CHAPTER 3

Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

M.E. Kamminga et al., Chem. Mater., 2016, 28(13), 4554-4562

Abstract

In this chapter, we have used a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic-inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic cations. The shortest alkyls yield two-dimensional structures consisting of inorganic sheets of corner-sharing PbI$_6$-octahedra. However, the longer alkyls induce both corner- and face-sharing of the PbI$_6$-octahedra, and form new compounds. Density functional theory calculations including spin-orbit coupling show quantum confinement in two dimensions for the shorter alkyls, and in one dimension for the longer alkyls, respectively. The face-sharing PbI$_6$-octahedra create a confinement leading to effectively one-dimensional behavior. These confinement effects are responsible for the observed peak shifts in photoluminescence for the different phenylalkylammonium lead iodide hybrids. Our results show how the connectivity of the octahedra leads to confinement effects that directly tune the optical band gap.

3.1 Introduction

Initially used as a sensitizer in dye-solar cells,$^{[1]}$ CH$_3$NH$_3$PbI$_3$ has attracted much attention as an efficient absorber material in planar heterojunction solar cell devices.$^{[2-7]}$ Very high power conversion efficiencies of up to 22.1%$^{[8]}$ have been reported for lead iodide-based materials. CH$_3$NH$_3$PbI$_3$ belongs to the group of organic-inorganic hybrid materials that consist of organic cations and halogenometalates. In addition to solar light conversion, other optoelectronic applications of organic-inorganic hybrid materials have recently been reported owing to their outstanding optical properties. Light-emitting diodes$^{[9,10]}$, lasers$^{[11,12]}$ and photodetectors$^{[13]}$ have extended not only the scope of these materials but also the spectrum of interesting band gaps. Substitution of either the organic or inorganic component will greatly influence the polarizability and optical band gap, crucial for photovoltaics. As the valence band is formed by hybridized Pb-6s and halide-p orbitals and the conduction band is primarily Pb-6p in character,$^{[14]}$ substitution of the (metal) halide affects the band gap.$^{[15]}$ However, substitution of the organic component
CHAPTER 3. CONFINEMENT EFFECTS

changes the band gap as well, because the size of the organic cation alters the inorganic framework responsible for the size of the band gap.[16–18] Thus, the band gap of organic-inorganic hybrids is related to the structure of the inorganic framework that can be controlled by the organic part. Understanding how the band gap can be altered allows the band gap of hybrid perovskite materials to be tuned for desired applications.

In addition to three-dimensional (3D) organic-inorganic hybrids, two-dimensional (2D) hybrids are of particular interest. Recently, Smith et al.[19] reported a first-generation solar cell device consisting of a layered hybrid perovskite absorber. This device benefited from possible fabrication under ambient conditions and exhibited enhanced moisture stability compared to the 3D CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3} analogue. In most cases, these 2D hybrid structures consist of single ⟨100⟩-terminated perovskite sheets separated by bilayers of alkylammonium cations and held together through van der Waals interactions between the alkyl chains.[20] These compounds form a quantum well structure, in which 2D semiconductor layers are separated by organic spacers. As a result of this quantum confinement effect and enhanced dielectric confinement, stable excitons with large binding energies can be formed.[21] Whereas the high exciton binding energy is disadvantageous for solar cell device operation, these 2D structures exhibit conduction within the layers[20] and have potential applications in light emission.[9,10] Although the small organic cations are free to rotate in the 3D perovskite lattice, they are particularly rigid in the 2D structure due to van der Waals interactions and possible π-π interactions in the case of phenylalkyl chains. As a result, a 2D layer of positively charged amine groups is formed. In combination with the neighboring layer of negatively charged iodide anions, a polar surface is formed between the organic and inorganic layers. Even though 2D hybrid structures have fewer conduction pathways compared to 3D structures, they benefit from their enhanced polarizability. In fact, ferroelectricity was found in structurally similar chlorocuprates.[22] Moreover, 2D materials can find applications in field effect transistors, light-emitting diodes, lasers and detectors. Thus, 2D hybrid structures allow for tunability of their properties, as the organic cations are not restricted to a small size.

In this chapter, we investigate how the band gap of low-dimensional hybrids can be tuned by substituting phenylalkylamines for methylammonium in CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3}. Methylammonium is a rather small cation that fits in the 12-fold iodine-coordinated interstitial holes created by the extended 3D network formed by corner-sharing PbI\textsubscript{6}-octahedra. As only small organic cations consisting of three or fewer C–C or C–N bonds are expected to fit in this 3D structure,[23] we introduce larger phenylalkylamines to obtain 2D hybrid structures. Moreover, we choose organic ligands with phenyl groups, as interactions between the aromatic rings provide a positive contribution to the formation of the hybrid structures through self-assembly. We use four different phenylalkylammonium cations with alkyl chains that are one to four carbons long. The single crystals obtained in our study are stable under ambient and low-humidity conditions, and no degradation was observed over the course of months. Single-crystal XRD results reveal that the two compounds with the shortest phenylalkylammonium cations have structures that consist of inorganic layers of corner-sharing PbI\textsubscript{6}-octahedra separated by bilayers of the organic cations.[24–27] This 2D confinement effect is well-known to influence the band gap.[28,29] However, the two compounds with the longest phenylalkylammonium cations form new structures wherein the inorganic layers are formed by both corner-
3.2 EXPERIMENTAL TECHNIQUES

and face-sharing PbI\(_6\)-octahedra. Our study of the electronic structures using density functional theory including relativistic spinorbit coupling effects (hereafter referred to as DFT+SOC) show that increasing the length of the organic ligands results in band structure features consistent with confinement effects from 3D to 2D and effectively 1D as caused by the formation of face-sharing PbI\(_6\)-octahedra, in agreement with shifts in our photoluminescence data. Thus, although it is a general guideline that 2D confinement and the size of the organic cation and halide have a templating influence on the band gap we show that local structural features can cause the surprising effect of 1D confinement. Our results show how confinement effects enable direct tuning of the optical band gap in organic-inorganic hybrid materials and indicate the design rules for obtaining a large library of hybrid perovskites with interesting optoelectronic properties.

3.2 Experimental Techniques

3.2.1 Crystal Growth

Single crystals of organic-inorganic hybrid perovskites were grown at room temperature using a layered solution technique as previously reported by Mitzi.\(^{[30]}\) The amines and halogenometalates were dissolved in separate solutions. As the different solutions have large differences in density, a sharp interface is formed when the two components are combined. Single crystals were formed due to slow diffusion at the interface.

