An interacting boson-fermion model calculation for the odd-mass promethium isotopes

Scholten, Olaf; Ozzello, T

Published in:
Physics Letters B

DOI:
10.1016/0370-2693(83)91245-5

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1983

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
AN INTERACTING BOSON–FERMION MODEL CALCULATION
FOR THE ODD-MASS PROMETHIUM ISOTOPES

O. SCHOLTEN and T. OZZELLO
National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,
Michigan State University, East Lansing, MI 48824-1321, USA

Received 7 February 1983
Revised manuscript received 15 March 1983

A calculation in the framework of the interacting boson–fermion model for the excitation energy and spectroscopic factors for the negative parity levels in the odd-mass promethium isotopes is presented. The parameters are compared with those obtained from an earlier calculation of the europium isotopes.

In the Interacting Boson–Fermion Model (IBFM) the spectra of odd–even nuclei are described by coupling the degrees of freedom of the odd particle to the even–even core, which is described in terms of the Interacting Boson Model (IBM). The model has been applied with much success to many odd-A nuclei in different regions of the periodic table. In this work we will focus our attention on the promethium (Pm) isotopes (Z = 61) which are adjacent to the europium (Eu) isotopes (Z = 63). An extensive study of the Eu isotopes has already been published [3]. This allows us to determine the variation of the IBFM parameters, not only as a function of neutron number but also as a function of the number of protons.

The odd-mass Pm isotopes are described in the model by coupling the degrees of freedom of the odd proton to the neodymium (Nd) core with the same neutron number. For the Nd isotopes there exists a calculation in the IBM [4]. To calculate the negative parity levels, which are the subject of this paper, it is sufficient to consider only the $h_{11/2}$ proton orbit. In the case of an unique orbit for the odd particle, only two of the three parameters ($\Gamma_0$, $\Lambda_0$ and $\nu^2$) enter as linear independent parameters in the calculation of excitation energies. For each isotope therefore the value of $\nu^2$ has been kept fixed to the value indicated by single-particle spectroscopic factors while $\Gamma_0$ and $\Lambda_0$ have been adjusted so as to give a best agreement for the excitation energies. The strength of the monopole force, $A_0$, has been taken to be the same as for the Eu isotopes: $A_0 = -0.1$ MeV. In fig. 1 the calculated excitation energies are compared with experiment. There is a clear transition in the type of spectra. For the lighter isotopes the spectrum is typical for a particle vibrator model in which the $h_{11/2}$ sp states are lowest and higher in the spectrum a multiplet of levels can be found arising from the coupling of the $h_{11/2}$ to the $2^+_1$ in the core. In $^{153}$Pm on the other hand, clear rotation bands have developed as is expected in a Nilsson picture. The partial occupancy of the spherical $h_{11/2}$ orbit gives rise to the fact that here the $5/2^+_1$ is the lowest negative parity level.
Fig. 1. Comparison of experimental [5–11] and calculated excitation energies of some negative parity states.

The spectroscopic factors for single-particle pickup and stripping leading to the $11/2^-$ state are given in fig. 2. The operator for single-particle transfer [3] depends only on the occupancies $o_j^2$, which are the same as used in the Hamiltonian, and thus does not introduce any free parameters.

The IBFM parameters which were obtained from a best fit to the experimental excitation energies are plotted in fig. 3, together with the parameters used in the calculation of the Eu isotopes [3]. The parameters are very similar, in their magnitude as well as in their dependence on the number of neutrons. In the IBFA model the quadrupole force and the exchange force can be related to the neutron–proton quadrupole interaction [4], giving

$$\Gamma_0 = \bar{\kappa} N_{\nu}/(N_{\nu} + N_{\pi}),$$  \hspace{1cm} (1a)

$$\Lambda_0 = \bar{\kappa} \chi^{\beta-1} (2N_{\pi})^{1/2} N_{\nu}/(N_{\nu} + N_{\pi}),$$  \hspace{1cm} (1b)

Fig. 3. The parameters as used in the calculation of the Pm isotopes (full dots) are compared with those used in the calculation of the Eu isotopes [3] (open circles) and a microscopic calculation (drawn lines).
with

$$\mathcal{H}_\beta = \sum_{jj'} \beta_{jj'}^2,$$

where $\bar{\kappa}$ is related to the strength of the neutron-proton quadrupole interaction and where $\beta_{jj'}$ are the structure coefficients of the d-boson. The values obtained from eqs. (1), using the same value for $\bar{\kappa}$ as in ref. [3], are also plotted in fig. 3.

In this letter it has been shown that it is possible in the IBFM model to calculate a series of isotopes with parameters varying smoothly from nucleus to nucleus. Furthermore, the $N$- and $Z$-dependence of the parameters is in agreement with a microscopic estimate. In a forthcoming longer paper the positive parity states and the electromagnetic properties will also be discussed.

This work is supported by the National Science Foundation under grant no. PHY-80-17605.

References