Detection of H2S, SO2 and NO2 in CO2 at pressures ranging from 1-40 bar by using broadband absorption spectroscopy in the UV/VIS range

Gersen, Sander; van Essen, Vincent; Visser, Pieter; Ahmad, Mohammad; Mokhov, Anatoli; Sepman, Alexey; Alberts, Ramon; Douma, Arno; Levinsky, Howard

Published in:
Energy Procedia

DOI:
10.1016/j.egypro.2014.11.279

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Detection of H$_2$S, SO$_2$ and NO$_2$ in CO$_2$ at pressures ranging from 1-40 bar by using broadband absorption spectroscopy in the UV/VIS range

Sander Gersena*, Martijn van Essena, Pieter Vissera, Mohammad Ahmad, Anatoli Mokhovb, Alexey Sepmand, Ramon Albertsc, Arno Doumac and Howard Levinskyab

aDNV-GL Oil & Gas, P.O. Box 2029, 9704 CA Groningen, The Netherlands
bEnergy and Sustainability Research Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Hanze University Groningen, Applied Sciences, Zernikeplein 11, 9747 AS Groningen, The Netherlands
dEnergy Technology Centre in Piteå, Box 726, SE-941 28 Piteå, Sweden

Abstract

This paper presents a methodology to quantitatively measure H$_2$S, SO$_2$ and NO$_2$ fractions in gaseous CO$_2$ by using broadband absorption spectroscopy at 1 and 40 bar. The mole fractions of binary- and 3-component mixtures of H$_2$S, SO$_2$ and NO$_2$ in CO$_2$ with known fractions ranging from 35-250 ppm are successfully derived from the measured absorption spectra. The difference between the fitted and experimental mole fractions is less than 10% for all studied mixtures. The results successfully demonstrate that low fractions of H$_2$S, SO$_2$ and NO$_2$ in gaseous CO$_2$ can be accurately measured at pipeline conditions by using broadband absorption spectroscopy.

© 2013 The Authors. Published by Elsevier Ltd. Selection and peer-review under responsibility of GHGT.

Keywords: detection, H$_2$S, NO$_2$, SO$_2$, direct absorption, CO$_2$, UV

* Sander Gersen. Tel.: 0031507009775.
E-mail address: sander.gersen@dnvgl.com
1. Introduction

Increasingly stringent regulations regarding CO₂ emissions has called attention to capture the CO₂ from large point sources such as coal and gas fired power plants. The captured CO₂ will be transported and stored underground in, for example, empty gas fields or salt layers. Depending on the point source and the technology used, the captured CO₂ will contain other components such as, water, sulphur components (i.e. SO₂ and H₂S) and NOₓ [1, 2] that may cause unwanted effects during transport and/or storage [3, 4]. Recent studies have indicated that these components can cause severe corrosion problems in the presence of water and affect the brine in underground storage [5, 6]. Moreover H₂S, SO₂ and NO₂ can cause health problems and therefore only limited amounts (ppm level) are allowed in CO₂ during transport. Therefore, it is of great importance to monitor real-time the absolute concentration of these components during CO₂ transport, which requires a robust and easy to operate measurement techniques that has a short response time.

In the past several techniques have been developed to measure H₂S, SO₂ and NO₂ at atmospheric pressures, such as electrochemical sensors [7-12]. One of the disadvantages of this technique is the relatively long response time and the need for frequent calibration. As an alternative, optical techniques such as Laser Induced Fluorescence (LIF) have high accuracy and a relatively fast response time [13]. Although H₂S, SO₂ and NO₂ absorb strongly in the infrared (IR) spectral range [14], selective detection using an absorption technique such as Tunable Diode Laser Absorption Spectroscopy (TDLAS) [15] or Fourier Transform Infrared spectroscopy (FTIR) [16, 17] in this spectral range is difficult due to the interference from CO₂ and other impurities present in captured CO₂ in particular H₂O and CH₄.

Several studies reported measurements of H₂S, SO₂ and/or NO₂ using broadband absorption spectroscopy techniques in the ultraviolet region performed at atmospheric pressure [18-22]. In Ref. [18] the authors demonstrate that this relatively cheap and simple technique can be used to monitor real-time the SO₂ concentration in a boiler at a high sensitivity and fast response time. According to Ref. [21] the lower limit of detection for both SO₂ and NO₂ present in exhaust gases was 1 ppm by using broadband absorption in the UV-VIS† range having a fast response time (3.4s). To our knowledge no measurements of individual components or mixtures of H₂S, SO₂ and NO₂ have been performed at conditions relevant to CO₂ transport (up to 40 bar).

