the trial, participants saw a response screen in which they reported the estimated onset of the two targets on a line
representing the trial duration (Figure B). In addition, they reported the target identity.

A. Damsma et al. Neuropsychologia 117 (2018) 36–45

38

http://osf.io/54xuj/


model significantly (χ2 = 522.40, p < 0.001, BF01< 0.001). A post-
hoc Tukey's HSD test showed that T2 accuracy was lower at lag 3 than
at all other lags (ps < 0.001), indicating that an attentional blink oc-
curred (see Table S1 for full Tukey's HSD test results). Also, T2 per-
formance at lag 1 was significantly better than at lag 3 (p < 0.001),
indicating lag-1 sparing (Potter et al., 1998).

2.2.2. Temporal estimations
We calculated the estimated T2 lag as the difference between the

estimated T1 position and the estimated T2 position. The average es-
timated T2 lag for each presented T2 lag is displayed in Fig. 2B. A linear
mixed model was fitted with estimated lag as the dependent variable
and the centered presented lag as a continuous fixed factor. Subject was
included as a random intercept term and lag as a random slope term.
The model revealed an unstandardized coefficient of presented lag of
β=0.45 (t=13.80, p < 0.001, BF01< 0.001), showing that lag esti-
mation increased linearly with presented lag. As can be seen in Fig. 2B,
responses to relatively short intervals tended to be overestimated and
responses to relatively long intervals tended to be underestimated. To
test if there was a significant pull towards the (subjective) mean, a
linear mixed model was estimated with estimation bias (the difference
between the presented lag and the estimated lag) as the dependent
variable, presented lag as a continuous fixed factor, subject as a random
intercept term and lag as a random slope term. Whereas a coefficient of
0 would indicate perfect estimation, the model yielded a coefficient of
β=−0.55 (t=−16.88, p < 0.001, BF01< 0.001). Post-hoc, we
tested the possibility that the response format could lead to compressed
lag estimations when T1 occurred later in the stream. To this end, we
added T1 position to the model predicting estimated lag, but found that
this did not improve the model fit (χ2< 0.01, p=0.973, BF01 =
40.994). This finding indicates that lag estimations did not depend on
when the targets appeared in the stream.

Thus, estimated lag increased linearly with presented lag, but the
estimations showed a significant pull towards the (subjective) mean. To

test if lag estimations increased when T2 was presented within the
window of the AB, we added the dichotomous factor "within AB
window" to the model predicting estimated lag. The results showed that
lag estimates for lag 3 were not longer than lag estimates outside the AB
window. Instead, a trend in the opposite direction was observed
(β=−0.167, t=−1.94, p=0.052, BF01 = 6.612).

In addition, we hypothesized that when T2 was presented within the
window of the AB (i.e., lag 3), the delay in memory consolidation would
lead to later temporal estimations of T2. Fig. 2C shows the temporal
estimates of T2 for each T2 position and lag. If temporal estimates
would be delayed in lag 3, we expected a relatively high intercept for
the line corresponding to lag 3 compared to the other lags in this figure.
To test whether T2 estimates were indeed delayed at lag 3, an LMM was
estimated with temporal estimation of T2 as the dependent variable,
actual temporal position of T2 as a continuous fixed factor, subject as a
random factor and the random slope of temporal position of T2. Adding
lag to the model as a categorical fixed factor yielded a significant im-
provement (χ2 = 61.47, p < 0.001, BF01< 0.001). However, the
model showed that T2 estimates at lag 3 were earlier than at lag 5
(β=−0.75, t=−7.15, p < 0.001), lag 7 (β=−0.80, t=−6.30,
p < 0.001), and lag 9 (β=−0.96, t=−6.14, p < 0.001).

