Interventions aimed at preventing and reducing overweight/obesity among children and adolescents
Kobes, Annita; Kretschmer, Tina; Timmerman, Margaretha; Schreuder, Pauline

Published in:
Obesity Reviews

DOI:
10.1111/obr.12688

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-05-2020
Pediatric Obesity/Treatment and Prevention

Interventions aimed at preventing and reducing overweight/obesity among children and adolescents: a meta-synthesis

A. Kobes, T. Kretschmer, G. Timmerman and P. Schreuder

Department of Pedagogy and Educational Sciences, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, the Netherlands

Received 22 December 2017; revised 13 February 2018; accepted 20 February 2018

Address for correspondence: A Kobes, Department of Pedagogy and Educational Sciences, Faculty of Behavioural and Social Sciences, University of Groningen, Grote Rozenstraat 38, 9712 TJ Groningen, the Netherlands.
E-mail: a.kobes@rug.nl

Summary
The prevalence of child and adolescent obesity has been a major worldwide problem for decades. To stop the number of youth with overweight/obesity from increasing, numerous interventions focusing on improving children’s weight status have been implemented. The growing body of research on weight-related interventions for youth has been summarized by several meta-analyses aiming to provide an overview of the effectiveness of interventions. Yet, the number of meta-analyses is expanding so quickly and overall results differ, making a comprehensive synopsis of the literature difficult. To tackle this problem, a meta-synthesis was conducted to draw informed conclusions about the state of the effectiveness of interventions targeting child and adolescent overweight. The results of the quantitative synthesis of 26 meta-analyses resulted in a standardized mean difference (SMD) of -0.12 (95%CI: -0.16, -0.08). Several moderator analyses showed that participant and intervention characteristics had little impact on the overall effect size. However, a moderator analysis distinguishing between obesity treatment and obesity prevention studies showed that obesity treatment interventions (SMD: -0.048, 95%CI: -0.60, -0.36) were significantly more effective in reducing body mass index than obesity prevention interventions (SMD: -0.08, 95%CI: -0.11, -0.06). Overall, the results of this meta-synthesis suggest that interventions result in statistically significant effects albeit of relatively little clinical relevance.

Keywords: Childhood, meta-synthesis, overweight, obesity.

Abbreviations: AMSTAR, a measurement tool for the ‘assessment of multiple systematic reviews’; BMI, body mass index; BMIz, standardized BMI score for specific populations; CI, confidence interval; LB, lower bound for confidence interval; MCID, minimum clinical important differences; PICOC, Participants, Intervention, Comparison, Outcome, Context; SD, standard deviation; SMD, standardized mean difference; UB, upper bound for confidence interval.

The prevalence of child and adolescent obesity has taken pandemic forms, occurring in developed and developing countries and for boys and girls alike with an estimated increase of 47.1% between 1980 and 2013 (1). Childhood overweight and obesity have been associated with negative outcomes for youth’s physical, social and mental health (2–5). Moreover, adult overweight and obesity result in an increased risk for early death from various causes: heart and vascular diseases, cancer, medical problems among which gallbladder disease, hypertension and diabetes mellitus (6,7). Future prospects are worrying with an estimated 57.3% of today’s US children predicted...
to be obese at the age of 35 and the chances of an obese 19-year old to no longer be obese at the age of 35 being 6.1% (8). Thus, the urgency to prevent and decrease the number of overweight and obese children and adolescents is evident.

Theoretically, encouraging children and adolescents to eat less sugar-containing and fat-containing foods and exercise more should solve childhood obesity, but this is easier said than done. Over the past decades, numerous interventions have been introduced to motivate children and adolescents to eat more healthily and exercise more often, designed for different contexts, such as school (9–11), family home (12,13), sports club (14,15) and online (16,17). Interventions are of short (e.g. 4 (18), 5 (19), 8 weeks (20)) or long (e.g. 12 (21), 20 months (22)) duration, focus on specific populations (e.g. South Asians (23,24)) or age groups (25–27). Interventions varied widely in their activities involved, e.g. efforts to improve the offering of foods and drinks in sports canteens, provide afterschool sports activities for children, stimulate children to be physically active during breaks, make fruits and vegetables available to children at schools, motivate parents to choose healthier food and stimulate parents to restrict screen time. Several meta-analyses on weight-related interventions for children and adolescents have attempted to systematically summarize the results of individual programs to show ‘what works’ in child obesity prevention and intervention. This number is expanding so quickly that a comprehensive overview of the literature is difficult to retrieve, hindering an educated conclusion as to whether or not interventions can really help young people in tackling overweight and obesity, and if so, which types of interventions are most suited.

Moreover, the results of these meta-analyses do not always point in the same direction, in that some meta-analyses suggest significant post-intervention weight loss whereas others fail to find improvements. Moderator analyses might explain why some interventions are more effective than others and could increase the effectiveness of future interventions. In this respect, a broad framework for moderator analyses (28) that has been adopted often (29–39) and includes participant features (i.e. participant age, gender, ethnicity and overweight/obesity risk) and intervention features (e.g. duration, parental involvement, psychoeducational content, dietary improvement, increased physical activity, reduced sedentary behaviour). However, given the variation between meta-analyses on obesity prevention and intervention in type (e.g. physical activity, dietary intake, health literacy), sample (e.g. preschoolers, children, adolescents) and context (e.g. school-based interventions, community-based interventions, home-based interventions), it is challenging to comprehensively evaluate the literature and its implications for effectively tackling child and youth obesity.