In this study we present a method for deriving the concentrations of H₂S, SO₂ and NO₂ present in CO₂ from absorption spectra measured at pressures ranging from 1-40 bar. The absorption measurements have been performed in the UV/VIS range; 220-500 nm. This range is selected because it is free of interference from other molecules present in captured CO₂. The method is based on the calculation of the theoretical absorption spectra by using absorption cross sections for H₂S, NO₂ and SO₂ reported in literature [23-25]. The concentrations of H₂S, NO₂ and SO₂ were determined by fitting the measured absorption spectrum. The method described in this paper allows determining low fractions (ppm level) of H₂S, NO₂ and/or SO₂ in CO₂ by using an easy and robust measurement technique with a fast response time.

2. Data reduction

In an absorption measurement, a signal, \(I_m(v_0) \) measured by a detector that is attached to a spectrometer and tuned to the wavenumber \(v_0 \), can be written as:

\[
I_m(v_0) = C \int_{-\infty}^{\infty} \varepsilon(v) I(v) G(v-v_0) dv + I_{D.C.}(v_0)
\]

where \(I(v) \) is the initial intensity of light at wavenumber \(v \) received by the spectrometer, \(I_{D.C.}(v_0) \) is the dark current at wavenumber \(v_0 \), \(C \) is the sensitivity of the photo detector, \(\varepsilon(v) \) is the quantum efficiency of the photo detector, and \(G \) is the normalized instrument line function of the spectrometer which is defined as:

† UltraViolet-VISible
\[\int_{-\infty}^{+\infty} G(v - v_0) dv = 1 \]

(2)

Using the Beer-Lambert law the intensity \(I(v) \) can be expressed as:

\[I(v) = I_0(v) e^{-\Sigma_i N_i \sigma_i(v) l + \alpha_{BG} l} \]

(3)

Wherein \(I_0(v) \) is the initial intensity of light at wavenumber \(v \) received by the spectrometer when the cell is filled with buffer gas, in this case CO\(_2\), \(\sigma_i(v) \) is the absorption cross section of the species at wavenumber \(v \), \(l \) is the absorption path length, \(N_i \) is the number density of the species, and \(\alpha_{BG} \) is the absorption coefficient for species other than the species under investigation, which contribute to the background (BG) signal. The molecular number density \(N_i \) is related to the species mole fraction \(X_i \) using the ideal gas law,

\[N_i = \frac{X_i P}{k_B T} \]

(4)

where \(P \) is the pressure, \(T \) is the temperature, and \(k_B \) is the Boltzmann constant. Given that the bandwidth of the spectrometer is of several orders smaller than any change in \(I_0(v) \), \(\varepsilon(v) \) and \(\alpha(v)l \) in the wavelength range studied we assume that these parameters can regarded as constant when integrating over the instrumental bandwidth. By using the above mentioned assumption and substitution of equation (3) and (4) into equation (1), the following expression for the measured absorption signal \(I_m(v_0) \) is acquired:

\[I_m(v_0) = C \varepsilon(v_0) I_0(v_0) e^{-\alpha_{BG} l} \int_{-\infty}^{+\infty} e^{-\Sigma_i X_i \sigma_i \frac{P}{k_B T}} G(v - v_0) dv + I_{D,C}(v_0) \]

(5)

The signal detected by the spectrometer when the absorption path (cell) is filled with a buffer gas, \(I_m^0(v_0) \) can be expressed as:

\[I_m^0(v_0) = C \varepsilon(v_0) I_0(v_0) e^{-\alpha_{BG} l} + I_{D,C}^0(v_0) \]

(6)

Combining equation (5) and (6) we can obtain the following expression for the absorbance \(f(v) \):

\[f(v) = \ln \frac{I_m^0(v_0) - I_{D,C}^0(v_0)}{I_m(v_0) - I_{D,C}(v_0)} = -\ln \left(\int e^{-\Sigma_i X_i \sigma_i \frac{P}{k_B T}} G(v - v_0) dv \right) \]

(7)

According to expression (7) the mole fractions of the species under investigation \((X_i) \) can be determined from the measured signals \((I_m^0, I_{D,C}^0, I_m, I_{D,C}) \) provided that the instrumental function of the spectrometer, \(G(v - v_0) \), the experimental parameters \((P, T, l) \), and the molecular parameters of the of the studied species, \(\sigma_i(v) \) are known. For low concentrations of species, \(X_i < 1 \), the expression (7) can be further simplified,

\[f(v) = \ln \frac{I_m^0(v_0) - I_{D,C}^0(v_0)}{I_m(v_0) - I_{D,C}(v_0)} = X_i \frac{P}{k_B T} \int \sigma_i(v) G(v - v_0) dv = X_i \frac{P}{k_B T} \int \sigma_i(v) \ast G(v) dv \]

(8)

where symbol "*" denote the convolution procedure, as discussed below.

