E0 transitions between lowest $K\pi=0^+$ bands in 232U and 234U
Venema, WZ; Jansen, JFW; Janssens, RVF; van Klinken, J

Published in:
Physics Letters B

DOI:
10.1016/0370-2693(85)91501-1

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1985

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
E0 TRANSITIONS BETWEEN LOWEST $K^* = 0^+$ BANDS IN 232U AND 234U

W.Z. VENEMA, J.F.W. JANSEN, R.V.F. JANSSENS and J. VAN KLINKEN
Kernfysisch Versneller Instituut, Rijnkaarse Universiteit Groningen, Groningen, The Netherlands

Received 26 March 1985

Regular patterns of E0 transitions were observed after 232Th(α, $2n$) reactions. They indicate that the moments of inertia of β- and ground-state bands are nearly equal in 234U, in contrast to its even-even neighbours 232Th, 232U and 236U.

Experimental studies of short-lived actinide nuclei often suffer from a strong fission-induced background. As pointed out in refs. [1] and [2], conversion electron spectroscopy has distinct advantages with respect to γ-ray spectroscopy due to the favourable Z-dependence of the conversion process. This letter asks attention for the observational advantages of the strong E0 admixtures to transitions between states with equal J^π and K quantum numbers. Application to interband transitions between β- and ground-state (gs) bands in 232,234U resulted in the identification of higher-spin β-band members. This enabled us to recognize new properties of the β- and gs-band moments of inertia in 232,234U and neighbouring even-even nuclei.

Transitions between states with equal spin, parity and K-quantum numbers proceed predominantly via E2, M1 and E0 radiation. In heavier nuclei the E0 probability competes more and more favourably. For instance, between 0.5 and 1 MeV and for $Z \approx 80$ the E0 transition probability (totally converted) roughly increases [3,4] as $Z^{1.2}$, in contrast with the single-particle estimate for E2 ($\approx Z^{1.6}$) and for M1 (independent of Z) γ-radiation. The E2 and M1 conversion probabilities are roughly proportional to Z^5 and Z^7, respectively. Total conversion coefficients $\alpha_{tot}(E2)$ for pure E2 transitions of 1 MeV are of order 10^{-2}, while the α_{tot} of the present E0-admixed transitions are larger by about two orders of magnitude. Although a sizeable M1 contribution cannot be excluded experimentally, it will not affect the following conclusions and will be ignored.

The larger E0 admixture to interband transitions in 232,234U provided us with a sensitive means to study higher-spin members of the β-bands. Rotational bands can be characterized by their moments of inertia $J(\omega)$ where ω is the rotational frequency. As a general rule β-bands have larger moments of inertia than ground-state bands. For $\Delta J = 0, \beta \rightarrow$ gs interband transitions this becomes evident as a decrease in transition energy with increasing spins $J_f = J_i$. An example of this behaviour is presented in fig. 1a for 232U, where the energy spacings between interband transitions are 10 to 20 keV. Wider spacings are more common, e.g. in 232Th, 236U and in several known cases for deformed rare-earth nuclei. However, in the case of 234U we found the striking situation that the level separations within the two bands are nearly identical, so that the spectrum of the $\Delta J = 0$ interband transitions shows a nearly degenerate pattern with energy spacings of less than 5 keV (fig. 1b). Consequently, the two bands under consideration have nearly equal moments of inertia up to spin 8$^+$. The new experimental results are based on observations of in-beam conversion electrons after the 232Th(α, $2n$)234U and 232Th(α, $4n$)232U reactions at respective beam energies of 25 and 40 MeV. The use of two mini-orange spectrometers [5], facing the target at 135° on both sides of the α-beam, facilitated simultaneous measurements with different energy win-

1 Present address: Technische Hogeschool, Eindhoven, The Netherlands.
2 Present address: Argonne National Laboratory, Argonne, IL, USA
Fig. 1. Spectra of prompt conversion electrons after $^{232}\text{Th} (\alpha, xn)$ reactions, showing clusters of E0-admixed transitions in the target nucleus ^{232}Th (hatched) and in ^{232}U (a), ^{234}U (b) (shaded). Insets illustrate the relevant level structure.
dows. Singles electron spectra were time-differentiated in 10 ns intervals with respect to the cyclotron beam bursts. The E0-admixed actinide transitions were found in prompt electron spectra (fig. 1), while two other E0 transitions became visible after β-decay of fission fragments: at 787 keV (98Mo) and at 854 keV (98Zr). The 232Th target thickness was 1 mg/cm², sufficiently thin to allow escape of fission fragments but sufficiently thick to stop the recoiling actinide nuclei. During the 232U studies e—e and e—γ coincidences were recorded as well.