Meta-synthesis

How can we best integrate the evidence from these multiple meta-analyses? Ioannidis (40) stressed the raison d’être for meta-synthesis: a single meta-analysis addressing one treatment comparison for one outcome may offer a short sighted view of the evidence when there are more treatment options for the condition under review. Especially in the field of child overweight/obesity prevention and treatment, there are many treatments available and many relevant outcomes: the problem can be targeted through different behaviour changes, directed at different groups, and be situated in different contexts, clearly necessitating a meta-synthesis to obtain an informed, well-substantiated insight of the effectiveness of overweight/obesity prevention and interventions.

Method

Search strategy

A two-phased research strategy was carried out in April 2017 by the first author. First, a survey of the literature was conducted to assemble suitable search terms. Second, these terms were used to systematically search all relevant databases. After consulting a librarian, PubMed, PsycInfo, Eric, SocIndex and Web of Science were searched, presuming that these databases provide a thorough overview of the accessible literature on meta-analyses of obesity prevention/treatment interventions. Different key term combinations were used (Table 1). Additional eligible meta-analyses were identified from the reference sections of meta-analyses found in the search.

Inclusion and exclusion criteria

Meta-analyses were included if they (i) were written in English; (ii) categorized participants as children or adolescents (i.e. not adults); (iii) included interventions focusing on reducing weight and/or preventing overweight; (iv) assessed intervention effectiveness by means of physical measures (e.g. body mass index (BMI), BMIz,1 waist circumference); and (v) provided sufficient methodological details to allow for quality assessment of the meta-analysis, such as information about the data collection and analysis method.

Criteria for exclusion from this meta-synthesis were as follows: (i) focus on surgical and/or pharmaceutical treatments (e.g. gastric bypasses for overweight patients); (ii) focus on weight-related behaviours linked to medical or psychological consequences or causes (e.g. diabetes, kidney

1To calculate a BMIz score, a person’s BMI score is compared with the BMI score of a reference population (41). A BMIz score is thus not necessarily similar across age groups or countries.
disease, ADHD); (iii) interventions targeting clinical or other subgroups (e.g. children with Down syndrome, US children from specific states or ethnicity). The latter were excluded because these types of interventions are hardly generalizable but provide information for specific target groups.

In cases of doubt, inclusion or exclusion of meta-analyses was discussed with the second and fourth author. When publications were not available to the researcher (e.g. no accessible file) or when there were ambiguities concerning the meta-analysis (e.g. almost identical titles by the same authors), the corresponding author was contacted by email twice. In cases of no response, the meta-analysis was excluded from further analysis.

Data extraction and quality appraisal
The Participants, Intervention, Comparison, Outcome and Context (PICOC) method (42) was used to extract necessary information from meta-analyses in a standardized manner (Table 2). This entailed information about publication year, focus (i.e. obesity prevention and obesity treatment), types of interventions included, other conditions (e.g. European interventions only, interventions targeting specific behaviours), which participants were targeted, comparisons that were made (e.g. treatment vs. control or treatment vs. treatment), as well as effect sizes and corresponding information about the statistical significance. Additionally, a list of individual intervention studies included in each meta-analysis was maintained to assess overlap between meta-analyses.

The methodological quality of the included meta-analyses was assessed using a 42-item tool (43) based on the AMSTAR tool (44) and the Cochrane Handbook for Systematic Reviews of Interventions (45) that emphasizes the quality of meta-analyses’ statistical appropriateness and adequacy of interpretation. The 42 items are summarized into four overarching questions, scored ‘yes’ (scored as 1), ‘probably yes’ (2), ‘probably no’ (3), ‘no’ (4) (Table 3), ‘unclear’ or ‘not applicable’ (the latter two are not scored). The first and second author rated 10% of the studies and agreement was calculated using Cohen’s kappa (46).

Analytical procedure
Two data files were compiled: one containing all information extracted from meta-analyses by means of the PICOC method, and another containing the intervention studies included in each meta-analysis. This second data file (Table S1) was used to estimate overlapping samples, similar to Zell, Krizan and Teeter (47). That is, meta-analyses were excluded if they were replaced by more recent meta-analyses addressing the same research question or covering the same topic or if they analysed only a subset of studies of another meta-analysis. The degree of sample overlap was quantified by comparing the intervention studies included in the meta-analyses in RStudio 1.0.153 (48) and

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Overview of terms used for literature search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbrella term</td>
<td>Search terms</td>
</tr>
<tr>
<td>Review</td>
<td>meta-analy* OR meta analy*</td>
</tr>
<tr>
<td>Weight-related</td>
<td>health OR weight OR obesity OR nutrition OR eating OR food OR dietary intake OR fruit OR vegetable OR sedentary behavior OR fitness OR sport OR physical activity OR lifestyle OR exercise OR energy balance behavior* OR bmi OR tobacco OR smok* OR cigarette OR marijuana OR drug* OR alcohol OR underage drinking OR</td>
</tr>
<tr>
<td>Intervention</td>
<td>interven* OR prevent* OR control* OR promot* OR treat* OR improv* OR program*</td>
</tr>
<tr>
<td>Target group</td>
<td>Youth OR young people OR child* OR adolescent* OR teen* OR school*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Overview of PICOC extraction terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Description</td>
</tr>
<tr>
<td>Population</td>
<td>Information about the children and adolescents that were included (e.g. age, gender, nationality, overweight or ‘normal’)</td>
</tr>
<tr>
<td>Intervention</td>
<td>Type of intervention (e.g. dietary intake, physical activity)</td>
</tr>
<tr>
<td>Comparison</td>
<td>Control groups with no treatment or waitlist treatment</td>
</tr>
<tr>
<td>Outcome</td>
<td>BMI, BMIz, prevalence of overweight/obesity, waist circumference</td>
</tr>
<tr>
<td>Context</td>
<td>Information about the specific context in which the interventions took place (e.g. schools, at home, community)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Scores assigned to methodological quality of the meta-analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Score</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>Probably no</td>
<td>2</td>
</tr>
<tr>
<td>Probably yes</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Unclear</td>
<td>U</td>
</tr>
<tr>
<td>Not applicable</td>
<td>NA</td>
</tr>
</tbody>
</table>

© 2018 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation

Obesity Reviews
evaluated following the approach of applying a margin of 25% overlap of Zell et al., expressing that if 75% of all the studies are unique, the meta-analyses in the model contain largely unique data (47).

