Strong interaction effects in antiprotonic atoms
Haak, JF; Lande, A; Iachello, F

Published in:
Physics Letters B

DOI:
10.1016/0370-2693(77)90601-3

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1977

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
STRONG INTERACTION EFFECTS IN ANTIPRQTOMIC ATOMS

J.F. HAAK, A. LANDE
Institute for Theoretical Physics, Groningen University, P O. Box 800, Groningen, The Netherlands

and

F. IACHELLO
Kernfysisch Versneller Instituut, Groningen, The Netherlands

Received 4 August 1976

We investigate the extent to which antiprotonic atoms provide information on the nucleon-antinucleon interaction.

Recently strong interaction level shifts and widths in antiprotonic atoms have been reported by several groups [1]. In this letter we consider to what extent such measurements can provide information on the NN interaction. From the analyses reported to date [2], in which the antiproton-nucleus optical potential is constructed by multiplying an effective scattering length with the nuclear density, it has become apparent that this effective scattering length differs substantially from the free NN scattering length. As we shall see below, the dependence of strong interaction level shifts and widths is highly non-linear in the parameters of the NN interaction, so that the scattering length times density approximation is not appropriate. Moreover, it appears that it is primarily the level width which is sensitive to the details of the NN interaction.

In constructing the antiproton-nucleus optical potential we assume that, at low energy, the NN interaction can be described by a local complex potential, for which we use the one of Bryan and Phillips [3]. While somewhat dated, this potential incorporates the essential features we need in studying the dependence on the range and coupling constants.

In the multiple scattering theory of the optical potential various degrees of approximation are possible. In the simplest, the free NN scattering length \(a = a_R + i a_I \) is multiplied into the nuclear density, \(V(r) = -\frac{2\pi}{\mu}(1 + (M_P/M_N)) a_0(r) \), where \(\mu \) is the \(\bar{p} \)-nucleus reduced mass, and \(M_P \) and \(M_N \) are the \(\bar{p} \) and nucleon masses, respectively. In the next approximation one constructs a local NN \(t \)-matrix at threshold, \(\tilde{t}(r) = t(r, E = 0) \), and folds it into the density, \(V(r) = \int \tilde{t}(r-r')\rho(r')d^3r' \). The exact treatment of first order multiple scattering would involve using the non-local NN \(t \)-matrix near threshold to generate the non-local optical potential \(V(r, r') \).

The first approximation neglects both the finite range of the NN potential and non-locality, the second takes range effects into account, and the third would include both effects. Although the first (scattering length) approximation may be appropriate for pionic atoms (given the relatively short range of the \(\pi-N \) interaction [4]), its use can hardly be justified in antiprotonic atoms since the NN interaction contains parts (such as \(\pi \)-exchange) of appreciable range.

To demonstrate the effect of the first two approximations, we have calculated the strong interaction shifts and widths of the 3d level in \(^{16}O \), experimentally known [1] to be \(\Delta E = 60 \pm 76 \) eV, \(\Gamma = 648 \pm 150 \) eV. For the static potential of Bryan and Phillips [3] for which the spin-isospin averaged scattering length is \(a = -0.92 + i 0.70 \) we find \(\Delta E = 163 \) eV, \(\Gamma = 149 \) eV. Introducing the finite range of the interaction via \(\tilde{t} \) gives, \(\Delta E = 148 \) eV, \(\Gamma = 367 \) eV. These numbers are the centroid average of the shifts and widths for the two members of the \(j = l \pm \frac{1}{2} \) doublet and can be compared directly with the experimental values which were obtained in the same way. The dramatic effect on \(\Gamma \), in going from the \(a \rho \) to the \(\tilde{t} \) approximation is the consequence of the finite range of the NN extending the optical potential beyond \(\rho(r) \), thereby increasing the probability for absorption of the antiproton.

In folding \(\tilde{t} \) into \(\rho \) we have here confined ourselves to the \(^3S_1 \) channel of \(\tilde{t} \). If, as in nuclear matter of effective interaction theory [5] we were to include the ten-
sor force in second order as an additional contribution to an effective central term, the effect on Γ would presumably be enhanced. In view of this sensitivity of level widths to the NN range, any comparison between theory and experiment which ignores the range is likely to be meaningless.