Fig. 2C also shows the temporal estimates for T1 for each T1 posi-
tion and lag. An LMM was estimated with temporal estimation of T1 as
the dependent variable, actual temporal position as a continuous fixed
factor and lag as a categorical fixed factor, subject as a random inter-
cept and lag as a random slope term. Again, a pull towards the mean
was demonstrated by the unstandardized estimate of the fixed factor
(β=0.37, t=22.02, p < 0.001, BF01< 0.001). Including lag in the
model increased its descriptive value (χ2 = 133.50, p < 0.001,
BF01< 0.001), showing that the temporal estimation of T1 was also
affected by if and when T2 was presented. A post-hoc Tukey's HSD
comparison of the T2 lag conditions revealed that T1 estimations in
single target trials were later than in two target trials (ps < 0.001) (see
Table S2 for an overview of the test results). To further investigate the

Fig. 2. Behavioral results of Experiment 1. Figure A shows the average accuracy of T1 and T2|T1 per presented T2 lag, demonstrating that there is an attentional
blink at lag 3 and lag-1 sparing. Figure B shows the average estimated lag as a function of the presented lag. The dashed line represents veridical estimation. Figure C
presents the average estimated target onset as a function of target onset, relative to trial onset. Error bars represent the within-subject CIs.
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effect of T2 on T1 estimations, we post-hoc estimated an LMM pre-
dicting T1 estimation in single target and lag 3 trials (see also Fig. S1).
We found that T1 estimations were earlier when a second target was
reported compared to when only one target was reported (β=−0.86,
t=−5.70, p < 0.001, BF01< 0.001), regardless of whether this T2
was reported correctly or not (χ2 = 0.06, p=0.799, BF01 = 2.973) or
whether it was a single target trial or a lag 3 trial (χ2 = 2.43,
p=0.119, BF01 = 6.450). These findings indicate that merely re-
porting two targets led to earlier temporal T1 estimates. All analysis
scripts and data are available at: http://osf.io/54xuj/.

2.3. Discussion

In Experiment 1, we aimed to test whether time estimations of T2
are delayed if memory consolidation is delayed. We found a lower ac-
curacy for T2 at lag 3 compared to longer lags, indicating that an AB
was present. In line with previous studies, we therefore assume that a
delay was induced in the latency of memory consolidation of T2 in the
lag 3 condition, compared to lags outside the AB window (Vogel and
Luck, 2002; Chennu et al., 2009).

We demonstrated that temporal estimations of T2 lag increased with
presented T2 lag, but also showed a linear pattern of underestimations
of the longer lags and overestimation of the shorter lags. This pull to-
wards the mean effect is typically observed in experiments in which
intervals have to be reproduced in a specific temporal context (Grondin,
2001; Jazayeri and Shadlen, 2010). In contrast to our hypothesis,
temporal estimations of lag and T2 in the lag 3 trials were not later than
temporal estimations in the other lag conditions: T2 was estimated to
have occurred relatively early when it was presented within the AB
window compared to later windows. Thus, whereas memory con-
solidation might have been delayed in lag 3 trials, this did not lead to a
delay in temporal estimation.

In summary, the results do not support the hypothesized role of
memory consolidation as the index of timing. Importantly, however,
the current behavioral experiment can only give us indirect evidence
about the link between memory consolidation and temporal estimation.
Although we assume that memory consolidation of T2 is delayed in lag
3 trials, this assumption cannot be verified on the basis of purely be-
havioral data. In addition, the current experimental setup does not
allow for taking inter-trial variation in memory consolidation - which
could explain inter-trial variation in temporal estimates - into account.
In Experiment 2, we will address these issues by measuring EEG during
the AB task.

3. Experiment 2

An EEG study was conducted to further investigate if the latency of
memory consolidation influences time perception. It has been suggested
that the P3 component of the ERP is a neural correlate of memory
consolidation (Donchin, 1981; Vogel et al., 1998; Kok, 2001). In Ex-
periment 2, we will therefore use P3 latency as an index of delay in
memory consolidation.