The analytical procedure as described by Tang, Caudy and Taxman (49) was used to conduct the meta-synthesis. This approach is based on the assumption that conducting a meta-synthesis of meta-analyses is essentially the same as conducting a meta-analysis of individual interventions and requires only overall effect sizes as reported in meta-analyses and their corresponding variance estimates. Most meta-analyses provided confidence intervals instead of variances, thus variances were obtained using \((UB - LB)^2 / (2 \times 1.96)^2\) (49). Data (i.e. effect sizes obtained from meta-analyses) were summarized to provide an overarching effect size using the ‘metafor’ package (50) in RStudio 1.0.153 (48). Effect sizes were computed as \(d\) indices or standardized mean differences (SMDs) – and expressed the difference in mean change between intervention and control groups. Negative values expressed a greater decrease for the intervention groups. Each effect size was weighed by the inverse of its variance to ensure that studies with larger samples were given greater weight. If meta-analyses did not express effect sizes in Cohen’s \(d\) or Hedge’s \(g\) (which is a correction for small sample sizes), the reported effect size and its corresponding confidence interval were converted. Specifically, effect sizes expressed as Pearson’s \(r\) were converted by applying the formulae described by Borenstein and colleagues (51). Odd ratios were converted using the formulae as documented by Chinn (52), see Fig. S1. When meta-analyses applied unstandardized effect sizes, means and standard deviations of the intervention and control groups were used to calculate the SMD (Fig. S1). If not enough information was reported to calculate the SMD, authors were emailed. Meta-analyses were excluded from further analysis when no response could be obtained.

Even though meta-analyses reported the same effect measure, they differed substantially in their methodologies and in/exclusion criteria; heterogeneity was thus assumed to be high. Therefore, a random effects model was employed to account for variability in effect sizes caused by both sampling error and true differences in effect sizes between studies. Effect sizes were interpreted according to Cohen’s scale (53), with effect sizes of 0.2 indicating a small effect, effect sizes of 0.5 indicating a moderate effect and effect sizes of 0.8 indicating a large effect. Effect sizes of 0.1 are sometimes deemed as trivial (51). Between-study heterogeneity was quantified using the \(I^2\) statistic (54). To test for possible explanations of effect size differences, moderator analyses were conducted following the same procedure. First-level moderators (i.e. on meta-analysis level) were selected based on the contents of the included meta-analyses. That is, frequently employed moderators in original meta-analyses were also examined as moderators in the present meta-synthesis as these would likely be influential. Second-level moderators (i.e. on meta-synthesis level) were (i) type, i.e. treatment or prevention, (ii) focus, i.e. school-based or family-based, and (iii) methodological quality of the meta-analysis. Their moderating effect was explored to elucidate reasons for varying effect sizes reported by different meta-analyses.

Publication bias

The selective publication of studies resulting in significant outcomes at the cost of non-significant outcomes is commonly referred to as publication bias. As a result, interventions might be unjustly assumed as effective and theory-building corrupted simply because significant findings are easier to publish than trials that did not yield significant outcomes for experimental compared with control groups. Castellanos and Verdú’s strategy (55) was adopted to assess publication bias at the level of the meta-analysis, i.e. the correlation between the effect sizes and sample sizes was calculated. Because larger studies have greater probability of finding significant results, a small correlation coefficient would imply the absence of evidence for publication bias. To strengthen conclusions regarding publication bias drawn in the present meta-synthesis, a file was maintained containing information assessments of publication bias in every included meta-analysis (Table S3).

Results

The systematic literature search yielded 457 articles across all databases. After removing duplicates and publications written in languages other than English, 209 articles remained, of which 26 were not available online, i.e. lacked journal information or could not be traced on the journal’s website. Authors of these articles were emailed to clarify whether the hit was indeed a published article. Several of those publications (\(n = 15\)) were in fact conference papers, thus not included in subsequent analyses. For two studies, authors did not respond to email and the journal the article was supposedly published in was contacted. In both cases, the publications were published abstracts of conference papers. For four studies, authors did not respond to emails and no other publication information such as journal was available; these meta-analyses could thus not be included. In five cases, the author or library sent a copy of the publication; these were included in subsequent analysis (Fig. 1). After reading titles and abstracts of the 183 + 5 retrieved articles, 71 meta-analyses were excluded from further analysis because they did not deal with obesity prevention/treatment. One hundred seventeen meta-analyses on obesity prevention/treatment interventions were included for full text reading.
Based on full text reading of the 117 meta-analyses, another 72 meta-analyses were excluded mostly because of non-fitting samples (e.g. clinical sample, specific subsample of population), outcome measures (e.g. physical activity, fruit/vegetable intake, blood pressure, health literacy) and because mental and physical health outcomes were combined, which made it impossible to extract the intervention effect on weight. The reference lists of the remaining 45 meta-analyses were scanned and another six meta-analyses were added to the data set. This resulted in a collection of 51 meta-analyses (28,34,36,37,39,56–96), of which relevant information was extracted using the PICOC method.

