A new species of Fizesereneia Takeda & Tamura, 1980 (Crustacea Brachyura: Cryptochiridae) from the Red Sea and Oman
Van der Meij, Sancia E. T.; Berumen, Michael L.; Paulay, Gustav

Published in:
Zootaxa

DOI:
10.11646/zootaxa.3931.4.8

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A new species of *Fizesereneia* Takeda & Tamura, 1980 (Crustacea: Brachyura: Cryptochiridae) from the Red Sea and Oman

SANCIA E.T. VAN DER MEIJ¹, MICHAEL L. BERUMEN² & GUSTAV PAULAY³

¹Department of Marine Zoology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
E-mail: Sancia.vanderMeij@naturalis.nl
²Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955, Kingdom of Saudi Arabia
³Florida Museum of Natural History, University of Florida, 3215 Hull Rd, Gainesville, FL 32611, U.S.A.

Corresponding author

Abstract

A new species of cryptochirid crab, *Fizesereneia panda* van der Meij, is described and illustrated based on specimens collected from the scleractinian corals *Lobophyllia* cf. *hemprichii* and *L. cf. corymbosa* from the Farasan Banks, Farasan Islands, and the reefs off Thuwal in the Saudi Arabian Red Sea, and from *Symphyllia recta* from reefs in the Gulf of Oman. This is the second cryptochirid species with the Red Sea as type locality. It can be separated from its congeners by the subrectangular carapace, raised midline and the complete division of the carapace depressions, and reddish black colour pattern of these concavities in live specimens. This new species is the seventh assigned to *Fizesereneia*. A DNA barcode for the new species has been deposited in GenBank.

Key words: DNA barcoding, gall crabs, host specificity, Lobophylliidae, Saudi Arabia, Scleractinia, taxonomy

Introduction

Gall crabs (Cryptochiridae) occur on coral reefs worldwide. Cryptochirids are mostly found in tropical reef corals, but several species have been described from deep water corals (e.g., Kropp & Manning 1996). Most gall crabs have been described from rather few areas where gall crab specialists worked (Guam, Japan, Vietnam), although they have been reported from most regions in the world, including the Pacific coast of Mexico (Hernández et al. 2013), Saint Helena in the Atlantic Ocean (den Hartog 1989), and northern Borneo (van der Meij & Hoeksema 2013). Yet, most reefs have not been sampled for gall crabs, resulting in patchy known distribution ranges for most species (Kropp 1990a).

To date, only one gall crab species has been described from the Red Sea: Cryptochirus coralliodytes Heller, 1861. Simon-Blecher & Achitu (1997) reported *C. coralliodytes* from the Gulf of Eilat inhabiting the former favidi genera *Favia* Milne Edwards, 1857 [= *Dipsastrea* Blainville, 1830], *Favites* Link, 1807, *Goniastrea* Milne Edwards & Haine, 1848, and *Platygyra* Ehrenberg, 1834. Based on the host specificity of gall crabs, however, it is likely that some of these host corals were inhabited by other gall crab species (Kropp 1990a, van der Meij unpublished data). Two additional cryptochirid species have been recorded from the Gulf of Eilat: *Hapalocarcinus marsupialis* Stimpson, 1859, from *Stylophora pistillata* Esper, 1797 (Abelson et al. 1991) and *Fungicola fagei* (Fize & Serène, 1956), from *Pleuractis granulosa* (Klunzinger, 1879) (Kramarsky-Winter et al. 1995). The latter record, based on the host crab, should possibly be attributed to *F. syzygia* van der Meij, 2015. The only two species recorded to date from Saudi Arabia are *H. marsupialis*, which was recorded from *Litth [= Al Lith]* and *Djedda [= Jeddah]* (Balls 1924), and *Neotroglocarcinus dawydoffi* (Fize & Serène, 1956) (van der Meij & Reijnen 2014). Outside of the Gulf of Eilat, the Red Sea is a relatively understudied coral reef ecosystem, and non-coral invertebrates are particularly underrepresented in recent coral reef literature from the Red Sea (Berumen et al. 2013).

During a biodiversity research cruise in the Saudi Arabian part of the Red Sea, gall crabs were collected from a
wide range of coral hosts. An undescribed species of the genus *Fizesereneia* Takeda & Tamura, 1980 was collected from the scleractinian genus *Lobophyllia* de Blainville, 1830, and described below as *Fizesereneia panda* van der Meij sp. nov. The new species is the seventh assigned to the genus.

