Interpretability in atopic dermatitis
Oosterhaven, J A F

Published in:
The British journal of dermatology

DOI:
10.1111/bjd.16410

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-08-2019
However, the authors used a strict definition for the ‘validated algorithm-based’ diagnosis of HS, and the sociodemographic characteristics and comorbidities of the ‘validated algorithm-based’ HS population were consistent with previous studies, minimizing classification bias.

Finally, the authors should be congratulated for the robustness of their study in terms of its design, opening a new methodological avenue in the pharmacoepidemiology field, where diagnostic criteria are lacking. This study confirmed that the prevalence of HS is not more than 0.7–1%.

Conflicts of interest

None to declare.

References

instruments have time frames of between 7 and 14 days. The authors justly conclude that each of the studied instruments assesses different aspects of the multidimensional impact that AD has on patients, with only partial overlap. This means that each instrument has a potential added value, and measurements with more than one instrument are necessary. Considering this, in future interpretability studies it would be interesting to see the use of anchor questions specifically tailored to the dimension/domain of the studied instrument; for example, anchor questions for the ItchyQoL and 5-D itch should ask about the bother patients experience because of their itch.

An interesting finding is that the strata for NRS-itch had a stronger correlation with the anchor than strata of the POEM. Although POEM was chosen by the Harmonizing Outcome Measurements in Eczema (HOME) group as the preferred core instrument to assess patient-reported symptoms,6 Vakharia et al. suggest considering NRS-itch as an additional assessment.

In conclusion, when interpreting scores from patients, regardless of the disease, one should always be aware of how strata for interpretability were determined. The choice of anchor is often vital for interpretability.

Acknowledgments

The author would like to acknowledge M.L.A. Schuttelaar and R.F. Ofenloch for their critical revision of this commentary.

Conflicts of interest

None to declare.

Department of Dermatology, University Medical Center Groningen, PO Box 30 001, 9700 BB Groningen, the Netherlands
E-mail: j.a.f.oosterhaven@umcg.nl

References


Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website:
Audio S1 Author audio.

Association of APOE polymorphisms with multibacillary leprosy

DOI: 10.1111/bjd.16361


In an article in this issue of the British Journal of Dermatology, using integrated expression quantitative trait loci, mRNA expression and protein interaction analysis, Wang et al.1 report on some potential genetic associations between the human apolipoprotein E (ApoE) gene and leprosy in Han Chinese patients from Southwest China.

Despite new information mainly at the molecular level, the pathogenesis of leprosy remains poorly understood. Epidemiological studies have shown the importance of host genetic factors in susceptibility to the development of leprosy and the clinical form of the disease. Several chromosomal regions associated with leprosy have been identified in genome-wide linkage analysis.2

The APOE gene is located in chromosome 19q13 and encodes a member of the family of soluble apolipoproteins with polymorphic alleles carrying homozygous and heterozygous genotypes. The molecular basis of APOE single-nucleotide polymorphisms (SNPs) is cysteine–arginine interchanges.3

APOE SNPs are the main genetic determinant of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases the risk.3 Conversely, in patients with leprosy without dementia, the frequency of the ε4 allele was significantly higher, suggesting that this allele is not a risk factor for dementia in elderly patients with leprosy.4 Furthermore, histological analyses of brain tissue of elderly patients with leprosy without dementia showed a significantly lower frequency of deposition of β-amyloid, the cue molecule involved in AD, than age-matched controls without dementia.5 The results suggest that patients with leprosy might have a low risk of AD.

Although the finding is controversial,6 antileprosy drugs appear to reduce dementia, as shown in elderly patients with leprosy treated with dapsone.7 Furthermore, rifampicin inhibited the initial step of β-amyloid formation, showing activity against the accumulation and toxicity of intracellular β-amyloid.8

Lepromatous leprosy (LL) exhibits extensive involvement of the skin and peripheral nerves. A typical feature of LL is the survival and replication of Mycobacterium leprae stored within the