Although all meta-analyses assessed physical changes as outcome, these assessments varied along dimensions of BMI, BMIz, percentage of overweight/obesity in control and intervention groups, as well as waist circumference, or body fat percentage. A meaningful quantification of an overall effect, however, needs to be based on comparable outcomes. For this reason, the 26 meta-analyses that reported intervention effectiveness in terms of change in BMI were included in the quantitative meta-synthesis. The remainder (n = 25) is included in the subsequent descriptive overview.

Twelve meta-analyses included only single-component interventions, and eleven meta-analyses included multicomponent interventions (Table 4). Some meta-analyses placed in/exclusion restrictions on the intervention setting, e.g. to the school environment (n = 22), sports club (n = 1) or family home (n = 5). The majority of meta-analyses included general populations, allowing healthy and overweight/obese participants to participate in the interventions reviewed, however, a minority of meta-analyses (n = 11) included only interventions based on

Table 4 Overview of number of meta-analyses that set restrictions to the type of intervention and the intervention context

<table>
<thead>
<tr>
<th>Type of intervention included</th>
<th>Intervention context</th>
<th>n</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>No restrictions</td>
<td></td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>DI/SB/PA</td>
<td>Pre-school</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>DI/PA</td>
<td>School</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>PA</td>
<td>Afterschool</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>DI</td>
<td>Sports club</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>SB</td>
<td>Families</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>SB/PA</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HIIT</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

Figure 1 Flowchart of the inclusion process.
overweight/obese samples. Some meta-analyses \((n = 10)\) restricted intervention duration, varying from 4 to 24 weeks. The majority of the meta-analyses were based on interventions carried out with school-aged children and adolescents (5–18 years), however, six meta-analyses included any children aged 18 or younger, and one meta-analysis included only adolescents between the ages of 13 and 18.

Quality appraisal

An overview of the methodological quality of the included meta-analyses can be found in Table S2. The inter-rater reliability was \(k = 0.75\) or 75%. Most of the disagreements between the raters were small; where rater 1 answered a question with ‘yes’, rater 2 answered that question with ‘probably yes’ and vice versa. Major differences (one rater answering ‘yes’ where the other would answer ‘no’) occurred only once. On a scale of 1 to 4, meta-analyses scored on average 2.86, implying that the methodological quality was relatively high. Meta-analyses scored on average 2.86 on the question whether ‘review methods were adequate such that biases in location and assessment of studies were minimized or able to be identified’; this being the lowest average across the four quality questions. It is likely that this low score results from a lack of assessment of methodological quality of included intervention studies in some meta-analyses, thus the possibility of biased meta-analytic effect size cannot be excluded.

Publication bias

To assess the probability of publication bias, the correlation between the effect size and sample size \(k\) was measured. The Pearson’s \(r\) was 0.16, providing no evidence for the presence of publication bias. Of the 51 included meta-analyses, 28 assessed publication bias mostly through funnel plots, Egger’s test or by calculating the fail-safe N (Table S3). Of these 28 meta-analyses, 4 reported evidence of publication bias, 22 found no evidence for publication bias and 2 studies did find evidence but deemed the influence of the bias trivial.

Overlap

All 51 meta-analyses were compared with each other to identify overlap in inclusion of intervention studies; however, the average overlap between the studies included in the meta-analyses was modest at 5% \((SD = 0.11, median = 0)\). A separate overlap analysis was conducted for the 26 meta-analyses included in the meta-synthesis \((n = 26)\). A few studies overlapped considerably \((70\% (33,34), 71\% (39,57), 71\% (37,39), 80\% (37,57), 80\% (71,83))\), however, the average overlap here was also modest at 8% \((SD = 0.13, median = 0)\). We conducted analyses including and excluding these studies and evaluate differences wherever substantial.

Meta-synthesis of meta-analyses expressing weight-change in body mass index

As described earlier, 26 meta-analyses expressing the difference between intervention and control groups in BMI\(^2\) change were eligible for inclusion in the meta-synthesis (Fig. 2; Table 5). Combining the 26 effect sizes resulted in an overall statistically significant but small SMD of \(-0.12 (95\% CI: -0.16, -0.08)\) (Fig. 3). Excluding these seven studies that contributed most to the high degree of overlap \((33,34,57,66,82,84,89)\) resulted in an SMD of \(-0.17 (95\% CI: -0.25, -0.09)\). High heterogeneity among effect sizes was evident in both analyses (Table 6).

First-level moderators

First-level moderators were selected based on moderators frequently included in the 51 meta-analyses that formed the basis of the present study and effects for respective subgroups summarized across the meta-analyses (Table 6). Five meta-analyses examined gender as moderator. The SMD for girls was small but statistically significant, while the SMD for boys was statistically non-significant. Regarding age (included as moderator in seven meta-analyses), participants older than 12 years seemed to show a slightly greater decrease in BMI than younger participants. The duration of the intervention was included as moderator in 11 meta-analyses, implying that interventions lasting 12 months or less resulted in a slightly smaller effect size than interventions lasting longer than 12 months. Three meta-analyses assessed the influence of parental involvement on intervention effectiveness, suggesting that minimal parental involvement yielded similar effect sizes to no parental involvement, whereas substantial parental involvement increased the intervention effect somewhat.