Methodology

Gall crabs were collected in the southern Saudi Arabian Red Sea from Al Lith to Jizan in March 2013, with some additional sampling conducted in Oman in May 2008 and offshore of Thuwal, in the central Saudi Arabian Red Sea, in March 2013 and November 2014 (Fig. 1). Scleractinian corals were searched for galls and pits, photographed, and subsequently split with hammer and chisel. Gall crab specimens were preserved in 80% ethanol after being photographed with a digital SLR camera equipped with macro lens. The material (including holotype) is deposited in the collections of Naturalis Biodiversity Center in Leiden, the Netherlands (formerly Rijksmuseum van Natuurlijke Historie, collection coded as RMNH.Crus.D), paratypes are deposited in the collections of the King Abdullah University of Science and Technology (Thuwal, Saudi Arabia, collection coded as SAI)) and in the Florida Museum of Natural History, University of Florida (Gainesville, USA, collection coded as UF Arthropoda). Host corals were identified following Scheer & Pillai (1983) and Sheppard & Sheppard (1991). Drawings were made with a stereomicroscope with camera lucida. The chelipeds were drawn with the outer surface of the manus parallel to the plane of the paper, which somewhat distorts the other segments. The terms for carapace shape follow Zayasu et al. (2013). Carapace lengths (CL) and widths (CW) were measured using an eyepiece micrometre. All descriptions of colour patterns are based on pictures of live specimens.

Abbreviations used: CL, carapace length; CW, carapace width (at widest point); MXP, maxilliped; ovig., ovigerous; P, pereiopod; G1, male gonopod 1. Carapace measurements are given as CL × CW, in mm.

Taxonomy

Family Cryptochiridae Paul’son, 1875

Genus *Fizesereneia* Takeda & Tamura, 1980

Fizesereneia Takeda & Tamura, 1980: 137

Fizeserenia—Kropp & Manning, 1987: 2 [erroneous spelling]

Type species. *Troglocarcinus heimi* Fize & Serène, 1956, subsequent designation by Kropp (1990b)

Type locality. Nha Trang, Vietnam

Fizesereneia panda van der Meij sp. nov.

(Figs 2–6)

Type locality. Atlantis Shoal, Farasan Banks, Saudi Arabia (18.1917 N, 41.1138 E)

Coral host of holotype. *Lobophyllia cf. hemprichii* (Ehrenberg, 1834)

DNA barcoding. A sequence of the Folmer region of COI of the holotype (partially, Folmer et al. 1994) has been deposited in GenBank under accession number KM491175.
Figure 1. Map of the collection sites in the Saudi Arabian Red Sea. The star indicates the type locality of *Fizesereneia panda* sp. nov., dots indicate the other Red Sea localities where *F. panda* sp. nov. was collected. One sample was collected in the Gulf of Oman (not on map).

Type material. Holotype: RMNH.Crus.D.54425, 1 ovig. female (4.2 × 3.6) on *Lobophyllia cf. hemprichii*, 7.iii.2013, ca. 10 m, leg. SET van der Meij; allotype: RMNH.Crus.D.54424, 1 male (4.2 × 3.2) on *Lobophyllia cf. hemprichii*, 7.iii.2013, ca. 10 m, leg. SET van der Meij. Paratypes: King Abdullah University of Science and Technology: SAI-001, Al-Fahal S, off Thuwal (22.2465 N 38.9592 E), 2 m, 9.xi.2014, 1 ovig. female on *Lobophyllia corymbosa* (coll. nr. SA1916), leg. SET van der Meij; UF Arthropoda 40384 (ex RMNH.Crus.D.54465), Marca I, Farasan Banks (18.2206 N 41.3244 E), ca. 10 m, 6.iii.2013, 1 non-ovig. female (4.3 × 3.4) on *Lobophyllia hemprichii*, leg. SET van der Meij.

Other material. Saudi Arabia. RMNH.Crus.D.54449, Pelican (Ablo) I., Farasan Banks (18.6595 N 40.8270 E), 5 m, 5.iii.2013, 1 non-ovig. female on *Lobophyllia corymbosa*, leg. SET van der Meij; RMNH.Crus.D.54386, Shīb Ammar, Farasan Banks (19.5707 N 40.0088 E), 7 m, 3.iii.2013, 1 ovig. female on *Lobophyllia corymbosa*,...

Description female holotype. Carapace (Fig. 2A) subrectangular, longer than broad, CL 1.2 times longer than CW; greatest width of carapace where posterior margin of depression meets lateral carapace margin; dorsal surface convex in lateral view, deflected anteriorly (Fig. 2B). The anterior depressions divided completely into two concavities by median longitudinal ridge, armed with numerous spines crudely arranged in two rows; scattered spines on the margins of the depressions; carapace depressions smooth. Frontal margin armed with anteriorly directed spines. Frontal margin on ventral side features two substantial spines (Fig. 2C). Posterior half of dorsum smooth; cardio-intestinal region slightly outlined by shallow furrow; pterygostomial region is separated from the carapace by a membrane.