We investigated the relationship between P3 latency and temporal
estimations in two ways. First, we compared the P3 latencies of rela-
tively "early'' and "late'' estimations by creating a median split based on
the temporal estimations of correctly identified T2s in the lag 3 con-
dition. Second, using single-trial ERP analysis, we assessed whether
there is a relation between inter-trial variation in P3 latency and tem-
poral estimations. We expected that 1) the P3 for T2 will exhibit an
increased delay and variability in lag 3 trials compared to trials in
which the lag is longer, and 2) inter-trial variation latency in the P3 can
account for variation in the temporal estimations. Specifically, we ex-
pected that in trials where a T2-elicited P3 was relatively early, the
subjective estimation of T2 was also relatively early.

3.1. Methods

3.1.1. Subjects
Thirty subjects participated in Experiment 2 (21 female, mean age:

22.2, SD: 2.4). Nine participants were recruited from the University of
Groningen Psychology Participant Pool and received partial course
credits for participating, 21 participants were recruited via social media
and were rewarded 15 euro. The study was approved by the Psychology
Ethical Committee of the University of Groningen (15163-NE), and
participants gave written informed consent before testing.

3.1.2. Stimuli and apparatus
The same setup of stimuli presentation was used as in Experiment 1.

3.1.3. Procedure
A procedure similar to Experiment 1 was employed. However, fol-

lowing Chennu et al. (2009), the rapid serial stream of stimuli consisted
of 35 characters, presented 100ms each. In total, 312 trials were pre-
sented, divided into 6 equal size blocks. T1 was preceded by 4–16
characters in the stream. T2 was presented in 75% of the trials, lagging
1, 3 or 8 positions behind T1. Each combination of T1 position and T2
lag was presented equally often. Additionally, participants received
feedback on the accuracy of target identity and their temporal esti-
mations in the 10 practice trials preceding the experiment. The ex-
periment script is available at: http://osf.io/54xuj/.

3.1.4. EEG recording
EEG was recorded using a WaveGuard EEG cap electrode cap (ee-

magine Medical Imaging Solutions GmbH, Berlin, Germany) and a TMSi
amplifier (Oldenzaal, The Netherlands). Impedance was reduced to less
than 15 KΩ. Electrical signals were measured at 1000 Hz from 23
electrodes placed at the following locations in the international 10/20
system: Fp1, Fp2, Fz, F3, F4, F7, F8, FCz, FC1, FC2, Cz, C3, C4, T7, T8,
Pz, P3, P4, P7, P8, Oz, O1, O2. Horizontal eye movement was measured
with two electrodes places by the participants’ canthi, vertical move-
ment was measured with two electrodes above and below the right eye.

3.1.5. EEG pre-processing
Raw EEG data was preprocessed and analysed with EEGLAB

13.5.4b, ERPLAB 5.0.0.0, custom Matlab scripts and R. A bandpass
filter was applied to the raw data with a 25 Hz high cut-off and 0.1 Hz
low cut-off frequency. The EEG data was re-referenced to the average of
the left and right mastoids. Independent component analysis was per-
formed on each recording. After inspection of scalp topography, com-
ponents associated with ocular movement were removed and remaining
components were back-projected (Hoffmann and Falkenstein, 2008).
Epochs were created for each presented T1 starting 500ms before the
target was presented and ending 2500ms after the target appeared.
Baseline correction was applied using the 200ms period before the
target as the baseline period. Automatic artifact rejection was applied to
epochs containing samples that exceeded the threshold of 150 μV.
Following, for example, Chennu et al. (2009), Sessa et al. (2007) and
Martens et al. (2006), all analyses were based on the EEG signal at the
Pz electrode.