The influence of intervention type on effect size was measured twofold. Because of the many types of intervention (e.g. diet only, diet + physical activity, lifestyle only, lifestyle + diet, diet + physical activity + sedentary behaviour), effect sizes were summarized into two categories: single-component interventions and multicomponent interventions. Comparing single-component and multicomponent interventions yielded similar effect sizes for both types. Additionally, the effect sizes of the most prevalent types were computed (Table 6). Analyses showed that diet only, physical activity only as well as diet + physical activity interventions yielded significant effects. The effect sizes of diet only

\(^2\)Because BMI and BMIz are highly correlated (97), meta-analyses combining BMI and BMIz in one effect size were included as well.
and physical activity only interventions were similar, whereas diet + physical activity interventions resulted in a higher effect size. Note, however, that confidence intervals overlapped, thus not lending support to a significantly higher effect of diet + physical activity interventions.

Finally, three meta-analyses included the risk of bias (as assessed by the authors of the meta-analyses) in intervention studies as a moderator. Meta-synthesizing those suggests that interventions with a low risk of bias resulted in a statistically non-significant SMD, as did interventions with an unclear risk of bias. In contrast, meta-synthesis of interventions with a high risk of bias were more likely to report statistically significant effects.

Second-level moderators

Included as second-level moderators, i.e. on the level of the meta-analyses, were intervention goal (i.e. obesity prevention vs. treatment), methodological quality as assessed by the authors of the present study and the intervention context (Table 6). Regarding intervention goal, meta-synthesis of meta-analyses assessing the effectiveness of obesity preventing interventions resulted in an SMD of $-0.08 \ (95\% CI: -0.11, -0.06)$. In contrast, meta-synthesis of meta-analyses assessing the effectiveness of obesity treatment interventions resulted in an SMD of $-0.48 \ (95\% CI: -0.60, -0.36)$.

Twelve meta-analyses focused on school-based interventions, while two meta-analyses focused on family-based interventions, demanding the involvement of parents in interventions. Meta-synthesis of school-based meta-analyses resulted in an SMD of $-0.08 \ (95\% CI: -0.11, -0.05)$. Meta-synthesis of family-based meta-analyses resulted in an SMD of $-0.12 \ (95\% CI: -0.32, 0.09)$.

Finally, methodological quality was included as a second-level moderator. Two groups of meta-analyses were constructed based on their overall methodological quality score, which was calculated as the average of the four summary questions, thus had a possible range of 1 to 4. The overall methodological quality was considerably high (Table S2). Meta-synthesis of meta-analyses scoring lower than 3 resulted in an SMD of $-0.13 \ (95\% CI: -0.17, -0.09)$. Meta-synthesis of meta-analyses scoring 3 or higher resulted in an SMD of $-0.12 \ (95\% CI: -0.19, -0.06); \ Table \ 6$). Thus, neither quality nor context influenced effect sizes. Overall, the only remarkable difference found was the effect sizes reported by meta-analyses that focus on treatment compared with prevention programs.