Procedure

74 mg (0.16 mmol) of PbI\(_2\) (Sigma-Aldrich; 99\%) was dissolved in 3.0 mL of concentrated (57 wt\%) aqueous hydriodic acid (Sigma-Aldrich; 99.95\%). This light-yellow mixture was poured into a glass test tube (size 18 × 150 mm). A syringe with needle was used to make sure that the mixture was placed at the bottom of the tube. 3.0 mL of absolute methanol (Lab-Scan; anhydrous, 99.8\%) was carefully placed on top of the PbI\(_2\)/HI mixture using another syringe and needle, without mixing the solutions. A sharp interface was formed between the two layers due to the large difference in densities (0.791 and 1.701 g/mL for methanol and concentrated aqueous hydriodic acid, respectively). Four types of phenylalkylamine ligands were used: benzylamine (Sigma-Aldrich; 99\%), 2-phenethylamine (Sigma-Aldrich; 99\%), 3-phenyl-1-propylamine (Sigma-Aldrich; 98\%) and 4-phenyl-1-butylamine (Sigma-Aldrich). The phenylalkylammonium solutions were added in great excess by gently adding 15 droplets, using a glass pipette, on top of the methanol layer. The test tubes were covered with aluminum foil and kept in a fume hood under ambient conditions. After 24 h, a small number of (PEA)\(_2\)PbI\(_4\) and (PBA)\(_3\)Pb\(_2\)I\(_7\) crystals were formed at the interface and gathered at the bottom of the tube. The (PMA)\(_2\)PbI\(_4\) crystals started to form on the second day and the (PPA)\(_3\)Pb\(_2\)I\(_7\) crystals followed half a day later. The crystals were collected after 5 days as the interface between the two layers rapidly degrades over the course of 1 week. The crystals were washed three times with diethyl ether (Avantor) after carefully pouring the contents of the test tubes through a filter. Besides being a colorless solvent
with a very low vapor pressure, the crystals do not dissolve in diethyl ether, which makes it an excellent solvent for washing the crystals. After drying under ambient conditions, all crystals were stored in a drybox. The obtained high-quality crystals are bright orange (for (PMA)$_2$PbI$_4$ and slightly lighter for (PEA)$_2$PbI$_4$) and bright yellow (for (PPA)$_3$Pb$_2$I$_7$ and (PBA)$_3$Pb$_2$I$_7$) in color. The (PMA)$_2$PbI$_4$ and (PEA)$_2$PbI$_4$ crystals were platelets of roughly 0.6 mm in diameter and the (PPA)$_3$Pb$_2$I$_7$ and (PBA)$_3$Pb$_2$I$_7$ crystals were very thin needles of around 1.3 mm long.

3.2.2 X-Ray Diffraction

Powder X-ray diffraction (XRD) data were collected using a Bruker D8 Advance diffractometer in Bragg-Brentano geometry and operating with Cu K$_\alpha$ radiation. The data were fitted using the EXPO$^{[31]}$ and GSAS$^{[32]}$ software suites. Single-crystal XRD measurements were performed using a Bruker D8 Venture diffractometer equipped with a Triumph monochromator and a Photon100 area detector, operating with Mo K$_\alpha$ radiation. A 0.3 mm nylon loop and cryo-oil were used to mount the crystals. The crystals were cooled with a nitrogen flow from an Oxford Cryosystems Cryostream Plus. Data processing was done using the Bruker Apex II software and the SHELX97 software$^{[33]}$ was used for structure solution and refinement.

3.2.3 Photoluminescence Measurements

The photoluminescence (PL) measurements were performed by exciting the single crystals at approximately 400 nm by the second harmonic of a mode-locked Ti-Sapphire laser (Mira 900, Coherent). The PL spectra were recorded by a Hamamatsu CCD camera. A calibrated light source was used to correct the measurements with respect to the spectral response of the setup. The time-resolved photoluminescence spectra were measured with the Hamamatsu CCD camera in synchroscan mode. The same mode-locked femtosecond laser with a repetition rate of 76 MHz was used as the excitation source.

3.2.4 Computational Methods

All calculations were performed within density functional theory (DFT)$^{[34]}$ in the local density approximation (LDA)$^{[35]}$ including relativistic spin-orbit coupling effects. All calculations were performed using the experimental lattice parameters and atomic positions. For (PMA)$_2$PbI$_4$, the unit cells consist of 168 atoms and 512 electrons, whereas for (PPA)$_3$Pb$_2$I$_7$, 648 atoms and 1936 electrons are included. All calculations were performed using the Quantum Espresso simulation package.$^{[36]}$ For all atomic components, the ultrasoft pseudopotentials$^{[37]}$ available in the Quantum Espresso library were used. In the case of Pb and I, fully relativistic pseudopotentials were used; whereas for C, N and H, scalar- and nonrelativistic pseudopotentials were used. For the calculation of the charge density, a plane wave cutoff of 40 Ry and a charge density cutoff of 200
3.3 RESULTS AND DISCUSSION

Ry were used. The Brillouin zone was sampled using a $2 \times 2 \times 2$ Brillouin-zone grid centered at Γ for both (PMA)$_2$PbI$_4$ and (PPA)$_3$Pb$_2$I$_7$. Structural models were rendered using VESTA.[38]

3.3 Results and Discussion

In this chapter, we investigate the structure and photoluminescence response of lead iodide perovskite-like organic-inorganic hybrids with aromatic ligands of increasing length. We use four types of phenylalkylammonium cations, where the phenyl (P) and ammonium (A) groups are separated by a methyl (M), ethyl (E), propyl (P) or butyl (B) group, i.e., $\text{C}_6\text{H}_5(\text{CH}_2)_n\text{NH}_3^+$ with $n = 1 - 4$. We abbreviate these organic ligands as PMA, PEA, PPA and PBA, respectively. These organic groups are relatively large and form structures with inorganic perovskite-like layers. In our case, PbI$_4^{2-}$ layers of corner-sharing and/or face-sharing octahedra separated by bilayers of the organic cations are formed. Previous work reports the synthesis and optical studies of PMA-[24,39,40] PEA-[24–27,40,41] and PPA-based[26] lead iodide hybrids. However, Zhang et al.[26] did not show structural data of the PPA-based lead iodide compound they made and assumed it to be isostructural with the PMA- and PEA-based lead iodide structures. Our single-crystal XRD studies confirm that the PMA- and PEA-based crystals adopt the reported (PMA)$_2$PbI$_4$ and (PEA)$_2$PbI$_4$ structures, as shown in Figure 3.2a.