A search for corresponding γ-rays required a more specialized approach. For the (α, 2n) case, with less interference from fission than the (α, 4n) reaction, an attempt was made with a Ge(Li)—NaI anti-Compton spectrometer placed at 1 m from the target. This arrangement facilitated both shielding of the NaI crystal as well as time-of-flight discrimination of the neutron-induced background. In prompt γ-ray spectra a few transitions in 234U could thus be identified, but none of the ΔJ = 0 transitions between β- and gs-band. The resulting limits on K-conversion coefficients are listed in table 1. The Nuclear Data Sheets evaluation [6] for the 2g → 2gs and 4g → 4gs transitions arrived at finite and seemingly different αK values of 2.6 and 0.45, respectively. We estimate, however, that these values have to be assigned with uncertainties as large as (40—60)%. In fact, it may be expected on theoretical grounds [7] that the E0 admixtures (and αK values) will be spin-independent to within 10%.

Multipolarities of the strong conversion electron lines cannot be larger than L = 2 since they are prompt to within 10 ns. This, and the fact that the αK values exceed those for E2 radiation by about two orders of magnitude, confirms the E0 character of the ΔJ = 0, β → gs transitions.

From radioactive decay the states of the β-bands in 232,234U were known up to Jπ = 4+. Our results extend the knowledge of these bands up to higher spins: Jπ = 6+ at 985.2 ± 0.3 keV, 8+ at 1187.3 ± 0.4 keV and 10+ at 1434.9 ± 0.6 keV in 232U; Jπ = 6+ at 1095.7 ± 0.2 keV and 8+ at 1292.7 ± 0.2 keV in 234U.

Besides the E0 admixed transitions the conversion electron spectra show a number of weaker lines. Most of these could be identified with transitions connecting the γ- and gs-bands in the Th and U nuclei. They are visible despite the fact that a significant E0 admixture can be excluded because of K-forbiddenness. However, the intensity patterns of the conversion electron lines in fig. 1 are somewhat deceptive: the strong E0 lines belong to weak transitions. In fact, for the 234U measurements the population of γ-band states is stronger by at least a factor of 5 than the population of β-band states. In the case of 232U the feeding of the β-band is found to be of the order of 1% of that of the gs band. It may be noted that the Ogs → Ogs transitions are clearly present in both spectra in fig. 1, though unresolved in the 234U investigation.

The ΔJ = 0, β → gs transitions show regular patterns. Particularly striking is the case of 234U where the transition energies become nearly identical. In terms of a rotational band description the small energy differences are due to a near equality of the moments of inertia for the corresponding bands. Goerlach et al.

Table 1. Observed ΔJ = 0 transitions between the beta-bands and ground-state bands in 232U and 234U. For each transition the measured energy (Etr) and the relative intensity (IK) of the K conversion line is given.

<table>
<thead>
<tr>
<th>Jf — Jg</th>
<th>234U</th>
<th>232U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Etr (keV)</td>
<td>IK</td>
</tr>
<tr>
<td>10g → 10gs</td>
<td>795.7 ± 0.2</td>
<td>22 ± 2</td>
</tr>
<tr>
<td>8g → 8gs</td>
<td>799.7 ± 0.2</td>
<td>47 ± 2</td>
</tr>
<tr>
<td>6g → 6gs</td>
<td>804.5 ± 0.2</td>
<td>76 ± 2</td>
</tr>
<tr>
<td>4g → 4gs</td>
<td>808.25 ± 0.2</td>
<td>100 b) ± 4</td>
</tr>
<tr>
<td>2g → 2gs</td>
<td>810.1 ± 0.5</td>
<td>36 ± 4</td>
</tr>
<tr>
<td>0g → 0gs</td>
<td>810.1 ± 0.5</td>
<td>36 ± 4</td>
</tr>
</tbody>
</table>

a) Calibration value from ref. [6].
b) Normalization value.
[8] made an interesting observation of similar but unresolved E0 transitions between states in the second minima of 236U and 238U. Their findings indicate a similar near-equality of moments of inertia as we present for the first minimum of 234U.

Fig. 2 illustrates the dependence of the β- and gs-band moments of inertia on the rotational frequency ω up to $J^\pi = 10^+$ in 232Th [9], $^{232, 234}$U (present work) and 236U [10]. The β- and gs-bands of the first three nuclei show approximately the same variation of $J(\omega)$ with rotational frequency. This indicates that the collective properties of these bands can be described in the same frame of reference, and that residual interactions with other orbitals do not disturb the coupling of pure rotation to a β-vibration. The behaviour of the β-band in 236U deserves further investigation, since there could be interference with a second, close-lying $K^\pi = 0^+$ band.

Considering the first three nuclides presented in fig. 2, we observe that the nucleus-to-nucleus variation in the gs-band moments of inertia is much larger than for the β-bands. In summary, the new β-band states for $^{232, 234}$U, in combination with similar states already known for 232Th and 236U, indicate that the near-equality of the β- and gs-band moments of inertia in 234U is mainly due to properties of the gs band.

This investigation was supported by the Netherlands Organization for Pure Research (ZWO) through the Stichting voor Fundamenteel Onderzoek der Materie (FOM).

References