Quantification and Kinetic Analysis of Brain PET Studies
Mansor, Syahir

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Mansor, S. (2017). Quantification and Kinetic Analysis of Brain PET Studies. [s.l.]: [s.n.].

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contents</td>
<td>i</td>
</tr>
<tr>
<td>1</td>
<td>General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Positron emission tomography (PET)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>PET data acquisition principle</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>PET image reconstruction</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Random and random correction in PET</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Scatter correction in PET</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Attenuation correction in PET</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>PET quantification</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Segmentation of PET images</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2</td>
<td>SUV based quantification</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Kinetic modelling and parametric method</td>
<td>6</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Parametric method</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Aim of the thesis</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Thesis outline</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of HRRT and HR+ Scanners</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Materials and methods</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Study Design</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Data acquisition</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Data processing</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Pharmacokinetic analysis</td>
<td>16</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Comparison of kinetic data</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Results</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Effects of smoothing</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2</td>
<td>(R)-$^{[11]}$C verapamil data</td>
<td>19</td>
</tr>
</tbody>
</table>
3 New Scatter Correction Strategies on HRRT Studies

3.1 Introduction .. 35
3.2 Materials and Methods ... 36
 3.2.1 Subjects and Data Acquisition 36
 3.2.2 Image Reconstruction and Data Processing 37
 3.2.3 Scatter Correction .. 37
 3.2.4 Assessment of Patient Motion 38
 3.2.5 Pharmacokinetic Analysis 38
 3.2.6 Quantitative Accuracy Assessment 40
3.3 Results ... 40
 3.3.1 Assessment of Patient Motion 40
 3.3.2 Impact of an ACF-Margin Prior to Scatter Scaling Estimation on V_T 40
 3.3.3 Impact of 2D SSS Versus 3D SSS on V_T 41
3.4 Discussion .. 43
 3.4.1 Effects of an ACF-Margin on Quantitative Accuracy 43
 3.4.2 Effects of 2D Versus 3D SSS on Quantitative Accuracy 44
 3.4.3 Future Perspectives .. 45
3.5 Conclusions ... 47

Bibliography ... 48

4 Experimental assessment of PET/CT repeatability

4.1 Introduction .. 54
4.2 Materials and Methods ... 55
 4.2.1 Phantom experiments .. 55
 4.2.2 Evaluation of parametric image statistics 56
 4.2.3 Regional assessments .. 56
4.3 Results ... 58
 4.3.1 Noise characteristic for the 68Ge Phantom 58
 4.3.2 NEMA IQ phantom .. 58
 4.3.3 3D Hoffman brain phantom evaluation 61
4.4 Discussion ... 63
 4.4.1 68Ge phantom experiment 63
 4.4.2 NEMA IQ-phantom 63
 4.4.3 Hoffman brain phantom 65
 4.4.4 Future perspectives 66
4.5 Conclusion ... 67

Bibliography ... 68

5 $^{[11]}$C phenytoin quantification ... 71
 5.1 Introduction ... 73
 5.2 Materials and Methods 73
 5.2.1 Subjects ... 73
 5.2.2 Imaging Procedure 74
 5.2.3 Blood Analysis 74
 5.2.4 Image Analysis 75
 5.2.5 Kinetic Analysis 75
 5.2.6 TRT Variability 76
 5.3 Results .. 76
 5.3.1 PET Image and Blood Data Analysis 76
 5.3.2 Compartmental Modeling 77
 5.3.3 TRT Repeatability 78
 5.3.4 Impact of Scan Duration 80
 5.4 Discussion ... 80
 5.5 Conclusion ... 84
 5.6 Supplementary materials 85

Bibliography ... 88

6 $^{[11]}$C phenytoin quantification using parametric methods 92
 6.1 Introduction ... 94
 6.2 Materials and Methods 94
 6.2.1 Scanning protocol 94
 6.2.2 Blood and Image Analysis 95
 6.2.3 Parametric Analysis 95
 6.3 Results .. 96
 6.3.1 Evaluation of bias between NLR and parametric methods 96
 6.3.2 Test–Retest repeatability 96
 6.3.3 Impact of Scan Duration 97