Figure 3.1: Photograph of (PPA)$_3$Pb$_2$I$_7$ single crystals.

However, the PPA-based crystals (Figure 3.1) adopt a different structure, as shown in Figure 3.2b. Billing and Lemmerer[42] investigated the crystal structure of PPA lead iodide and found the structural formula to be (PPA)$_4$Pb$_3$I$_{10}$. It consists of face-sharing trimers of PbI$_6$-octahedra that are corner-shared to form the inorganic layer. Similar stoichiometries have been observed in (PhMe$_3$N)$_4$Pb$_3$Br$_{10}$[43] and (PhMe$_3$N)$_4$Sn$_3$I$_{10}$[44] but with an alternative packing of the trimeric building blocks. Notably, our single crystals adopt a completely different and new crystal structure with the composition (PPA)$_3$Pb$_2$I$_7$. The structure consists of inorganic sheets that are separated by bilayers of the organic PPA. The inorganic sheets have a remarkable structure as they combine corner-sharing
CHAPTER 3. CONFINEMENT EFFECTS

with face-sharing PbI$_6$-octahedra. The face-sharing induces the formation of trimers, where a PbI$_6$-octahedron shares both faces with a neighboring octahedron. Figure 3.2b shows that the layers are not flat due to the stiffness of the face-sharing Pb$_3$I$_{10}$-trimers. The face-sharing Pb$_3$I$_{10}$-trimers are linked to single PbI$_6$-octahedra by corner sharing.

Figure 3.2: Polyhedral model of three structural motifs at 100 K, projected along the [100] direction. (a) Crystal structure of (PMA)$_2$PbI$_4$. The structure of (PEA)$_2$PbI$_4$ is similar. (b) Crystal structure of (PPA)$_3$Pb$_2$I$_7$. (c) Crystal structure of (PBA)$_3$Pb$_2$I$_7$.

Although the compounds mentioned above$^{[42–44]}$ consist of [M$_3$X$_{10}$]$^{4−}$ units that are corner-shared (M is a divalent metal and X is a halide), the compound we present here is constructed from both [M$_3$X$_{10}$]$^{4−}$ and [MX$_4$]$^{2−}$ units that are corner-shared. Thus, we obtain a different crystal structure than Billing and Lemmerer,$^{[42]}$ using different precursors and no heating while synthesizing. It represents a new structure type. The structural data and refinement parameters are listed in Table 3.1. The unit cell of (PPA)$_3$Pb$_2$I$_7$ is orthorhombic and the structure adopts the noncentrosymmetric polar Pca_2_1 space group with an inversion twin (population is around 13%). This space group is maintained over our measured temperature range from 100 to 400 K. Table 3.2 shows how the lattice parameters vary and how the volume increases with temperature. Our DSC measurement reveals that the compound degrades at temperatures above 400 K, by showing an irreversible process. Figure 3.2 shows the three different structural motifs observed in our crystals.

We observe that the PBA-based lead iodide hybrid is quite similar and forms the (PBA)$_3$Pb$_2$I$_7$ structure. Figure 3.2c shows the projection along the [100] direction, whereas Figure 3.3d shows a single inorganic sheet of this structure. It contains the same combination of corner-sharing and face-sharing PbI$_6$-octahedra (Figure 3.3c), but in a different pattern due to different crystal symmetry. This structure adopts the triclinic $P\bar{1}$ space group and has inversion centers at the middle, corners and edges of the unit cell. This is also a new structure, and it belongs to the same structure class as the PPA-based hybrids with formula $A_3M_2X_7$. Further structural data and refinement parameters are listed in Table 3.1.
3.3. RESULTS AND DISCUSSION

Table 3.1: Crystallographic and refinement parameters of \((\text{PMA})_2\text{PbI}_4\), \((\text{PPA})_3\text{Pb}_2\text{I}_7\) and \((\text{PBA})_3\text{Pb}_2\text{I}_7\). All measurements are performed using Mo Kα radiation (0.71073 Å). Full-matrix least squares refinement against \(F^2\) was carried out using anisotropic displacement parameters. Multi-scan absorption corrections were performed. Hydrogen atoms were added by assuming a regular tetrahedral coordination to carbon and nitrogen, with equal bond angles and fixed distances. For \((\text{PBA})_3\text{Pb}_2\text{I}_7\), one of the three organic cations is particularly disordered. Therefore, the diffraction peaks are slightly broadened, which lead to higher \(R\)-factors and did not enable us to refine this organic cation with anisotropic thermal factors.

