Constructing tensegrity frameworks and related applications in multi-agent formation control
Yang, Qingkai

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Appendix A

Lemma on the rank of the matrix $\hat{\Omega}$ in (4.12)

Lemma A.1. Consider the matrix $\hat{\Omega} \in \mathbb{R}^{(n+1)\times(n+1)}$ defined in (4.12), where $\Omega \in \mathbb{R}^{n \times n}$ and $\Omega_u \in \mathbb{R}^{4 \times 4}$ are the stress matrices associated with super stable tensegrity frameworks with three common vertices. Then

$$\text{rank}(\hat{\Omega}) = n - 2. \quad (A.1)$$

Proof. We first consider the solution to the following equations

\begin{align*}
\Omega_a x &= 0, \quad (A.2a) \\
\Omega_b y &= 0, \quad (A.2b)
\end{align*}

where $x, y \in \mathbb{R}^{n+1}$. In view of (4.12), (A.2a) can be equivalently written as

$$
\begin{pmatrix}
\Omega & 0_{n\times1} \\
0_{1\times n} & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
=
\begin{pmatrix}
0_{n\times1} \\
0
\end{pmatrix},
$$

(A.3)

where $x_1 \in \mathbb{R}^{n\times1}$ and $x_2 \in \mathbb{R}$. After simple calculation, (A.3) can be reduced to

\begin{align*}
\begin{cases}
\Omega x_1 = 0, \\
0x_2 = 0.
\end{cases}
\end{align*}

(A.4)

Since $null(\Omega) = \text{span}(q^T, 1_n)$, the solution space of (A.4) (equivalently, (A.2a)) is as follows

\begin{align*}
\mathcal{S}_a &= \text{span} \left(\begin{pmatrix} q_1 \\ p_1^a \end{pmatrix}, \begin{pmatrix} q_2 \\ p_2^a \end{pmatrix}, \begin{pmatrix} 1_n \\ c_a \end{pmatrix} \right) \\
\stackrel{\Delta}{=} & \text{span} (s_1^a, s_2^a, s_3^a),
\end{align*}

(A.5)

where $q_1 = [q_{11}, \ldots, q_{n1}]^T \in \mathbb{R}^n$ with q_{11} being the first component of q_i, $i = 1, \ldots, n$, and q_2 is defined analogously. p_1^a, p_2^a and c_a are any arbitrary scalars.
A. Lemma on the rank of the matrix $\hat{\Omega}$ in (4.12)

Similarly, the solution space of (A.2b) is given by

$$S_b = \text{span} \begin{pmatrix}
 p_{11}^b & \vdots & p_{12}^b \\
 \vdots & \ddots & \vdots \\
 p_{(n-3)1}^b & \vdots & p_{(n-3)2}^b \\
 q_{(n-2)1}^b & \vdots & q_{(n-2)2}^b \\
 \vdots & \ddots & \vdots \\
 q_{(n+1)1} & \vdots & q_{(n+1)2}
\end{pmatrix},$$

$$\Delta = \text{span} \left(s_1^b, s_2^b, s_3^b \right)$$

where $p_{ij}^b, i = 1, \ldots, n - 3, j = 1, 2,$ denote the jth component of an arbitrary real vector $p_i^b \in \mathbb{R}^2$, and $c_{bi}, i = 1, \ldots, n - 3,$ are arbitrary scalars. In view of Lemma 7.2, we know

$$\text{null}(\hat{\Omega}) = S_a \cap S_b.$$ \hspace{1cm} (A.7)

To determine the non-trivial form of $S_a \cap S_b$, let

$$\alpha_1 s_1^a + \alpha_2 s_2^a + \alpha_3 s_3^a = \beta_1 s_1^b + \beta_2 s_2^b + \beta_3 s_3^b,$$ \hspace{1cm} (A.8)

where α_i and $\beta_i, i = 1, 2, 3,$ are scalars, at least one of which is nonzero. Note that S_a and S_b share the same entries as follows

$$s_c = \begin{pmatrix}
 q_{(n-2)1} \\
 q_{(n-1)1} \\
 q_{n1}
\end{pmatrix}, \begin{pmatrix}
 q_{(n-2)2} \\
 q_{(n-1)2} \\
 q_{n2}
\end{pmatrix}, \begin{pmatrix}
 1 \\
 1 \\
 1
\end{pmatrix}.$$ \hspace{1cm} (A.9)