Next we have studied the effect of varying the parameters of the NN interaction (table 1). Here the shifts and widths of each member of the doublet are shown together with the centroid averages ΔE and Γ. We observe once more the insensitivity of the shift and the large changes in the width. Table 1 also demonstrates the highly non-linear character of the solutions, particularly for W_0, the imaginary part of the NN potential. The large increase in Γ, which accompanies an increase in the coupling constants g^2, can easily be understood as following from the fact that the real part of the NN potential is attractive; increasing this attraction pulls the antiproton into the nucleus and thus, once more, increases its probability for absorption.

We have also examined some other factors which could obscure the analysis of strong interaction effects to determine the extent to which they do so. (i) Whereas the proton distribution can be determined from

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Level</th>
<th>ΔE</th>
<th>Γ</th>
<th>ΔE</th>
<th>Γ</th>
<th>ΔE</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{14}N</td>
<td>3d</td>
<td>59</td>
<td>57</td>
<td>51</td>
<td>141</td>
<td>39 ± 51</td>
<td>173 ± 34</td>
</tr>
<tr>
<td>^{16}O</td>
<td>3d</td>
<td>163</td>
<td>149</td>
<td>148</td>
<td>367</td>
<td>60 ± 72</td>
<td>648 ± 150</td>
</tr>
<tr>
<td>^{32}S</td>
<td>4f</td>
<td>168</td>
<td>165</td>
<td>130</td>
<td>457</td>
<td>80 ± 40</td>
<td>310 ± 180 [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41 ± 44</td>
<td>760 ± 110 [2]</td>
</tr>
</tbody>
</table>

Table 2
Sensitivity of level shifts and widths (in eV) to (i) changes in the density, (ii) strong spin-orbit potential, (iii) analytically continuing $\tilde{\tau}$.

Table 3
Comparison between level shifts and widths calculated with ($\tilde{\tau}$) and without finite (ap) range correction.

Table 1
Sensitivity of level shifts and widths (in eV) to variations in the NN potential. The parameters of the nuclear density are taken from ref. [6]. g_{00}, g_{00}^ω are the NNe0, NNW0, ... coupling constants. W_0 is the strength of the imaginary part of the potential. The superscripts refer to the $j = l \pm \frac{1}{2}$ components of the doublet. ΔE and Γ are the centroid average shift and width.
electron scattering and muonic X-ray data, less is known about the neutron distribution. In table 2, shifts and widths are given for some of the density distributions used to data. (ii) In addition to the electromagnetic Thomas term, the strong interaction itself can give rise to a spin-orbit term in the optical potential [6] (even in spin saturated nuclei). The effect of this term is to reduce the splitting of the doublet (by \(\approx 30 \) eV if we use the parameters of ref. [6]). It does not, however, appreciably affect the widths (table 2).

(iii) Since the antiproton is in a bound orbit with \(E_B < 0 \), we have repeated the calculation with \(\Gamma(r, E = 0) \) replaced by \(\Gamma(r, E_B) \), i.e. analytically continuing \(\tilde{\Gamma}, E \rightarrow E_B, k \rightarrow ik_B \). For \(E_B = -167 \) keV, we find \(\Delta E = 158 \) eV, \(\Gamma = 386 \) eV, compared with the values given above, \(\Delta E = 148 \) eV, \(\Gamma = 367 \) eV.

Finally, since it appears that the main deviation from the \(\alpha \rho \) approximation comes from the range of the NN interaction, we have calculated shifts and widths in other nuclei, using the static Bryan-Phillips potential, with and without finite range effects (table 3). The comparison with experiment indicates that the reported large discrepancies between the measured widths and those calculated in the \(\alpha \rho \) approximation [1, 2] may be due to the neglect of the finite range of the NN interaction, and not necessarily to an inadequacy of the NN interaction.

This work was performed as part of the research program of the “Stichting voor Fundamentaal Onderzoek der Materie” (F.O.M.) with financial support from the “Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek” (Z.W.O.).

References