<table>
<thead>
<tr>
<th></th>
<th>((\text{PMA})_2\text{PbI}_4)</th>
<th>((\text{PPA})_3\text{Pb}_2\text{I}_7)</th>
<th>((\text{PBA})_3\text{Pb}_2\text{I}_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature (K)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>formula</td>
<td>((\text{C}_6\text{H}_5\text{CH}_2\text{NH}_3)_2\text{PbI}_4)</td>
<td>((\text{C}_6\text{H}_5\text{C}_2\text{H}_3\text{NH}_3)_3\text{Pb}_2\text{I}_7)</td>
<td>((\text{C}_6\text{H}_5\text{CH}_2\text{NH}_3)_3\text{Pb}_2\text{I}_7)</td>
</tr>
<tr>
<td>formula weight</td>
<td>931.14</td>
<td>1711.37</td>
<td>1753.39</td>
</tr>
<tr>
<td>crystal size (mm(^3))</td>
<td>0.28 × 0.10 × 0.02</td>
<td>0.22 × 0.14 × 0.02</td>
<td>0.18 × 0.10 × 0.02</td>
</tr>
<tr>
<td>crystal color</td>
<td>orange</td>
<td>yellow</td>
<td>yellow</td>
</tr>
<tr>
<td>space group</td>
<td>(Pbca) (No. 61)</td>
<td>(Pca_{21}) (No. 29)</td>
<td>(P\bar{1}) (No. 2)</td>
</tr>
<tr>
<td>symmetry</td>
<td>centrosymmetric</td>
<td>non-centrosymmetric</td>
<td>centrosymmetric (polar)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D (calculated)</td>
<td>2.726</td>
<td>2.692</td>
<td>2.597</td>
</tr>
<tr>
<td>F(000)</td>
<td>1620</td>
<td>6080</td>
<td>1568</td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.1111(3)</td>
<td>8.5278(8)</td>
<td>8.7068(10)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.6338(3)</td>
<td>29.824(3)</td>
<td>15.9947(19)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>28.4080(10)</td>
<td>33.208(3)</td>
<td>16.7613(19)</td>
</tr>
<tr>
<td>(\alpha) (°)</td>
<td>90.0</td>
<td>90.0</td>
<td>73.823(6)</td>
</tr>
<tr>
<td>(\beta) (°)</td>
<td>90.0</td>
<td>90.0</td>
<td>85.570(5)</td>
</tr>
<tr>
<td>(\gamma) (°)</td>
<td>90.0</td>
<td>90.0</td>
<td>88.010(6)</td>
</tr>
<tr>
<td>volume (Å(^3))</td>
<td>2234.67(13)</td>
<td>8445.9(14)</td>
<td>2234.9(5)</td>
</tr>
<tr>
<td>(\mu) (mm(^{-1}))</td>
<td>13.069</td>
<td>13.100</td>
<td>12.380</td>
</tr>
<tr>
<td>min / max</td>
<td>0.121 / 0.780</td>
<td>0.161 / 0.780</td>
<td>0.317 / 0.690</td>
</tr>
<tr>
<td>transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ range (°)</td>
<td>2.87-36.33</td>
<td>2.81-36.28</td>
<td>2.52-31.15</td>
</tr>
<tr>
<td>index ranges</td>
<td>-11 < h < 11</td>
<td>-10 < h < 9</td>
<td>-10 < h < 10</td>
</tr>
<tr>
<td></td>
<td>-10 < k < 10</td>
<td>-37 < k < 37</td>
<td>-19 < k < 19</td>
</tr>
<tr>
<td></td>
<td>-35 < l < 25</td>
<td>-41 < l < 41</td>
<td>-21 < l < 20</td>
</tr>
<tr>
<td>data / restraints</td>
<td>2287 / 0 / 98</td>
<td>16915 / 1 / 710</td>
<td>9118 / 5 / 323</td>
</tr>
<tr>
<td>GooF of (F^2)</td>
<td>1.180</td>
<td>1.114</td>
<td>1.184</td>
</tr>
<tr>
<td>no. total reflections</td>
<td>30920</td>
<td>105667</td>
<td>104962</td>
</tr>
<tr>
<td>no. unique reflections</td>
<td>2287</td>
<td>16915</td>
<td>9118</td>
</tr>
<tr>
<td>no. obs Fo > 4σ(Fo)</td>
<td>2202</td>
<td>16509</td>
<td>7245</td>
</tr>
<tr>
<td>R1 [Fo > 4σ(Fo)]</td>
<td>0.0173</td>
<td>0.0202</td>
<td>0.0758</td>
</tr>
<tr>
<td>R1 [all data]</td>
<td>0.0183</td>
<td>0.0212</td>
<td>0.0949</td>
</tr>
<tr>
<td>wR2 [Fo > 4σ(Fo)]</td>
<td>0.0428</td>
<td>0.0472</td>
<td>0.2021</td>
</tr>
<tr>
<td>wR2 [all data]</td>
<td>0.0435</td>
<td>0.0678</td>
<td>0.2252</td>
</tr>
<tr>
<td>large peak and hole (e/Å(^3))</td>
<td>1.39 and -0.58</td>
<td>3.80 and -1.63</td>
<td>4.90 and -2.08</td>
</tr>
</tbody>
</table>

Table 3.2: Unit cell parameters of \((\text{PPA})_3\text{Pb}_2\text{I}_7\), measured at different temperatures. The table shows that the overall volume of the unit cell increases with temperature, while the \(Pca_{21}\) space group is maintained.

<table>
<thead>
<tr>
<th>temperature (K)</th>
<th>(a) (Å)</th>
<th>(b) (Å)</th>
<th>(c) (Å)</th>
<th>volume (Å(^3))</th>
<th>(\alpha = \beta = \gamma = 90°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100(2)</td>
<td>8.5278(8)</td>
<td>29.824(3)</td>
<td>33.208(3)</td>
<td>8445.9(14)</td>
<td>90.0</td>
</tr>
<tr>
<td>200(2)</td>
<td>8.5677(3)</td>
<td>30.1342(11)</td>
<td>33.1352(11)</td>
<td>8558.0(5)</td>
<td>90.0</td>
</tr>
<tr>
<td>300(2)</td>
<td>8.6066(6)</td>
<td>30.49(2)</td>
<td>33.26(2)</td>
<td>8729(10)</td>
<td>90.0</td>
</tr>
<tr>
<td>400(2)</td>
<td>8.6910(4)</td>
<td>30.9600(16)</td>
<td>32.8998(15)</td>
<td>8852.5(7)</td>
<td>90.0</td>
</tr>
</tbody>
</table>
CHAPTER 3. CONFINEMENT EFFECTS

Figure 3.3: Polyhedral model of single inorganic sheets projected along the [001] direction. (a) (PMA)$_2$PbI$_4$, (b) (PEA)$_2$PbI$_4$, (c) (PPA)$_3$Pb$_2$I$_7$, (d) (PBA)$_3$Pb$_2$I$_7$. L is the length of the region created by corner-sharing PbI$_6$-octahedra along the [010] direction in (PPA)$_3$Pb$_2$I$_7$. The organic molecules are not shown for clarity.