3.1.6. P3 latency estimation
3.1.6.1. Average. A grand average ERP was calculated for trials in
which T1 and T2 were reported correctly. To test whether the delay in
memory consolidation was different between lags, we estimated P3
latencies per lag for each participant. First, because the P3 is a
relatively low-frequency component, we applied a 3.5 Hz low-pass
filter to the EEG signal (Jaskowski and Verleger, 2000). Next, P3
latency was estimated as the local maximum within a particular
window in the average ERP of each lag condition for each
participant. For the P3 associated with T1, this window was
200–600ms after T1 onset. Visual inspection of the grand average
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ERPs per subject showed that the P3s associated with T2 occurred
slightly later than for T1. To capture these peaks, for T2 at lag 3 and 8,
the time windows were 650–1050ms and 1150–1550ms after T1 onset,
respectively.

3.1.6.2. Median split. To contrast P3 latencies of targets that were
estimated relatively early and targets estimated relatively late, we split
the latency estimations of the participants in two groups based on the
median estimation. Specifically, the median split was based on
temporal estimation bias and was performed for each participant
separately on trials where T1 and T2 were correctly identified. First,
to correct for the pull towards the mean effect (i.e., the consistent
overestimation of the early targets and underestimation of late targets),
the temporal estimation bias was corrected for temporal position.
Second, we estimated a linear mixed model with temporal estimation
of T2 as the dependent variable, actual temporal position of T2 as a
fixed factor and subject as a random factor. The amount of deviation of
each T2 estimation from the estimated model then gives a corrected
value of estimation latency. Third, the median split was performed on
the resulting residuals for each participant.

For each participant, lag and target, two average ERPs were calcu-
lated, corresponding to trials where the target was estimated to have
occurred earlier or later than the median estimation. For peak detec-
tion, we used the same time windows and method as in the analysis of
the grand averages, described in the previous section.

3.1.6.3. Single-trial. In order to investigate the relationship between
memory consolidation and temporal estimations on a single-trial level,
we estimated the P3 latency in every trial in which T1 and T2 were
correctly identified for every participant. First, we applied a 3.5 Hz low-
pass filter to the EEG signal (Jaskowski and Verleger, 2000). Second, for
each trial, a linear detrend function was applied. Third, to estimate the
latency of the P3, we cross-correlated a peak template with the EEG
signal. Following Jaskowski and Verleger (2000), the template
consisted of a positive half-cycle sinusoid of 300ms. Peak latency was
determined as the time point at which the correlation was highest
within a particular time window. The same windows as in the average
peak estimation were employed (see Section 3.1.6.1). To filter out trials
in which no peak could be distinguished, only those trials in which the
correlation between the template and the signal exceeded 0.65 were
included in the analysis. In addition, only trials in which the difference
between T1 and T2 peak latencies was greater than 100ms were
considered. In this way, 19% of the trials were excluded, resulting in a
total of 1313 single target trials, 1665 lag 8 trials, and 962 lag 3 trials.

All analysis scripts and data are available at: http://osf.io/54xuj/.

3.2. Results

3.2.1. Behavioral results
3.2.1.1. Attentional blink. The mean accuracy for T1 and for T2 given
correct report of T1 is shown in Fig. 3A. A binomial linear mixed model
was estimated with accuracy of T2 as the dependent variable, lag as a
categorical fixed factor, subject as a random intercept term and lag as a
random slope term. The inclusion of lag yielded a significantly better
model (χ2 = 786.80, p < 0.001, BF01< 0.001). A post-hoc Tukey's
HSD test showed that T2 accuracy was lower at lag 3 than at lag 8,
indicating that an attentional blink occurred (see Table S3 for full
Tukey's HSD test results). Also, T2 performance at lag 1 was
significantly better than at lag 3 (p < 0.001), indicating lag-1 sparing.