![Figure 2](image-url) **FIGURE 2.** A–D, Holotype *Fizeserencia panda* sp. nov. (RMNH.Crus.D.54425). A, habitus, dorsal view; B, carapace, lateral view; C, anterolateral margin of carapace, ventral view; D, MXP3. Scale bars 1 mm.

Ocular penduncles with two spines on distal margin, cornea elliptical, longer than broad; antennule same length as ocular penduncles; antennal segment two longer than broad, slightly extending beyond eyestalk, distal margin with several lateral spines.

MXP3 (Fig. 2D) exopod subrectangular, reaching approx. 1/3 length of ischium; ischium subtriangular, smooth, mesial and distal margin straight, anteromesial lobe with few setae; anterolateral margin of merus with few setae; distal portion of carpus with long setae; dactylus with bundle of long setae.
A NEW SPECIES OF *FIZESERENEA*

P1 (chelipeds, Fig. 3A) slender, smooth; ischium length ¾ height; merus length three times height, with few scattered short setae; carpus length twice height; propodus about same length as merus, fingers slender, mesial surfaces of fingers smooth, cutting edge entire, tips of fingers slightly crossing.

P2 (Fig. 3B) longer, coarser than P1; ischium without setae; merus stout, slightly bent, few and small conical tubercles on distal half of dorsal surface, simple short setae on lateral and dorsal surface; joint between merus, carpus not extending more than at right angle; carpus 2/3 length of merus, surface smooth except for conical tubercles crudely arranged in two rows, no setae; propodus as long as carpus, surface smooth except for conical tubercles crudely arranged in two rows, fine setae on lateral and dorsal surface, dactylus half-length of propodus, smooth, sharp, slightly curved ventrally.

P3 (Fig. 3C) ischium with few setae; merus length twice height, rounded, tubercles and simple setae on dorsal surface, few small tubercles on distal half of lateral surface, simple setae along distal half of lateral surface; joint between merus, carpus not extending more than at right angle; carpus and propodus of equal length, rounded tubercles on dorsal surface, simple setae on lateral and dorsal surface; dactylus half-length of propodus, smooth, sharp, curved ventrally.

P4 (Fig. 3D) ischium with few setae; merus length twice height, small rounded tubercles close to joint with carpus, simple setae on dorsal and lateral surface; joint between merus, carpus not extending more than at right angle; carpus and propodus of equal length, rounded tubercles on dorsal surface, simple setae on lateral and dorsal surface; dactylus half-length of propodus, smooth, sharp, curved ventrally.

P5 (Fig. 3E) ischium with few setae; merus, carpus, propodus of equal length, all with simple setae; joint between merus, carpus not extending more than at right angle; carpus and propodus with rounded tubercles on dorsal surface; dactylus half-length of propodus, smooth, sharp, straight.

P3, P4 decreasing in size from P2. P5 right sampled for DNA analysis.

Pleon (= abdomen) enlarged, lateral margin fringed with setae.

Anterior margin thoracic sternites 1–3 almost straight (Fig. 6B).

Gonopore (vulva); reniform, size almost half the height of sternite 6 (examined in paratype UF Arthropoda 40384).
FIGURE 4. A–E, Allotype Fizeserenia panda sp. nov. (RMNH.Crus.D.54424). A, habitus, dorsal view; B, anterolateral margin of carapace, ventral view; C, carapace, lateral view; D, MXP3; E, abdomen. Scale bars 1 mm.

Description male allotype. Generally similar to holotype, differences as outlined below. Carapace (Fig. 4A) subrectangular, CL 1.3 times longer than CW (Fig. 4C). The anterior depressions divided completely into two concavities by median longitudinal; numerous spines on the margins of the depressions. Posterior half of dorsum smooth.

Ocular penduncles with small spines on distal margin, cornea elliptical, longer than broad; antennal segment extending beyond eyestalk (Fig. 4B).

MXP3 (Fig. 4D) exopod subrectangular, reaching approx. ½ length of ischium; ischium, smooth, mesial and distal margin slightly curved; anterolateral margin of merus with indentation; propodus with scattered setae; dactylus with bundle of short setae.

P1 (chelipeds, Fig. 5A) slender, smooth; merus length two times height; carpus with short spines on dorsal surface; propodus about same length as merus, fingers slender, mesial surfaces of dactyl with slight tooth.