Discussion

The central aim of this meta-synthesis was to provide comprehensive insight into the effectiveness of obesity prevention/treatment interventions. In addition to summarizing individual effect sizes into an overarching measure, moderator analyses were conducted to inform about participant and intervention characteristics thought to affect effectiveness. The overall meta-synthesis suggested that intervention programs elicit a small but significant difference in weight loss between intervention and control groups. According to Cohen’s (53) interpretation of effect sizes, an effect size of 0.20 should be interpreted as a small effect. Borenstein and colleagues (51) deem an effect size smaller than 0.20 trivial. However, the interpretation is dependent on the field of research. Previous studies have tried to estimate minimum clinical important differences on BMIz scores to ensure health benefits in overweight children (98–103), showing that a change in BMIz score of 0.1 might already have beneficial health consequences. The effect size yielded here does not come close to this value. Although it is reasoned that clinically irrelevant interventions might still
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type</th>
<th>Context</th>
<th>Focus</th>
<th>Interventions specified</th>
<th>Other conditions</th>
<th>Range</th>
<th>Age</th>
<th>ES</th>
<th>Cl, p value or standard error</th>
<th>Type</th>
<th>Outcome</th>
<th>k</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceves-Martins et al.</td>
<td>2016</td>
<td>Obesity prevention</td>
<td>School-based Europe</td>
<td>Youth fit for Life</td>
<td>Interventions ≥12 weeks</td>
<td>1990-2014</td>
<td>5 to 17</td>
<td></td>
<td>-0.11</td>
<td>[−0.20; −0.02]</td>
<td>SMD BMI</td>
<td>18</td>
<td></td>
<td>8,681</td>
</tr>
<tr>
<td>Annesi et al.</td>
<td>2010</td>
<td>Obesity prevention</td>
<td>School-based Europe</td>
<td>Youth fit for Life</td>
<td>Interventions ≥12 weeks</td>
<td>1990-2014</td>
<td>4 to 12</td>
<td>0.07</td>
<td>[0.02; 0.12]</td>
<td>r BMI</td>
<td>16</td>
<td></td>
<td>3,199</td>
<td></td>
</tr>
<tr>
<td>Azevedo et al.</td>
<td>2016</td>
<td>Obesity prevention</td>
<td>South Asian</td>
<td>Sedentary behaviour</td>
<td></td>
<td>1980-2015</td>
<td>0 to 17</td>
<td>-0.06</td>
<td>[−0.09; 0.022]</td>
<td>SMD BMI/BMIz</td>
<td>71</td>
<td></td>
<td>29,650</td>
<td></td>
</tr>
<tr>
<td>Brown et al.</td>
<td>2015</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td></td>
<td>Treating obesity</td>
<td>2006-2014</td>
<td>0 to 17</td>
<td>-0.01</td>
<td>[−0.29; 0.28]</td>
<td>SMD BMI/BMIz</td>
<td>5</td>
<td></td>
<td>1,980</td>
<td></td>
</tr>
<tr>
<td>Cook-Cottone et al.</td>
<td>2009</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td></td>
<td>Interventions ≥4 weeks</td>
<td>1997-2008</td>
<td>5 to 18</td>
<td>0.05</td>
<td>[0.04; 0.06]</td>
<td>r BMI</td>
<td>66</td>
<td></td>
<td>31,059</td>
<td></td>
</tr>
<tr>
<td>Costigan et al.</td>
<td>2013</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td>HIIT</td>
<td>Interventions ≥4 weeks</td>
<td>Any-2014</td>
<td>13 to 18</td>
<td>-0.37</td>
<td>[−0.68; −0.05]</td>
<td>SMD BMI</td>
<td>8</td>
<td></td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>Costigan et al.</td>
<td>2014</td>
<td>Obesity prevention</td>
<td>Family-based</td>
<td></td>
<td>Interventions had to involve parents</td>
<td>1990-2011</td>
<td></td>
<td>-0.09</td>
<td>[−0.37; 0.19]</td>
<td>SMD BMI</td>
<td>6</td>
<td></td>
<td>647</td>
<td></td>
</tr>
<tr>
<td>Gonzalez-Suarez et al.</td>
<td>2009</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td>Physical activity</td>
<td>Interventions ≥4 weeks</td>
<td>1995-2007</td>
<td>6 to 18</td>
<td>-0.02</td>
<td>[−0.13; 0.17]</td>
<td>SMD BMI</td>
<td>11</td>
<td></td>
<td>4,273</td>
<td></td>
</tr>
<tr>
<td>Guerra et al.</td>
<td>2015</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td>Physical activity and diet</td>
<td></td>
<td>Any-2012</td>
<td>6 to 18</td>
<td>-0.03</td>
<td>[−0.09; 0.04]</td>
<td>SMD BMI</td>
<td>38</td>
<td></td>
<td>28,870</td>
<td></td>
</tr>
<tr>
<td>Guerra et al.</td>
<td>2014</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td>Physical activity and diet</td>
<td></td>
<td>Any-2012</td>
<td>6 to 18</td>
<td>-0.15</td>
<td>[−0.45; 0.16]</td>
<td>SMD BMI/BMIz</td>
<td>9</td>
<td></td>
<td>1,452</td>
<td></td>
</tr>
<tr>
<td>Hammersley et al.</td>
<td>2016</td>
<td>Obesity prevention</td>
<td>Family-based</td>
<td>eHealth</td>
<td>Interventions had to involve parents</td>
<td>1995-2015</td>
<td>0 to 18</td>
<td>-1.25</td>
<td>[−2.18; 0.32]</td>
<td>MD BMI</td>
<td>13</td>
<td></td>
<td>899</td>
<td></td>
</tr>
<tr>
<td>Ho et al.</td>
<td>2012</td>
<td>Obesity treatment</td>
<td>School-based</td>
<td></td>
<td>Interventions had follow-up period ≥2 months</td>
<td>1997-2010</td>
<td>0 to 18</td>
<td>-1.25</td>
<td>[−2.18; 0.32]</td>
<td>MD BMI</td>
<td>13</td>
<td></td>
<td>899</td>
<td></td>
</tr>
<tr>
<td>Kanekar et al.</td>
<td>2014</td>
<td>Obesity prevention</td>
<td>School-based US/UK</td>
<td>Physical activity</td>
<td>Interventions ≥4 weeks</td>
<td>2000-2007</td>
<td>2 to 18</td>
<td>0.172</td>
<td>[−0.38; 0.72]</td>
<td>SMD BMI</td>
<td>5</td>
<td></td>
<td>1,865</td>
<td></td>
</tr>
<tr>
<td>Kelley et al.</td>
<td>2014</td>
<td>Obesity treatment</td>
<td>School-based</td>
<td>Physical activity</td>
<td></td>
<td>1990-2012</td>
<td>2 to 18</td>
<td>-0.47</td>
<td>[−0.86; −0.08]</td>
<td>ES X BMI</td>
<td>8</td>
<td></td>
<td>562</td>
<td></td>
</tr>
<tr>
<td>Kong et al.</td>
<td>2014</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td>Nutrition education</td>
<td>Interventions ≥4 weeks</td>
<td>Any-2014</td>
<td>5 to 12</td>
<td>0.73</td>
<td>[0.55; 1.05]</td>
<td>OR Prevalence of overweight/obesity</td>
<td>11</td>
<td></td>
<td>17,277</td>
<td></td>
</tr>
<tr>
<td>Liao et al.</td>
<td>2014</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td>Sedentary behaviour</td>
<td></td>
<td>Any-2012</td>
<td>0 to 18</td>
<td>-0.073</td>
<td>[−0.135; −0.011]</td>
<td>SMD BMI</td>
<td>25</td>
<td></td>
<td>7,045</td>
<td></td>
</tr>
<tr>
<td>Niemeier et al.</td>
<td>2012</td>
<td>Obesity prevention</td>
<td>School-based</td>
<td></td>
<td>Interventions ≥12 months</td>
<td>Any-2011</td>
<td>2 to 19</td>
<td>0.3</td>
<td>0.11</td>
<td></td>
<td>WAD BMI</td>
<td>42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continues)
Table 5 (Continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type</th>
<th>Focus</th>
<th>Interventions specified</th>
<th>Range</th>
<th>Other conditions</th>
<th>ES</th>
<th>CI, p value or standard error</th>
<th>k</th>
<th>n</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>van Grieken et al.</td>
<td>2010–2010</td>
<td>School-based</td>
<td>Prevention</td>
<td>interventions ≥6 weeks</td>
<td>0 to 18</td>
<td>BMI</td>
<td>0,09</td>
<td>[0,14; -0,03]</td>
<td>20</td>
<td>52</td>
<td>BMI</td>
</tr>
<tr>
<td>Sobol-Goldberg et al.</td>
<td>2006–2012</td>
<td>School-based</td>
<td>Prevention</td>
<td>interventions ≥6 months</td>
<td>5 to 18</td>
<td>BMI</td>
<td>0,076</td>
<td>[-0,123; 0,038]</td>
<td>18</td>
<td>647</td>
<td>BMI</td>
</tr>
<tr>
<td>Vasques et al.</td>
<td>2010–2011</td>
<td>School-based</td>
<td>Prevention</td>
<td>interventions ≥6 months</td>
<td>5 to 18</td>
<td>BMI</td>
<td>0,088</td>
<td>[0,035; 0,079]</td>
<td>14</td>
<td>5,197</td>
<td>BMI</td>
</tr>
</tbody>
</table>