3.2.1.2. Temporal estimations. Average lag estimations for each
presented T2 lag and mean estimation corresponding to each target
position are displayed in Fig. 3B and C, respectively. A similar analysis
of temporal estimations was conducted as in Experiment 1. A linear
mixed model was fitted with estimated lag as the dependent variable
and the centered presented lag as a continuous fixed factor. Subject was

added as a random intercept term and presented lag as a random slope
term. The model revealed an unstandardized coefficient of β=0.56
(t=15.08, p < 0.001, BF01< 0.001), showing that the lag estimations
increased linearly with the presented lag. Adding the dichotomous
factor "within AB window" did not improve the model, suggesting that
temporal estimates were not delayed for lag 3 compared to lag 1 and lag
8 (χ2 = 0.38, p=0.535, BF01 = 35.536). Similar to Experiment 1, a
linear mixed model was estimated with bias in lag estimation as the
dependent variable, presented lag as a continuous fixed factor and
subject as a random intercept factor and lag as a random slope term.
This model showed that there was a significant pull towards the mean
(β=−0.44, t=−11.63, p < 0.001).

To test whether T2 estimates were delayed at lag 3, an LMM was
estimated with temporal estimation of T2 as the dependent variable,
temporal position of T2 as a continuous fixed factor, lag as a categorical
fixed factor, subject as a random factor and the random slopes of
temporal position of T2 and lag. Including lag improved the model fit
(χ2 = 24.61, p < 0.001, BF01 = 0.039). The model showed that T2
estimates at lag 3 were relatively early compared to lag 1 (β=−0.48,
t=−3.56, p < 0.001), but there was no significant difference be-
tween lag 3 and lag 8 (β=0.29, t=1.94, p=0.052).

3.2.1.3. Replication experiment. We have replicated the behavioral
results of Experiment 2 in an additional experiment. Please find the
results of this experiment in the Supplementary Information.

3.2.2. EEG results
3.2.2.1. Average P3 analysis. Fig. 4A shows the grand average ERPs for
lag 3 no-blink and blink trials, and lag 8 and single target trials in which
both targets were correctly identified. For lag 3 no-blink and lag 8
trials, two large positive peaks can be observed, corresponding to the
two presented targets. As expected, the second P3 was absent in lag 3
blink trials, indicating that T2 was not consolidated in working
memory.

To evaluate if the P3 was delayed for T2 in lag 3 compared to T1 in
lag 3 and T2 in lag 8, we estimated an LMM with P3 latency as the
dependent variable, lag (lag 3 and lag 8) and target (T1 and T2) as
categorical fixed factors and subject as a random factor. In the model,
the contribution of each subject was weighted by the number of trials
on which the subject average in each condition was based, using the
lmer function in the lme4 package in R.

The LMM showed that there was no difference in T2 P3 latency
between lag 3 (M = 545.73ms, SD = 113.56) and lag 8 (M =
544.53ms, SD = 85.84) (β= 8.03, t=0.46, p=0.646, BF01 =
3.555), suggesting that the P3 for T2 was not delayed when this target
was presented within compared to outside the AB window. However,
within lag 3 trials, we found that the P3 was delayed for T2 compared
to T1 (β= −69.50, t=−3.71, p < 0.001, BF01< 0.001). Thus, these
results suggest that the P3 for T2 within the AB window was delayed
compared to the P3 for T1, but not compared to the P3 for T2 outside
the AB window. Post-hoc, we compared T1 latency for no-blink and
blink lag 3 trials by adding a fixed factor to the model coding for
whether T2 was correctly reported, but we found no difference (β=
−21.50, t=−1.02, p=0.311, BF01 = 3.903).

3.2.2.2. Median-split P3 analysis. Fig. 4B and Fig. 4C show the average
ERPs for estimates that were earlier and later than the median for lag 3
T1 and T2, respectively. Five linear mixed models were estimated to
test whether P3 latencies of the early and late estimations were
different for T1 and T2 in the lag 3 and lag 8 conditions and T1 in
the single-target condition. In each model, P3 latency was the
dependent factor, latency category (early or late) was the fixed factor
and subject was entered as a random factor. Again, the contribution of
each average data point was weighted by the number of trials on which
the average was based.