The crystal structure solutions are confirmed by fitting single-crystal XRD data to powder XRD spectra of (PPA)$_3$Pb$_2$I$_7$ and (PBA)$_3$Pb$_2$I$_7$, as shown in Figure 3.4. Larger quantities of the reaction products were analyzed for phase purity using powder XRD performed at room temperature after grinding in an agate mortar. In the case of (PPA)$_3$Pb$_2$I$_7$, most of the peaks in the diffraction pattern could be fitted using the 100 K structural model obtained from single-crystal XRD. A preferred orientation of the crystallites along the [001] direction was included in the model to obtain a better match to the measured peak intensities. However, several extra peaks from a second phase were also present, which by eye appeared to match the main peaks from a powder XRD pattern of PPA iodide salt. To the best of our knowledge the crystal structure of this salt has not been previously reported. In order to confirm the identity of the second phase, we first determined the unit cell of PPA iodide using the EXPO software\cite{31}. All peaks could be indexed in a triclinic unit cell; LeBail fitting was carried out to obtain the refined lattice parameters $a = 17.3487(7)$ Å, $b = 11.1652(5)$ Å, $c = 6.0864(3)$ Å, $\alpha = 103.123(4)^\circ$, $\beta = 94.815(5)^\circ$, $\gamma = 88.179(4)^\circ$. We were unable to solve the full structure of PPA iodide, thus this unit cell was added as a second phase to the Rietveld refinement of (PPA)$_3$Pb$_2$I$_7$ and LeBail fitting of the peak intensities was performed while keeping the lattice parameters fixed. The resulting fitted XRD profile is shown in Figure 3.4a. It is clear that the majority phase in the sample is (PPA)$_3$Pb$_2$I$_7$. The residual mismatch in the intensities of some peaks is probably due to minor differences in the crystal structure of (PPA)$_3$Pb$_2$I$_7$ at room temperature compared to 100 K.
Figure 3.4: Observed (black data points) and fitted (red line) powder XRD patterns of (a) (PPA)$_3$Pb$_2$I$_7$ reaction mixture and (b) (PBA)$_3$Pb$_2$I$_7$ reaction mixture. The lower row of tick marks in each case indicates the peak positions of the main hybrid phase. The upper row of tick marks indicates the peak positions of secondary phases: PPA iodide in (a) and lead iodide in (b).

For the (PBA)$_3$Pb$_2$I$_7$ sample, the diffraction pattern could be well fitted using the 100 K atomic positions obtained from single-crystal XRD, incorporating a preferred orientation model for crystallites aligned along [100]. Some relatively weak extra peaks could be fitted by adding the 4H polymorph of the starting material PbI$_2$ to the refinement as a second phase with a weight fraction of 4.8(2)%. The fitted XRD profile is shown in Figure 3.4b.

Figure 3.5 shows the presence of high-temperature phase transitions, indicated by reversible DSC peaks. However, as one of the organic cations is already particularly disordered at 100 K and the R-factors are relatively high, as discussed in the caption of Table 3.1, no structural analysis of the higher temperature phases is presented here.
CHAPTER 3. CONFINEMENT EFFECTS

Figure 3.5: DSC data showing reversible first-order phase transitions at higher temperatures in (PBA)$_3$Pb$_2$I$_7$.

The crystal structure of (PEA)$_2$PbI$_4$ is reported to be monoclinic with space group C2/m,[27] but with iodide ions that are split over two positions. As our work focuses on the formation of the inorganic lattice, we chose to refine the structure in the lower symmetry triclinic space group P1. This allows the positions of the ions to be determined without restricting their positions by symmetry. Therefore, our structure determination of the inorganic sheets is accurate, but we do not present the full structure because the positions and orientations of the organic molecules could not be determined with sufficient certainty.

Figure 3.6: Hydrogen bonding between amine and iodide in (PPA)$_3$Pb$_2$I$_7$. The dashed red lines indicate the shortest distance between H and I.
For the four compounds presented in this work, the main structurally driving interaction is the hydrogen bonding between the iodides and the amine groups. Figure 3.6 shows the hydrogen bonding in the (PPA)$_3$Pb$_2$I$_7$ crystal structure, that has both corner- and phase-sharing PbI$_6$-octahedra. Although the hydrogen bonding interaction effectively forms the structure, the tails of the organic cations are unconstrained and can adopt different configurations. For all compounds, we do not observe any π-π stacking, the phenyl groups are arranged almost perpendicular to each other. In (PBA)$_3$Pb$_2$I$_7$, however, the tails of organic cations are particularly disordered and no clear arrangement is observed.

![Figure 3.7: Selected normalized photoluminescence (PL) spectra for layered lead iodide hybrids with ligands of increasing length (1–4). Compounds 1–4 refer to (PMA)$_2$PbI$_4$, (PEA)$_2$PbI$_4$, (PPA)$_3$Pb$_2$I$_7$ and (PBA)$_3$Pb$_2$I$_7$, respectively. The inset shows the photoluminescence peak positions for multiple crystals. The dotted trend line shows the blue-shift with increasing alkyl chain length.](image)

In Figure 3.7, we show the photoluminescence spectra of single crystals of all four layered lead iodide hybrids. Our results clearly indicate a shift of the peak maxima toward the blue when the length of the ligand is increased. Thus, systematically increasing the length from PMA to PBA induces a significant blue-shift. This clearly corresponds to the observation that the (PMA)$_2$PbI$_4$ crystals are orange, the (PEA)$_2$PbI$_4$ crystals are yellow-orange, and the (PPA)$_3$Pb$_2$I$_7$ and (PBA)$_3$Pb$_2$I$_7$ crystals are yellow. The photoluminescence spectra are asymmetric toward lower energies. We observe that the presence of more complex inorganic sheets containing face-sharing PbI$_6$-octahedra leads to an enhanced broadening of the photoluminescence. We ascribe this to the possible presence of defects and vacancies, which drive recombination in these more complex crystals. This can result in interstitial bands, giving rise to transitions at lower energy. Moreover, this is confirmed by the time-resolved decay dynamics which are fitted with biexponential and triexponential functions, as shown in Figure 3.8. Such multiexponential decay implies the presence of defect states or shallow trapping levels in the grain boundaries of the crystals, which frequently behave as nonradiative
CHAPTER 3. CONFINEMENT EFFECTS

Figure 3.8: Time-resolved PL spectra of (PMA)$_2$PbI$_4$, (PEA)$_2$PbI$_4$, (PPA)$_3$Pb$_2$I$_7$ and (PBA)$_3$Pb$_2$I$_7$. The decay of (PMA)$_2$PbI$_4$ is fitted with a triexponential function with time constants of 37 ps (72.5%), 132 ps (26.1%) and 874 ps (1.4%). The decay of (PEA)$_2$PbI$_4$, (PPA)$_3$Pb$_2$I$_7$ and (PBA)$_3$Pb$_2$I$_7$ are fitted with a biexponential function with time constants of 247 ps (71.6%) and 1127 ps (28.4%), 97 ps (19.4%) and 827 ps (80.6%), and 104 ps (94.8%) and 1200 ps (5.6%), respectively.

recombination centers. We determine the photoluminescence peak positions by assuming a Gaussian line shape. The inset of Figure 3.7 shows that there is a distribution of peak positions for different crystals of each type. Such variation can be caused by differences in thickness, quality and concentration of intrinsic defects even within a single batch of crystals. Thus, multiple data points are plotted in the inset. The dotted trend line clearly shows that, even when taking natural variation into account, there is a clear blue-shift with increasing the organic ligand length from PMA to PBA.

