Complete Genome Sequence of Bacillus amyloliquefaciens Strain BH072, Isolated from Honey
Zhao, Xin; de Jong, Anne; Zhou, Zhijiang; Kuipers, Oscar P

Published in:
Genome Announcements

DOI:
10.1128/genomeA.00098-15

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 14-05-2019
Among biocontrol microorganisms, *Bacillus amyloliquefaciens* strains have the ability to enhance the yield of crop plants and to suppress microbial plant pathogens (1). Recently, *B. amyloliquefaciens* subsp. *amyloliquefaciens* strain DSM7 (2) and plant-associated *Bacillus amyloliquefaciens* subsp. *plantarum* group strains FZB42, YAU B9601-Y2, and CAU B946 (3–6) have been completely sequenced. All these strains contain 7 or more gene clusters for either ribosomally encoded bacteriocins or nonribosomal antimicrobial polypeptides or lipopeptides. Here, we report the genome sequence of the *B. amyloliquefaciens* strain BH072 that also contains gene clusters similar to those of the 4 strains mentioned above, but in a different combination.

Strain BH072, a novel bacterium isolated from a honey sample, was identified as being *B. amyloliquefaciens* by 16S rRNA gene and gyrA gene sequencing (7) and physiological and biochemical analysis. It had a broad spectrum of antifungal activity against various molds, such as *Aspergillus niger*, *Pythium*, *Fusarium oxysporum*, and *Botrytis cinerea*. The *itaA*, *hag*, and *tasA* genes, encoding iturin A, flagellin, and TasA, were detected by PCR analysis, and flagellin and iturin A were purified and identified by Zhao et al. (8).

Genomic DNA prepared from strain BH072 was sequenced using Pacific Biosciences RS sequencing technology (Pacific Biosciences, Menlo Park, CA), yielding >100 × average genome coverage. The sample was prepared as a 10-kb insert library and sequenced on a silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) v.2.3 cell. The Hierarchical Genome Assembly Process (HGAP3) workflow (PacBio DevNet; Pacific Biosciences) was used to perform a de novo assembly. The genome was annotated at the National Center for Biotechnology Information (NCBI) using the Annotation pipeline 2.9 (rev. 452132).

The complete genome sequence of BH072 was composed of one circular contig of a 4,069,641-bp chromosome with a G+C value of 46.4%. The genome was larger than that of strains FZB42, CAU B946, and DSM7 but smaller than strain YAU B9601-Y2. The chromosome consists of 3,943 genes, 3,785 CDSs, 44 pseudogenes, 27 tRNAs (5S, 16S, 23S), and 86 rRNAs. Phylogenetically the strain YAU B9601-Y2 is the closest neighbor of *B. amyloliquefaciens* strain BH072. Remarkably, based on BAGEL3 mining (9), the whole mesarcadin operon was detected in BH072, making it the third mesarcadin producer strain until now, the other two being YAU B9601-Y2 and HIL Y-85 (6, 10).

Nucleotide sequence accession number. The genome sequence of *B. amyloliquefaciens* BH072 has been deposited in Genbank, under the accession number CP009938.

ACKNOWLEDGMENTS

We are grateful to Marc Stevens for performing the genome sequencing. This work was supported by the Department of Molecular Genetics, University of Groningen.

REFERENCES

Copyright © 2015 Zhao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Oscar P. Kuipers, o.p.kuipers@rug.nl.