The model for T2 at lag 3 showed that there was no difference in P3
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Fig. 3. Behavioral results of Experiment 2. Figure A shows the average accuracy of T1 and T2|T1 per presented T2 lag, demonstrating that there is an attentional
blink at lag 3 and lag-1 sparing. Figure B shows the average estimated lag as a function of the presented lag. The dashed line represents veridical estimation. Figure C
presents the average estimated target onset as a function of target onset, relative to trial onset. Error bars represent the within-subject CIs.

Fig. 4. ERP results of Experiment 2. Figure A shows the grand average ERPs of lag 3, lag 8 and single-target trials in which both T1 and T2 were correctly identified.
Figure B and C show the median-split ERPs for early and late estimations of T1 and T2, respectively, in lag 3 trials. The data in Figure B and C has been filtered with a
3.5 Hz low-pass filter. The grey areas show the windows employed for local peak detection. The black dots represent the average local peak for early and late
estimations.
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latency between early (M= 835.43) and late (M= 849.20) estimations
(β=10.69, t=0.44, p=0.667, BF01 = 3.296). In line with this, we
did not find differences in the P3 latencies associated with early and
late estimations for T1 for lag 3, lag 8 and single-target trials (ps >
0.596, BFs01> 2.849) and for T2 for lag 8 (β=−9.01, t=−0.76,
p=0.451, BF01 = 2.24). Thus, overall, these results suggest that the
estimated target onsets did not depend on the latency of the P3. See
Table S4 for an overview of the mixed model and Bayes factor results.

3.2.2.3. Single-trial P3 analysis. In our single-trial analysis we first
tested whether there were latency differences of P3 associated with
T1 and T2 in the different lags. To this end, we estimated an LMM with
P3 latency as the dependent variable, lag and target as categorical fixed
factors, subject as a random intercept factor and lag and target as
random slope terms. The model showed that the P3 associated with T2
occurred later for lag 3 (M= 570.53) than for lag 8 (M= 541.76) (β=
31.44, t=6.41, p < 0.001). In addition, the P3 was estimated earlier
for T1 (M = 411.38 and M = 427.96 for lag 3 and lag 8, respectively)
than for T2 in lag 3 (β=−162.19, t=−23.72, p < 0.001) and lag 8
trials (β=−115.82, t=−18.92, p < 0.001). Although the standard
deviation of T2 P3 latency was only slightly larger for lag 3 (SD =
109.50) than for lag 8 (SD = 107.21), the standard deviation for T2 P3
in lag 3 was notably larger than for T1 (SD = 94.78). Thus, in contrast
to average P3 analysis, the single-trial analysis suggests that the T2 P3
was delayed for lag 3 trials compared to lag 8 trials.

Fig. 5A shows the color map for lag 3, which represents the single-
trial ERP amplitude ordered by T2 P3 latency. Correspondingly, Fig. 5B
shows single-trial temporal estimations (relative to the median for each
subject) in the same trial order as Fig. 5A. The regression line in Fig. 5B
suggests that there was no clear correlation between T2 P3 latency and
the time estimates. To investigate the influence of single-trial P3 latency
on time estimations, eight linear mixed models were computed, pre-
dicting estimated T1 position in single target, lag 3 and lag 8 trials and
estimated T2 position and lag in lag 3 and lag 8 trials. In all models,
estimated T1 position was entered as the dependent variable, T1 posi-
tion and P3 latency were continuous fixed factors and subject was a
random factor. For all models, except the lag 3 model with P3 lag as a
fixed factor, the random slope of T1 position was included because it
improved the model significantly.