P2 (Fig. 5B) longer, coarser than P1; ischium without setae; merus slender, simple short setae on lateral and dorsal surface; carpus ½ length of merus, slightly bent, few spiny tubercles on dorsal surface, few setae; propodus length twice height, surface smooth except for spiny tubercles on dorsal surface, fine setae on lateral and dorsal surface, dactylus smooth, sharp, slightly curved ventrally.

P3 (Fig. 5C) merus length three times height, simple setae on lateral and dorsal surface; carpus bent with few setae; propodus tapering towards dactyl, simple setae on lateral and dorsal surface; dactylus smooth, sharp, curved ventrally, few setae.
A NEW SPECIES OF *FIZESERENIA*

Figure 5. A–E, Allotype *Fizesereneia panda* sp. nov. (RMNH.Crus.D.54424). A, right P1 (cheliped); B, right P2; C right P3; D, right P4; E, right P5. Scale bar 1 mm.

P4 (Fig. 5D) merus slightly rounded, simple setae on dorsal and lateral surface; carpus and propodus with simple setae on lateral and dorsal surface; dactylus smooth, sharp, curved ventrally.

P5 (Fig. 5E) ischium with few setae; merus length twice height, simple setae on dorsal and lateral surface; carpus 2/3 of propodus length, simple setae on lateral and dorsal surface; dactylus, smooth, sharp, curved.

P3–5 roughly of equal size. P1–2 left missing, P4–5 left sampled for DNA analyses.

Anterior margin of thoracic sternites 1–3 slightly concave (Fig. 6D). Abdomen bowling pin-shaped, longest and widest at 4th segment; telson rounded with few setae (Fig. 4E).

Gonopod; G1: slightly curved, tapering, apex pointed. Lateral margin with short, non-plumose simple setae, medial margin without setae.

Colour. Holotype (Fig. 6A–B): posterior 2/3 of the anterior depressions on the carapace have a black blotch with a reddish hue, whereas the remaining 1/3 is off-white. Several light blue spots are visible at the junction of the dark and off-white patterns. Remaining part of carapace translucent whitish-beige with a few scattered faint red spots on the posterior side of the carapace and brood pouch. All pereiopods translucent, P1 with many scattered brown spots and a few white spots, P2 more white than P3–5. Colour of MXP3 like P1. Antennules translucent with scattered white spots. Eyes reddish-brown with some white. Allotype (Fig. 6C–D)—differs from the holotype in the following—posterior 2/3 of the anterior depressions on the carapace have a deep red, almost black blotch, while the remaining 1/3 of the concavity is a soft yellow. Where the dark pattern meets the soft yellow a wine-red margin is visible. Remaining part of carapace translucent bluish-grey, with some scattered red spots, especially on the posterior side of the carapace and around the concavities. P1 with scattered white and brown spots, P2–5 with faint soft yellow bandings. Eyes red with some white.

Variation. *Fizesereneia panda* sp. nov. females show little morphological variation. There is some variation in colour pattern in live specimens. The size of the dark blotches in the carapace depressions varies but covers at least 2/3 of the concavities. Reddish hue of these blotches is more intense in some specimens. Several females lack the light blue spots of the holotype, whereas in other females the light part of the concavities appears more soft yellow. The male specimen of *F. panda* sp. nov. from Oman has mixed olive green and light blue spots on the overall reddish-black colour of the depressions.

Remarks. In *Fizesereneia heimi* and *F. stimpsoni* the anterior carapace depression is divided into two concavities by a median longitudinal ridge armed with spines, whereas it is incompletely divided in *F. latissella*, *F. ishikawai* and *F. tholia* *(Fize & Serène 1957, Takeda & Tamura 1980, Kropp 1994).* The division of the depression in *F. daidai* is variable, but it is incomplete in most individuals *(Zayasu et al. 2013).* The degree of division of the concavity is stronger in *F. panda* sp. nov. (females and males) than in any other *Fizesereneia* species, including *F.
heimi and F. stimpsoni. In addition, the median longitudinal ridge in F. panda sp. nov. is “raised”, whereas in the other two species the ridge is less pronounced. Based on the degree of division of the concavities, Fizesereneia panda sp. nov. is most similar to F. heimi and F. stimpsoni. The new species can be distinguished from these two species by its carapace shape and the colour pattern of the concavities. The carapace shape of F. heimi is roughly hexagonal (widest near the middle of the lateral margin), of F. stimpsoni subquadrangular (widest across the anterior margin, narrower posteriorly), whereas the carapace of F. panda sp. nov. is subrectangular (greatest width at the intersection of the posterior margin of the anterior depression with the lateral margin). The concavities of female F. heimi are predominantly brown-grey, and the concavities of male F. heimi are emerald green with some darker spots or lines. Female and male F. panda sp. nov. have dark reddish black blotches in the concavities. Fizesereneia panda sp. nov. can be distinguished from F. stimpsoni by the marbled pattern of the concavities in the latter (visible even in specimens in ethanol). Additionally, F. stimpsoni has only been recorded from the coral genus Acanthastrea (Fize & Serène 1957; Zayasu et al. 2013), whereas F. panda sp. nov. is associated with Lobophyllia and Symphyllia.