Combining (A.8) and (A.9), one has

$$(\alpha_1 - \beta_1) \begin{pmatrix}
 q_{(n-2)1} \\
 q_{(n-1)1} \\
 q_{n1}
\end{pmatrix} + (\alpha_2 - \beta_2) \begin{pmatrix}
 q_{(n-2)2} \\
 q_{(n-1)2} \\
 q_{n2}
\end{pmatrix} + (\alpha_3 - \beta_3) \begin{pmatrix}
 1 \\
 1 \\
 1
\end{pmatrix} = 0,$$ \hspace{1cm} (A.10)

which can be equivalently written as

$$\begin{pmatrix}
 q_{(n-2)1} & q_{(n-2)2} & 1 \\
 q_{(n-1)1} & q_{(n-1)2} & 1 \\
 q_{n1} & q_{n2} & 1
\end{pmatrix} \begin{pmatrix}
 \alpha_1 - \beta_1 \\
 \alpha_2 - \beta_2 \\
 \alpha_3 - \beta_3
\end{pmatrix} = 0.$$ \hspace{1cm} (A.11)

Recalling that vertices i, j and k are not collinear, it is equivalent to say that they
are in general positions in the plane, which implies

\[
\text{rank } \begin{pmatrix}
q_{(n-2)1} & q_{(n-2)2} & 1 \\
q_{(n-1)1} & q_{(n-2)1} & 1 \\
q_{n1} & q_{n2} & 1
\end{pmatrix} = 3. \tag{A.12}
\]

Then in view of (A.11), the parameters \(\alpha_i\) and \(\beta_i\), \(i = 1, 2, 3\), in (A.8) satisfy

\[
\begin{cases}
\alpha_1 = \beta_1, \\
\alpha_2 = \beta_2, \\
\alpha_3 = \beta_3.
\end{cases} \tag{A.13}
\]

From the fact that \(\hat{\Omega}\) is a stress matrix associated with configuration \(\bar{q}\), we know

\[(\bar{q}_1, \bar{q}_2, 1_{n+1}) \subseteq \text{null}(\hat{\Omega}), \tag{A.14}\]

where \(\bar{q}_1 = [q_1^T, q_{(n+1)1}]^T\), and \(\bar{q}_2\) is defined analogously. Since \(\text{rank}(\bar{q}_1, \bar{q}_2, 1_{n+1}) = 3\), we have

\[
\text{rank}(\hat{\Omega}) \leq n - 2. \tag{A.15}
\]

Then, to prove \(\text{rank}(\hat{\Omega}) = n - 2\), we need to show that any other vector \(v \in \text{null}(\hat{\Omega})\) can be represented as a linear combination of vectors \(\bar{q}_1, \bar{q}_2,\) and \(1_{n+1}\), namely, there exist scalars \(\gamma_1, \gamma_2,\) and \(\gamma_3\), such that

\[
v = \gamma_1 \bar{q}_1 + \gamma_2 \bar{q}_2 + \gamma_3 1_{n+1}, \quad \forall v \in \text{null}(\hat{\Omega}), \tag{A.16}\]

where at least one of \(\gamma_i, i = 1, 2, 3\), is nonzero. In light of Lemma 7.2, one has

\[
v \in \text{null}(\hat{\Omega}) \iff v \in S_a \text{ and } v \in S_b, \tag{A.17}\]

which implies

\[
v = \alpha_1 s_1^a + \alpha_2 s_2^a + \alpha_3 s_3^a = \beta_1 s_1^b + \beta_2 s_2^b + \beta_3 s_3^b. \tag{A.18}\]

It follows from (A.13) that

\[
\begin{pmatrix}
v \\
v
\end{pmatrix} = \alpha_1 \begin{pmatrix}
s_1^a \\
1
\end{pmatrix} + \alpha_2 \begin{pmatrix}
s_2^a \\
1
\end{pmatrix} + \alpha_3 \begin{pmatrix}
s_3^a \\
1
\end{pmatrix}. \tag{A.19}
\]

Picking out respectively the first \(n\) entries of \(s_i^a\) and the last entry of \(s_i^b, i = 1, 2, 3\), we get

\[
v = \alpha_1 \begin{pmatrix}
q_{(n+1)1} \\
q_{(n+1)2}
\end{pmatrix} + \alpha_2 \begin{pmatrix}
q_{(n+1)2} \\
1
\end{pmatrix} + \alpha_3 \begin{pmatrix}
1_n \\
1
\end{pmatrix}, \tag{A.20}\]
equivalently,

\[v = \alpha_1 \bar{q}_1 + \alpha_2 \bar{q}_2 + \alpha_3 1_{n+1}. \] \hspace{2cm} (A.21)

Therefore, there exist scalars \(\gamma_i, i = 1, 2, 3 \), such that any vector \(v \in \text{null}(\hat{\Omega}) \) can be written as a linear combination of \(\bar{q}_1, \bar{q}_2, \) and \(1_{n+1} \). This completes the proof. \(\square \)