In line with Fig. 5, we found no effect of P3 latency on the esti-
mation of T2 (β= 0.03, t=0.28, p=0.777) and lag (β=−0.03,
t=−0.49, p=0.625) in lag 3 trials (see Table S5 for an overview of
the mixed model results). The corresponding Bayes factors of 7.349 and
8.961, respectively, suggest that there was moderate evidence (Jeffreys,
1961) for the null hypothesis, i.e. the absence of an effect of P3 latency

on temporal estimates. Over all lags and targets, we did not find a
significant positive effect of P3 latency on temporal estimation (Table
S5). We did find a small negative effect of P3 latency on T1 and lag
estimations in lag 8 trials. However, the corresponding Bayes factors
(BF01 = 14.76 and BF01 = 1.26, respectively) show that there was
more evidence for the absence of an effect of P3 latency than for the
alternative hypothesis. Thus, overall, the single-trial analysis does not
deliver evidence in support of a relationship between P3 latency and
temporal estimation.

3.3. Discussion

The goal of Experiment 2 was to relate electrophysiological sig-
natures of memory consolidation to temporal estimations. We expected
temporal estimations of identified T2s that were presented within the
AB window to have increased latency and variance. If memory con-
solidation acts as an index of timing onset, we expected that the ob-
served variance in temporal estimations could be explained by the
variance of P3 latency.

We found similar behavioral results as in Experiment 1, despite the
different combination of temporal positions and lags. In line with
Experiment 1, temporal estimations for T2 in lag 3 trials, in which there
is a presumed delay in memory consolidation, were not delayed com-
pared to temporal estimations outside the AB window. Whereas the
average ERP analysis revealed only a small, non-significant latency
difference between the P3 evoked by T2 inside and outside the AB
window, the single-trial analysis showed a ~30ms delay in the lag 3
condition compared to the lag 8 condition. The latter finding is in line
with previous studies (Sessa et al., 2007; Martens et al., 2006; Vogel
and Luck, 2002; Chennu et al., 2009).

We expected that the latency of memory consolidation, as reflected
by the P3, would determine the subjective onset timing of the partici-
pants. However, the analysis of the median-split ERPs revealed that
there were no differences in P3 latency between early and late esti-
mations. Similarly, we found no positive relation between P3 latency
and temporal estimations on a single-trial level.

4. General discussion

This study was aimed at finding evidence of the involvement of
memory consolidation in the starting of the internal clock in interval
timing. We made use of the AB task, as it has been shown that memory
consolidation is delayed and more variable when a target is presented
within the AB window (Sessa et al., 2007; Martens et al., 2006; Vogel
and Luck, 2002). If memory consolidation serves as the onset of interval

Fig. 5. Single-trial P3 results of Experiment 2. Figure A shows the color map for lag 3 trials in which both T1 and T2 were identified correctly. The ERP amplitude of
the trials are displayed sorted by T2 P3 latency. The black line represents the estimated single-trial P3 latency. Figure B shows the estimated temporal estimations of
the target relative to the subject median for each trial. The trials are displayed in the same order as in Figure A.

A. Damsma et al. Neuropsychologia 117 (2018) 36–45

43



timing, we expected that temporal estimations would be delayed when
memory consolidation is delayed. In addition, we expected that inter-
trial variation in temporal estimations could be explained by variation
in memory consolidation.

In Experiment 1, we showed that participants could estimate the
timing of the two targets in a predictable way, in which the temporal
estimates increased with the presented onset. However, in line with
typical temporal reproduction tasks, short lags were overestimated and
long lags were underestimated (Grondin, 2001; Jazayeri and Shadlen,
2010; van Rijn, 2016). Although a classic AB was observed, temporal
estimations of identified T2s were not affected by the hypothesized
delay of memory consolidation. Instead of temporal estimations of T2
being later when memory consolidation was delayed, we found that
temporal estimations were slightly earlier. In Experiment 2, we found
no latency differences between P3s for early and late temporal esti-
mates and no relation between inter-trial variation in temporal esti-
mates and single-trial P3s.