BMI, body mass index; CI, confidence interval; ES, effect size; k, number of effect sizes included; n, number of participants included; OR, odds ratio; r, Pearson’s r; SMD, standardized mean difference.

Employment duration, intervention type and the intervention’s risk of bias. Meta-analyses examining those factors have yielded ambiguous results, which make a meta-synthesis of effect sizes for subgroups or specific conditions particularly valuable. Overall, BMI change in intervention and control groups was significantly different among girls, but not boys. This is in line with the assumption that girls are more motivated to adhere to the intervention than boys, because sociocultural pressure to be thin(ner) is greater for girls (28,104,105). Moreover, adolescents seemed to benefit slightly more from the intervention than children under the age of 12. It is possible that teenagers are less active than children, leaving more room for change (106). Similarly, the level of parental involvement is of some influence on the intervention’s effectiveness, although only when substantial. This is also the case for intervention duration, in that longer interventions appear to yield slightly better results. Extended interventions might be more effective because they allow for repeated practice and provide more opportunity for behaviour change (33). Additionally, significant BMI change is not likely to happen at a short time span (80). Notably, interventions with a high risk of bias were more likely to report statistically significant weight loss, in contrast to interventions with a low or unclear risk of bias. This pattern is worrying as it suggests that what are presumed to be effective interventions might in fact be studies that are carried out without the necessary scientific rigour. Finally, the difference between single-component and multicomponent interventions seemed rather trivial, however, when the effects of diet only, physical activity only and combined diet and physical activity interventions were measured, combined interventions appeared to have a somewhat larger (although not significantly so) effect than diet or physical activity only interventions. Unfortunately, other multicomponent interventions (e.g. lifestyle + diet, diet + sedentary behaviour) could not be analysed in this meta-synthesis due to the small number of meta-analyses within different categories.

It is important to keep in mind that several moderators mentioned in Stice and colleagues’ framework (28) (e.g. ethnicity, delivery features, psychoeducational content) were not measured frequently enough in the included meta-analyses to warrant meta-synthesis. The risk status of participants is perhaps the most surprising moderator that has not been included by many authors. Participants identified as ‘high risk’ (from certain ethnic groups (107,108), with intellectual disabilities (109), or from low socio economic status (110,111)) are more likely to gain weight in the future and are therefore important target groups for...
Table 6 Results of overall meta-synthesis and moderator analyses

<table>
<thead>
<tr>
<th>Group or subgroup</th>
<th>Meta-synthesis</th>
<th>Heterogeneity I^2 (%)</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall change</td>
<td>-0.12 ($-0.16; -0.08$)</td>
<td>91</td>
<td>26</td>
</tr>
<tr>
<td>Overall change</td>
<td>-0.17 ($-0.25; -0.09$)</td>
<td>86</td>
<td>19</td>
</tr>
</tbody>
</table>

First-level moderators

Gender	Girls	-0.11 ($-0.17; -0.06$)	41	5
	Boys	-0.09 ($-0.18; 0.01$)	77	3
Age	Participants ≤ 12	-0.12 ($-0.20; -0.05$)	94	10
	Participants > 12	-0.17 ($-0.32; -0.03$)	80	6
Duration	Interventions ≤ 12 months	-0.11 ($-0.18; -0.03$)	93	11
	Interventions > 12 months	-0.16 ($-0.28; -0.04$)	69	8
Parental involvement	None	-0.08 ($-0.10; -0.06$)	10	3
	Minimal	-0.13 ($-0.16; -0.09$)	0	2
	Moderate	-0.11 ($-0.20; -0.03$)	75	2
	High	-0.21 ($-0.28; -0.13$)	35	2
Type of intervention	Single component	-0.15 ($-0.21; -0.08$)	82	16
	Multicomponent	-0.14 ($-0.20; -0.07$)	90	13
	Diet only	-0.15 ($-0.29; -0.01$)	29	4
	Physical activity only	-0.17 ($-0.29; -0.04$)	82	6
	Diet + physical activity	-0.41 ($-0.72; -0.11$)	96	5
ROB interventions	Low	-0.15 ($-0.37; 0.07$)	97	3
	Unclear	-0.19 ($-0.46; 0.07$)	95	3
	High	-0.13 ($-0.21; -0.06$)	1	3

Second-level moderators

Intervention goal	Obesity prevention	-0.08 ($-0.11; -0.06$)	63	22
	Obesity treatment	-0.48 ($-0.60; -0.36$)	1	4
Intervention context	School	-0.08 ($-0.11; -0.05$)	76	12
	Family	-0.12 ($-0.32; 0.09$)	0	2
Methodological quality	Score of <3	-0.13 ($-0.17; -0.09$)	73	4
	Score of ≥ 3	-0.12 ($-0.19; -0.06$)	91	22

Figure 3 Forest plot of the standardized mean differences of included meta-analyses. RE, random effects model.
interventions. It is theoretically feasible that these factors impact intervention success, thus should be considered more systematically in future work.

