Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

Berendsen, Erwin M; Wells-Bennik, Marjon H J; Krawczyk, Antonina O; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T; Kuipers, Oscar

Published in:
Genome Announcements

DOI:
10.1128/genomeA.00105-16

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
T

hermophilic spore-forming bacteria typically grow at temperatures above 45°C and produce spores that are highly resistant to environmental insults, including high temperatures. Thermophilic spore-formers are encountered in a range of different environments (1) and their spores may be able to survive intense heat treatments, including commercial food sterilization processes used for canning and ultra-high temperature processes applied in the manufacturing of liquid foods. Spores that survive such heat treatments may subsequently germinate, and subsequent growth may result in food spoilage (2–4). Here, we sequenced the genomes of five strains of *Geobacillus* spp. (*G. toebii*, *G. stearothermophilus*, and *Geobacillus* sp.), one strain of *Anoxybacillus flavithermus*, and one strain of *Caldibacillus debilis*. The genome sequences of these strains can provide information on the thermophilic lifestyle of these strains and on the ability of the strains to form spores with high-level heat resistance (5).

The seven strains were grown overnight in 10 ml brain heart infusion broth (Difco) at 55°C. Cultures were 100-fold diluted, cultivated at 55°C, and harvested by centrifugation (5,000 relative centrifugal force) at the exponential growth phase. Total DNA was isolated as described previously (5). The isolated DNA was sheared to 500-bp fragments in the Covaris (KBioscience) ultrasound device; a next-generation sequencing library was prepared using the paired-end NEB NExtGen library preparation kit. The libraries were 101-bp paired-end sequenced on an Illumina HiSeq2000 by multiplexing 12 samples per flow cell. Draft genome sequences of all strains were assembled *de novo* using Velvet (6). The genomes were annotated using the RAST server (7). Scaffolds were mapped on the closest genome according to RAST, using CONTIGuator (8). Potential bacteriocin gene clusters were identified using BAGEL3 (9) in strains B4109, B4113, B4114, and B4119. Finally, InterProScan (10) was used to extend protein annotations.

Nucleotide sequence accession numbers. The genome sequences of the seven thermophilic spore-forming strains have been deposited as whole-genome shotgun projects at DDBJ/EMBL/GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

We thank the NGS sequence facility of the University Medical Center of Groningen (UMCG) for performing the sequencing of the strains. We thank TIFN for contributing to the funding of the project.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Species</th>
<th>Source of isolation</th>
<th>BioProject no.</th>
<th>Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4109</td>
<td>Geobacillus steaothermophilus</td>
<td>Pea soup</td>
<td>PRJNA270597</td>
<td>LQYV00000000</td>
</tr>
<tr>
<td>B4110</td>
<td>Geobacillus toebii</td>
<td>Pea soup</td>
<td>PRJNA270597</td>
<td>LQYV00000000</td>
</tr>
<tr>
<td>B4113</td>
<td>Geobacillus sp.</td>
<td>Mushroom soup</td>
<td>PRJNA270597</td>
<td>LQYX00000000</td>
</tr>
<tr>
<td>B4114</td>
<td>Geobacillus steaothermophilus</td>
<td>Buttermilk powder</td>
<td>PRJNA270597</td>
<td>LQYX00000000</td>
</tr>
<tr>
<td>B4119</td>
<td>Geobacillus caldoxylosilyticus</td>
<td>Dairy</td>
<td>PRJNA270597</td>
<td>LQYS00000000</td>
</tr>
<tr>
<td>B4135</td>
<td>Caldibacillus debilis</td>
<td>Dairy</td>
<td>PRJNA270597</td>
<td>LQYT00000000</td>
</tr>
<tr>
<td>B4168</td>
<td>Anoxybacillus flavithermus</td>
<td>Dairy</td>
<td>PRJNA270597</td>
<td>LQYU00000000</td>
</tr>
</tbody>
</table>
REFERENCES