Table 3.3 shows the conversion of the PL peaks into band gaps for the compounds in this work, placed into perspective with selected band gaps of related 3D and 2D organic-inorganic perovskite hybrid compounds. Although the inset in Figure 3.7 shows that there is a modest variation between different single crystals, the reported values also show a variation in band gap values for each type of single crystal. For MASnI_3, it was even found to depend on the synthesis method used.\cite{46} A distinction is made between single crystals and thin films as their defects and trap densities can be different, resulting in observations of different band gaps in both morphologies.\cite{47} The focus of our work is on single crystals and a full study of thin film formation is beyond the scope of our work. Our single-crystal XRD results show that the compounds containing the two shortest organic ligands grow in sheets, perpendicular to the c-axis. Other studies have shown that films form in the same manner, with the c-axis perpendicular to the film.\cite{29,41} However, the new compounds with the longest organic ligands grow as needles, with the longest axis being the a-axis. As a result, we cannot speculate about the film formation as preferential orientations are expected to play a role. Here we present design rules for tuning the band gap by changing the organic ligand. Table 3.3 shows various trends in how the band
3.3. RESULTS AND DISCUSSION

Table 3.3: Band gaps (in eV) of selected 3D and 2D organic-inorganic perovskite hybrids, measured for single crystals and thin films.a

<table>
<thead>
<tr>
<th></th>
<th>single crystal</th>
<th>thin film</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPbI$_4$</td>
<td>1.51$^{[48]}$</td>
<td>1.57$^{[50]}$</td>
</tr>
<tr>
<td>MAPbBr$_3$</td>
<td>2.18$^{[48]}$</td>
<td>2.33$^{[31]}$, 2.35$^{[52]}$</td>
</tr>
<tr>
<td>MAPbCl$_3$</td>
<td>1.21$^{[46]}$</td>
<td>1.61$^{[47,49]}$</td>
</tr>
<tr>
<td>(MA)$_2$PbI$_2$(SCN)$_2$</td>
<td>2.14$^{[53]}$</td>
<td>2.11$^{[54]}$, 2.33$^{[53]}$</td>
</tr>
<tr>
<td>MASnI$_3$</td>
<td>1.21$^{[46]}$</td>
<td>3.04$^{[51]}$</td>
</tr>
<tr>
<td>FAPbI$_3$</td>
<td>1.45$^{[46]}$</td>
<td>3.04$^{[51]}$</td>
</tr>
<tr>
<td>CsPbI$_3$</td>
<td>2.12$^{[46]}$</td>
<td>3.04$^{[51]}$</td>
</tr>
<tr>
<td>(PMA)$_2$PbI$_4$</td>
<td>2.22$^{[46]}$</td>
<td>2.37$^{[40]}$, 2.38$^{[41]}$, 2.39$^{[51]}$</td>
</tr>
<tr>
<td>(PEA)$_2$PbI$_4$</td>
<td>2.22$^{[46]}$</td>
<td>3.05$^{[51]}$</td>
</tr>
<tr>
<td>(PEA)$_2$SnI$_4$</td>
<td>2.32$^{[46]}$</td>
<td>3.63$^{[51]}$</td>
</tr>
<tr>
<td>(PPA)$_2$PbI$_7$</td>
<td>2.39$^{[46]}$</td>
<td>1.99$^{[51]}$</td>
</tr>
<tr>
<td>(PBA)$_3$Pb$_2$I$_7$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Band gaps are determined from the PL maxima given in the references. MA and FA are used to abbreviate methylammonium and formamidinium, respectively.

The large separation of the inorganic sheets by the organic cations creates a confinement effect from 3D to 2D and makes it valid to consider the electronic response from only a single 2D sheet.$^{[55]}$ Because the organic cations do not significantly participate in the frontier orbitals, the system can be further simplified to the inorganic lattice, as in Figure 3.3. The length of the alkyl chain strongly influences the bonding in the inorganic part. Figures 3.3a and 3.3b shows that the in-plane Pb–I–Pb angle linking adjacent octahedra deviates from 180°. For (PMA)$_2$PbI$_4$, the in-plane Pb–I–Pb angle is approximately 158°, indicating a substantial distortion of the perovskite sheet. Increasing the length of the organic ligand by one carbon atom in (PEA)$_2$PbI$_4$, reduces the in-plane Pb–I–Pb angle to approximately 153°. This means that the PbI$_6$-octahedra are more rotated with respect to (PMA)$_2$PbI$_4$. Previous work$^{[51]}$ has shown a blue-shift of the excitonic bands with decreasing dimensionality of the structure. A recent DFT study$^{[18]}$ of 3D lead iodide structures showed a relation between the Pb–I–Pb bond angles and the steric size of the organic cations, as well as between the band gap and this bond angle. The band gap increases with increasing distortion (i.e., smaller Pb–I–Pb bond angles) by increasing the size of the organic molecules. Related work on 2D hybrid materials by Knutson et al.$^{[56]}$ reveals the same trend. They studied 2D tin iodide hybrids and showed that the variation of the in-plane Sn–I–Sn bond angle has the largest impact on tuning of the band gap. Once rotation occurs, the top of the valence band will be lowered as the antibonding interactions between the Sn-s and I-p_x and p_y orbitals are reduced. On the other hand, the bottom of the conduction band is raised as the distortion lowers the symmetry of the lattice. This results in significant antibonding
between the Sn-\(p\) and I-\(s/p\) hybrid orbitals in the conduction band. Thus, the increase in Sn–I–Sn bond angle distortion leads to an increase in the band gap. Our (PMA)\(_2\)PbI\(_4\) and (PEA)\(_2\)PbI\(_4\) compounds are in good agreement with this. We show experimentally that increasing the length of the organic cation increases the in-plane distortion of the inorganic lead iodide sheets, which in turn induces a blue-shift in photoluminescence. Although this explains the blue-shift observed by going from PMA to PEA as the organic ligand, increasing the length to PPA and PBA is more complex. As the (PMA)\(_2\)PbI\(_4\) and (PEA)\(_2\)PbI\(_4\) compounds are structurally similar (layers of corner-sharing PbI\(_6\)-octahedra) and the (PPA)\(_3\)Pb\(_2\)I\(_7\) and (PBA)\(_3\)Pb\(_2\)I\(_7\) compounds are structurally similar as well (layers of both corner- and face-sharing PbI\(_6\)-octahedra), we investigate the difference between (PMA)\(_2\)PbI\(_4\) and (PPA)\(_3\)Pb\(_2\)I\(_7\) using electronic structure calculations.