Second-level moderator analyses provided little support for effect size moderation by intervention context or quality appraisal, but did show that the change in BMI in obesity treatment interventions was considerably larger than for prevention programs. This large effect size is in line with earlier research contrasting obesity prevention and treatment interventions (83,84). A ceiling effect might exist for obesity prevention programs consisting of mixed weight populations, reasoning that if there were to be an intervention sample consisting of 20% obese participants, 20% overweight participants and 60% healthy weight participants who would all gain or maintain a healthy BMI, the effect size of such an intervention would still only be SMD = −0.41 (32), which is greater than the SMD found by this meta-synthesis, but still not high enough to be deemed clinically relevant (57).

The value of this meta-synthesis for the field of childhood obesity is clear: The prevention programs currently administered and evaluated in meta-analyses have a small effect at best; what seems to work better, in contrast, are treatment programs. This might seem logical as treatments tend to be given to those children who are already overweight and ‘have more to lose’. Quite in line with our results, a recent evaluation of a comprehensive school-based and family-based obesity prevention program delivered through schools in the UK (112) found no significant effects regarding weight or physical activity. Their conclusion that interventions delivered through schools alone are not enough and that the wider societal context including the media and food industry need to take responsibility for childhood obesity is something the meta-synthesis presented here echoes.

Apart from this – somewhat disappointing – substantive conclusion, it has been become clear that meta-analytic research in the area ought to be more rigorous with respect to assessing the quality of interventions included to preserve the informational value of a meta-analysis and, by consequence, to ensure that policy implications are based on valid results. Finally, updates to this meta-synthesis are needed as more intervention studies and meta-analyses become available.

Limitations and strengths

Despite providing the opportunity to efficiently summarize an existing body of literature, conducting a meta-synthesis carries difficulties: Firstly, meta-analyses often express the magnitude of effect by different effect sizes (e.g. Pearson’s r, Hedge’s g, Cohen’s d, Odds ratio, unstandardized mean differences), and not all meta-analyses contained enough information to convert effect sizes to an SMD. As a result, only about half of the initially obtained 51 meta-analyses measuring BMI were included in the overall meta-synthesis. Another two meta-analyses were eligible for moderation analyses, because these meta-analyses did express the effect size in an SMD, but did not provide an overall effect size and could therefore not be added to the overall effect size (Fig. 2).

Secondly, the meta-synthesis approach used in this meta-synthesis is relatively novel. One of the disadvantages of combining meta-analyses in this way is that intervention studies might be included in multiple meta-analyses, and as a result, some interventions might influence the effect size more (often) than other interventions. To reduce the probability of this happening, the degree of overlap was calculated and found to be minor. Additionally, meta-synthesis with and without meta-analyses with high overlap were conducted, differing only marginally in results. We conclude that overlap does not seem to have influenced the meta-synthesis to a large extent.

Thirdly, meta-analyses included here showed a high degree of heterogeneity, which is similar to other meta-analyses (Stanley, Carter & Doucouliagos – unpublished paper). A high level of heterogeneity implies that the robustness of the findings might be limited and that results should be interpreted with caution. Statistical heterogeneity was addressed by applying a random effects model and conducting moderator analyses, although the latter did not inform about the sources for heterogeneity, leaving open the possibility that other – untested – moderators have a greater impact.

Fourthly, this meta-synthesis included only published literature written in English, possibly increasing the chance of publication bias. However, the correlation between effect size and the number of interventions included in the meta-analyses provided no evidence for the presence of publication bias. Additionally, the majority of the meta-analyses (n = 28) assessed publication bias and only four found presence of bias.

Finally, using BMI/BMIz as an outcome measure might be regarded as a limitation. While BMI reflects a change in body weight, and thus provides information about the effectiveness of interventions, this does not necessarily imply that the absence of change in BMI reflects lack of effectiveness. Some studies have found that other health-related outcomes such as blood pressure, physical activity and nutrition improved over the course of an intervention, while no change in BMI was detected (113–115). For this meta-synthesis, BMI/BMIz was selected as outcome because it was the most commonly used measure. In addition, meta-analyses using other physical measures (i.e. body weight and skinfold thickness) showed no substantially different results (29,31,58,73).

Conflict of interest statement

The authors declare no conflict of interest.
Acknowledgements

The authors would like to thank the Youth Studies research group for their comments on the preliminary version of this manuscript. We also thank Dr. Tang for sharing his analyses with us, and we thank the authors of the meta-analyses for their cooperation. Finally, we thank the reviewers for their valuable comments, which helped us improve our final manuscript.

Supporting information

Additional Supporting Information may be found online in the supporting information tab for this article. https://doi.org/10.1111/obr.12688

Table S1: interventions included in meta-analyses for measuring overlap
Table S2: methodological quality for included meta-analyses
Table S3: publication bias as assessed by meta-analyses

Figure S1: formulae used to convert effect sizes to SMD

References