Thus, overall, we found no evidence for a relationship between
memory consolidation as indexed by a P3 in an attentional blink task,
and the associated temporal estimations. Whereas models of interval
timing, such as the Scalar Timing model (Gibbon, 1977; Gibbon et al.,
1984; Wearden, 1991) and the SBF model (Matell and Meck, 2004),
propose a clock mechanism that an explicit starting signal starts a
timing mechanism, Gu et al. (2015) proposed that, through multi-
plexing, the system of updating the semantic information of working
memory can also code for time. In the latter case, working memory
consolidation could serve as the "starting gun" that resets the phase of
the oscillation coding for a specific item. However, the current study
suggests that memory consolidation, as reflected by the P3, might not
fulfill this role. It seems that, although memory consolidation is crucial
for the conscious perception of an event, time information is coded for
by another mechanism that is independent of the processes underlying
the P3. However, a recent study suggests that the P3 might play a
different role in timing, reflecting norepinephrine release in the over-
estimation of unexpected stimuli (Ernst et al., 2017).

It is important to note that the current study relies on three as-
sumptions. First, working memory consolidation of T2 is delayed for
no-blink trials in which T2 quickly follows T1, and second, the P3
component reflects working memory consolidation in the AB task. We
believe that these assumptions are well supported by an extensive body
of behavioral and EEG studies (for a review, see Martens and Wyble,
2010). In addition, most theoretical models of the AB assume that the
second target is perceived, but fails in a limited-capacity memory
system, and the latter process would therefore be delayed when T2 is
reported in no-blink trials. Third, we assume the memory consolidation
process has a dichotomous outcome: it is either successful or not.
Consolidation was considered successful when an item was correctly
recalled. However, we make no assumptions regarding the strength of
memory consolidation, as was proposed in, for example, Wixted and
Mickes (2010). It could be argued that stronger memory consolidation
affects interval timing differently than weaker memory consolidation.
For example, items that subjects judge to remember may have been
consolidated into memory more strongly than the items of which sub-
jects only have a vague idea. In our task, however, the weakly re-
membered items will often not be recalled correctly, since guessing
correctly has only a 1/26 probability (or 1/14 if the participant was
aware of the particular letter set used in our experiments).

A potential alternative to our working memory consolidation hy-
pothesis is that timing onset might be established earlier than conscious
stimulus detection. In line with this notion, Amano et al. (2016) showed
that the threshold of the MEG response related to the point of subjective
simultaneity was earlier than the threshold for reaction time. They
argued that although stimulus onset is determined prior to stimulus
detection, the established time marker is only available when the sti-
mulus is consciously perceived. Indeed, future studies might investigate
the possibility that earlier perceptual processes, and associated earlier

perceptual EEG components (e.g. N1 and P2), determine perceived
timing.

Although the results suggest that temporal estimates in the sub-
second range do not depend on the latency of working memory con-
solidation, potential shortcomings of the current study have to be
considered. First, the variation in P3 latencies found in the AB task
might be too small to reliably account for the variation in temporal
estimations. Second, the assessment of temporal estimations by clicking
on a timeline might not be precise enough to reveal small nuances in
perceived timing. Even though the time estimation results show that, on
average, the estimates increase linearly with the presented timing, the
inter-trial response variation might lead to a decreased accuracy in
mapping perceived timing to estimations. In addition, the observed pull
towards the mean effect decreases meaningful inter-trial variation re-
lated to the presented lag. The response format could also compress the
estimates for T2 when T1 appears later in the stream. However, in our
models predicting estimated T2 position, any linear effects of position
have been accounted for by the inclusion of actual temporal position of
T2 as a fixed factor. In addition, our post-hoc test in Experiment 1
showed that lag estimations did not depend on when the targets ap-
peared in the stream. The estimations of T1 and T2 do seem to interact
in one particular way, however: we found earlier T1 estimates for trials
in which two targets were reported compared to trials in which only a
single target was reported.

In summary, the current study suggests that the timing of interval
onset is not determined by memory consolidation as operationalized in
this study: We found no relationship between neural markers of
memory consolidation latency and reported target onset estimations.
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