Figure 3.9: Electronic band structures of (PMA)\(_2\)PbI\(_4\) (a) and (PPA)\(_3\)Pb\(_2\)I\(_7\) (b) calculated within DFT+SOC. (a) The band structure of (PMA)\(_2\)PbI\(_4\) is calculated along the high symmetry \(\Gamma(0,0,0) - X(\pi/a,0,0) - S(\pi/a,\pi/b,0) - Y(0,\pi/b,0)\), where \(a\) and \(b\) are the lattice parameters along the [100] and [010] directions. At the \(\Gamma\) point, the valence band top is predominantly of I-\(p\) (69\%) and Pb-\(s\) (26\%) character, whereas the conduction band bottom has a predominant Pb-\(p\) (69\%) and I-\(p\) (16\%) character. Similarly, at the S point the character of the valence band top is of Pb-\(s\) (21\%), I-\(p\) (72\%) whereas the conduction band bottom consists of Pb-\(p\) (63\%) and I-\(p\) (17\%). (b) The band structure of (PPA)\(_3\)Pb\(_2\)I\(_7\) is calculated along the high-symmetry path \(Y(0,\pi/b,0) - \Gamma(0,0,0) - X(\pi/a,0,0) - S(\pi/a,\pi/b,0)\), where \(a\) and \(b\) are the lattice parameters along the [100] and [010] directions, respectively. All energies are referred to the top of the valence band in both panels (a) and (b).
In Figure 3.9, we show the band structure of (PMA)$_2$PbI$_4$. The band edges exhibit highly dispersive conduction and valence band edges within the (001) plane, and flat band edges along the [001] direction (not shown in Figure 3.9). This behavior is consistent with the quasi-2D character of the (PMA)$_2$PbI$_4$ structure. The calculated band gap is direct at the Γ point. We obtain a band gap of 0.42 eV within DFT+SOC. The electron and hole effective masses in the (001) plane are small and isotropic. We obtain $0.24 m_e$ and $0.15 m_e$ for holes and electrons, respectively. The effective masses and the band gap of (PMA)$_2$PbI$_4$ are very similar to those obtained for bulk CH$_3$NH$_3$PbI$_3$ within the same level of theory (0.5 eV band gap and effective masses of $0.13 m_e$ and $0.11 m_e$, for holes and electrons respectively).\cite{57} This finding is also fully consistent with previous calculations on monolayer and bilayer CH$_3$NH$_3$PbI$_3$.\cite{58} In Figure 3.9b, we show the band structure of (PPA)$_3$Pb$_2$I$_7$. In contrast with (PMA)$_2$PbI$_4$, the band structure exhibits a dispersive profile only along the $\Gamma - X$ direction. This qualitative difference can be linked to the crystal structures of (PPA)$_3$Pb$_2$I$_7$ and (PMA)$_2$PbI$_4$. Indeed, the (PMA)$_2$PbI$_4$ structure is highly isotropic in the (001) plane, with the PbI$_6$-octahedra sharing corners throughout. In the case of (PPA)$_3$Pb$_2$I$_7$, the Pb – I network appears as an alternation of face- and corner-sharing octahedra, along the [010] direction. For (PPA)$_3$Pb$_2$I$_7$, we calculate a direct band gap of 1.6 eV at the Γ point, and effective masses along the [100] direction of $2.35 m_e$ for holes and $0.44 m_e$ for electrons, respectively. Within DFT+SOC, we also obtain that the band gap of the (PPA)$_3$Pb$_2$I$_7$ structure is blue-shifted with respect to that of (PMA)$_2$PbI$_4$. The band gap difference of 1.2 eV can be rationalized by the additional quantum confinement along the [010] direction. This effect can be estimated from a quantum well model as

$$\Delta E_g = \frac{\hbar^2 \pi^2}{2m^* m_e L^2}$$ (3.1)

where m^* is the electronic effective mass for the (PMA)$_2$PbI$_4$ structure, m_e is the electron mass and L is the size of the region formed by corner-sharing PbI$_6$-octahedra in the inorganic layer of (PPA)$_3$Pb$_2$I$_7$. We estimated that $L \approx 14.9 \text{Å}$ from the experimental crystal structure, as shown in Figures 3.3a and 3.3b. From this simple model, we can estimate that $\Delta E_g = 1.1$ eV, which is close to the difference in band gaps calculated for (PMA)$_2$PbI$_4$ and (PPA)$_3$Pb$_2$I$_7$ from DFT+SOC. Interestingly, the alternating face-sharing PbI$_6$-octahedra appear to have a similar confining effect for the electronic structure along the [010] direction as the organic cations in the [001] direction. To confirm this assumption, we calculated the wave functions corresponding to the highest occupied and lowest unoccupied states for both (PMA)$_2$PbI$_4$ and (PPA)$_3$Pb$_2$I$_7$. In Figure 3.10, we show the comparison between the spatial distribution of the wave functions at the top of the valence band and bottom of the conduction band for (PMA)$_2$PbI$_4$ and (PPA)$_3$Pb$_2$I$_7$. In the former, the wave functions are delocalized throughout all octahedral sites; in the latter, the wave functions are concentrated around the corner-sharing octahedra; this effectively defines 1D nanoribbons of electronic charge in (PPA)$_3$Pb$_2$I$_7$. This behavior is consistent for both the conduction band top and valence band bottom of the two structures.