FIGURE 6. A–D, Fizesereneia panda sp. nov., colouration in life. A, B, holotype RMNH.Crus.D.54425 (carapace 4.2 × 3.6), dorsal (A) and ventral (B) view. C, D, allotype RMNH.Crus.D.54424 (carapace 4.2 × 3.2), dorsal (A) and ventral (B) view. Photos by A. Anker and P.L. Norby.
A NEW SPECIES OF *FIZESERENEA*

Coral hosts (Fig 6A–B). So far, *Fizesereneia* has only been found in association with Indo-Pacific coral species belonging to the Lobophylliidae Dai & Horng, 2009 (previously classified as Mussidae Ortmann, 1890, a family now restricted to the Atlantic (Budd *et al*. 2012)). The coral hosts for this new gall crab species are identified as *Lobophyllia cf. corymbosa* (Forsskål, 1775) and *L. cf. hemprichii* (Ehrenberg, 1834) based on Scheer & Pillai (1983) and Sheppard & Sheppard (1991), and as *Symphyllia recta* (Dana, 1846) based on Claereboudt (2006). Scheer & Pillai (1983) in their Red Sea study distinguished *Lobophyllia corymbosa* by its mostly monocentric corallites, from the mostly phacelomeandroid *L. hemprichii* but considered them potentially

synonymous. They did not document the lobophyllid genus *Symphyllia* in the Red Sea. Sheppard & Sheppard (1991) discussed *Symphyllia erythraea* (Klunzinger, 1879), *S. radians* (Milne Edwards & Haime, 1849), and *Lobophyllia corymbosa* and *L. hempichii* in the Red Sea. *Symphyllia erythraea* and *S. radians* are fully meandroid and not easy to confuse with *Lobophyllia*. Arrigoni *et al.* (2012) found *L. hempichii*, *L. corymbosa* and *S. radians* to be genetically very closely related, while *S. erythraea* is distinct and basal to the *Symphyllia*-*Lobophyllia* clade.

Host specificity of *Fizesereneia* species appears to be less strict than that of species of some other gill crab genera, but this is possibly influenced by difficulties in host coral identification. So far, only *Fizesereneia daidai* and *F. stimpsoni* show strict host associations, respectively with the genera *Micromussa* and *Acanthastrea* (Fize & Serène 1957; Zayasu *et al.* 2013).

Distribution. Currently known from the Farasan Banks and Islands and the reefs off Thuwal in the Saudi Arabian part of the Red Sea (Fig. 1) and from off Bandar Al-Khayran in the Gulf of Oman. This is the first record of *Fizesereneia* from this area, a genus heretofore recorded from Vietnam, Indonesia, Japan, Australia, and Micronesia (Kropp 1990a).

Etymology. This species is named *panda* owing to the dark colour pattern of its anterior carapace concavities, which resemble the dark spots around the eyes of the giant panda *Ailuropoda melanoleuca* (David, 1869) (Mammalia, Ursidae).

Acknowledgements

The photographs of *Fizesereneia panda* sp. nov. were taken by Arthur Anker and Patrick L. Norby, Erik-Jan Bosch made the scientific illustrations and Camrin Braun helped to create the Red Sea map. The COI sequences were produced as part of the Naturalis Barcoding project, with the help of Kevin Beentjes. Fieldwork in the Red Sea was supported by the King Abdullah University of Science and Technology under the Biodiversity in the Saudi Arabian Red Sea program, award number CRG-1-BER-002 to MLB. We thank Michel Claereboudt for organising and facilitating field work in Oman. We thank Francesca Benzoni for her comments on lobophylliid systematics and Roy Kropp for his constructive comments on the manuscript.

References

http://dx.doi.org/10.11646/zootaxa.3609.5.1

http://dx.doi.org/10.1007/s12526-012-0135-2

http://dx.doi.org/10.1080/14772000.2014.946979

http://dx.doi.org/10.1016/S0022-0981(97)00002-6

http://dx.doi.org/10.11646/zootaxa.3681.3.5