The calculated band gap difference between the two structures (1.2 eV) is larger than the energy difference of the peaks in the PL spectrum corresponding to these structures (approximately 0.2 eV), as shown in Figure 3.7 and Table 3.3. This difference is likely
Figure 3.10: Spatial distribution of the electronic wave function for the top of the valence band (VBT) and bottom of the conduction band (CBB) at the \(\Gamma \) point for \((\text{PMA})_2\text{PbI}_4\) (a,b) and \((\text{PPA})_3\text{Pb}_2\text{I}_7\) (c,d). In both structures, the shape of the electronic wave functions is consistent with the \(I-p, \text{Pb}-p \) characters for the VBT and CBB, respectively. In the case of \((\text{PPA})_3\text{Pb}_2\text{I}_7\), the charge is distributed only over the region containing corner-sharing octahedra, for both the VBT and CBB. For clarity, we show only the inorganic part of the structures, although the calculations were performed by including the organic ligands.

due to the level of approximation employed here. We expect that by incorporating quasiparticle corrections and excitonic effects this discrepancy will be resolved. Given the extended size of the \((\text{PMA})_2\text{PbI}_4\) and \((\text{PPA})_3\text{Pb}_2\text{I}_7\) unit cells, the inclusion of quasiparticle and electron-hole interaction effects is computationally prohibitive. For reference, in the case of \(\text{CH}_3\text{NH}_3\text{PbI}_3 \) quasiparticle effects increase the DFT+SOC band gap by more than 1 eV.\[^{57,59}\] In addition, low-dimensional structures are known to exhibit enhanced quasiparticle corrections and excitonic effects with respect to their bulk counterparts, due to the reduction of the dielectric screening.\[^{60}\]

In contrast with three-dimensional lead halide perovskites, the large cations in \((\text{PMA})_2\text{PbI}_4\) and \((\text{PPA})_3\text{Pb}_2\text{I}_7\) disrupt the three-dimensional corner-sharing connectivity. This reorganization of the structure strongly impacts the electronic properties of the lead iodide, inducing an increase in the band gap due to quantum confinement effects, as well as a change in the band edge features. In a tight-binding model interpretation of the band structures, the dispersive profiles of the bands are linked to the large overlap between electronic wave functions localized at neighboring sites. In both structures, dispersive bands are identified along directions where the PbI\(_6\)-octahedra are corner-sharing. Flat bands are found for directions that are either perpendicular to the plane formed by the Pb–I network [(\(\text{PMA})_2\text{PbI}_4\) and \((\text{PPA})_3\text{Pb}_2\text{I}_7\)] or along the direction of the chains of
face-sharing PbI$_6$-octahedra [(PPA)$_3$Pb$_2$I$_7$]. Along these directions, the overlap of the wave functions is limited by the presence of either the organic cation or the face-sharing octahedra chains which are shown to confine the wave functions (Figure 3.10). Therefore, the corresponding electronic bands exhibit a flat profile. Indeed, the hole effective masses calculated within DFT+SOC increase by up to 1 order of magnitude, whereas the electron effective masses are almost tripled when the structure of the inorganic network incorporates face-sharing PbI$_6$-octahedra.

Thus, compared to the 3D CH$_3$NH$_3$PbI$_3$, confinement along the [001] direction to form 2D structures induces a blue-shift. The presence of face-sharing PbI$_6$-octahedra induces an additional confinement effect in the [010] direction to create an effective 1D structure that enhances the blue-shift originally obtained from the first confinement effect. This additional confinement effect, as shown by the absence of dispersion in the [010] direction in the band structure of Figure 3.9, explains the more blue character of (PPA)$_3$Pb$_2$I$_7$ compared to (PMA)$_2$PbI$_4$. Following the same argument, (PBA)$_3$Pb$_2$I$_7$ has a shorter region formed by corner-sharing PbI$_6$-octahedra compared to (PPA)$_3$Pb$_2$I$_7$, as shown in Figures 3.3a and 3.3b. This could qualitatively mean that the confinement effect along the [010] direction is enhanced in (PBA)$_3$Pb$_2$I$_7$ and that an even larger band gap would be observed compared to (PPA)$_3$Pb$_2$I$_7$. This is indeed observed in Figure 3.7.
3.4 Conclusions

In conclusion, we have synthesized high-quality single crystals of lead iodide hybrids with compositions A_2PbI$_4$ and A_3Pb$_2$I$_7$, where A are four different phenylalkylammonium cations. We obtained novel low-dimensional crystal structures that combine corner-sharing with face-sharing PbI$_6$-octahedra and form a new class of organic-inorganic hybrid materials. The inorganic layers in this class are composed of corner-shared $[M_3X_{10}]^{4-}$ and $[MX_4]^{2-}$ units. We have shown that systematically increasing the length of the phenylalkalammonium chains induces a blue-shift in the photoluminescence. We have calculated the electronic structure of (PMA)$_2$PbI$_4$ and (PPA)$_2$Pb$_2$I$_7$ within DFT+SOC and found that both compounds have semiconducting band structures, with direct band gaps. In the case of (PPA)$_2$Pb$_2$I$_7$, the band structure exhibits signatures of quantum confinement effects. The calculated band edges are flat along the confinement direction ([010]) and the band gap is larger than (PMA)$_2$PbI$_4$. Moreover, the electronic wave functions corresponding to the states at the band edges are confined to the regions of the inorganic network containing corner-sharing octahedra. The large cations lead to a reorganization of the structure to include face-sharing as well as corner-sharing PbI$_6$-octahedra. This structural rearrangement leads to drastic changes in the band structures compared to compounds exhibiting only corner-sharing octahedra. Our work provides insight into how chemical substitutions and confinement effects allow direct tuning of the optical band gap in organic-inorganic hybrid materials. Besides the possible interest for multijunction solar cells, this knowledge is important for the development of tunable hybrid perovskite-based light-emitting diodes.
Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

Author contributions: M.E.K. and T.T.M.P. conceptualized and designed the experiments. M.E.K. performed most of the experiments, with assistance of J.B. M.E.K. and G.R.B. analyzed the XRD data. M.R.F. and F.G. performed the calculations. H.-H.F. and M.A.L. performed the (TR)PL measurements. M.E.K., G.R.B. and T.T.M.P. discussed the overall conclusions of the work. M.E.K. composed the manuscript. Everybody reviewed the manuscript and was involved in the final discussions.

Acknowledgments: M.E.K. was supported by The Netherlands Organisation for Scientific Research NWO (Graduate Programme 2013, No. 022.005.006). H.-H.F. and M.A.L. acknowledge funding from European Research Council (ERC Starting Grant ‘Hy-SPOD’ No. 306983). M.R.F. and F.G. were supported by the Leverhulme Trust (Grant RL-2012-001), the U.K. Engineering and Physical Sciences Research Council (Grant No. EP/J009857/1, EP/M020517/1), and the Graphene Flagship (EU FP7 Grant No. 604391). M.R.F. and F.G. acknowledge the use of the University of Oxford Advanced Research Computing (ARC) facility and the ARCHER U.K. National Supercomputing Service under the ‘AMSEC’ Leadership project in carrying out this work. We thank H. van der Velde for the elemental analysis.
Bibliography