3. Experimental

Figure 1 presents the schematic of the experimental set-up for the broad band absorption measurements of NO\(_2\), SO\(_2\) and H\(_2\)S in the UV region. A deuterium lamp with a power of 30W (Hamamatsu), was used as a broadband UV light source. The radiation of the lamp was focused by a convex lens to produce a parallel beam. The parallel beam passes through an absorption cell (l=100 cm) with two quartz windows and is subsequently focused into an optical
fiber (Ocean Optics OLFV-200-1100) that is connected to a spectrometer (HR2000CG). The spectrometer has a spectral range 200-1100nm, a resolution of 1 nm (FWHM). The samples are taken by using various integration times in order to obtain the highest signal-to-noise ratio and to prevent saturation of the detection system. The measurements are controlled by a PC using the spectrometer software.

Measurements at atmospheric pressure were performed in mixture of gases flowing through the absorption cell. To control the degree of mixing of the studied gas mixtures (H$_2$S, NO$_2$, SO$_2$ in CO$_2$) the flow rates of all gases are measured by calibrated mass flow meters. The flow ranges of the meters were selected to provide an accuracy of better than 5%. All test calibration gases used in this study have purity greater than 99.5%. After each experiment the sample cell was flushed for about 15 minutes.

![Figure 1: Schematic set-up](image)

At pressures above 1 bar (up to 40 bar in this study) we used gas mixtures with known concentration of H$_2$S, SO$_2$ and/or NO$_2$, which were manometrically prepared in the absorption cell itself. This means that during the preparation of the gas mixtures the cell is first filled with ~1 bar CO$_2$. Subsequently, the components H$_2$S, NO$_2$ and/or SO$_2$ are added to the mixture by using calibration bottles with known concentrations H$_2$S, NO$_2$ and SO$_2$ in CO$_2$. Next the cell is pressurized by adding pure CO$_2$ until the desired pressure is realized. The composition of the gas mixtures is calculated from the measured partial pressures of the individual pressures by using a GE Druck DPI 150 Precision Pressure Indicator with a precision of 0.01% full scale.

4. Experimental procedure

Prior to filling the absorption cell with SO$_2$, NO$_2$ and/or H$_2$S in CO$_2$ as described above, we always first measure the intensity of the radiation after passing the absorption cell filled with pure CO$_2$ was measured, which gives us the $I_0(v)$ signal. Subsequently the cell is filled with a known concentration H$_2$S, NO$_2$ and/or SO$_2$ diluted with CO$_2$ and the intensity of the radiation that passed the cell is measured again, which gives us the transmitted signal $I(v)$. The dark current, I_{DC} (signal observed without illumination) was measured after each reference and transmission measurement (see figure 2) and subtracted from the measured intensities, see equation 8. We remark that the $I_m(v_0)$ and $I^m_0(v_0)$ measurements are performed at identical pressure- and (room) temperature conditions.
Figure 2: Transmission spectrum of 211 ppm SO$_2$ in CO$_2$ at 40 bar (blue), transmission spectrum of pure CO$_2$ at 40 bar (green) and dark current spectrum (red).

5. Fitting procedure for determining the H$_2$S, NO$_2$ and SO$_2$ concentration in CO$_2$

To determine the H$_2$S, NO$_2$ and SO$_2$ concentration in CO$_2$ a computer code was written that calculates the theoretical absorption spectrum by using equation (8). As an approximation of the instrumental function of the spectrometer the Lorentz function [26], described below is used in equation (8);

$$G(v - v_0) = \frac{2\Delta v_R}{\pi} \frac{1}{4(v-v_0)^2 + \Delta v_R^2}$$

where Δv_R is the Full With at Half Maximum (FWHM) determined by the resolution of the spectrometer. By fitting the recorded spectrum of a Helium-Neon laser the line shape of the instrumental line profile of the used spectrometer is experimentally determined ($\Delta v_R=1$ nm) which is used in the computer code. Furthermore the (high resolution) absorption cross sections for H$_2$S, NO$_2$ and SO$_2$ measured with N$_2$ or air as a buffer gas at atmospheric pressure reported in literature Refs. [23-25] are taken as input into the computer code together with the measured pressure P, temperature T and the absorption path l. Based on this input data and the experimentally measured absorption spectrum the computer code fits the mole fraction X_i using the Levenberg–Marquardt method [27, 28].

The absorption cross-section σ_i depends upon pressure P, see for example Ref. [29]. Unfortunately, information about the pressure dependence of the cross-section is unavailable. Formally, we can present the absorption cross section at arbitrary pressure $\sigma_p(v)$ as a convolution of the absorption cross-section $G_p(v)$ and some unknown function $\sigma_p(v)=\sigma_0(v)^*G_p$. Clearly, the function G_p is a delta-function at atmospheric pressure. With increasing pressure the width of this function should grow to smear spectral features. Thus our fitting function can be presented as,

$$f(v) = (\sigma_{l,0} * G_p) * G = \sigma_{l,0} * (G_p * G) = \sigma_{l,0} * G'$$
where we used association property of the convolution operation. It is reasonable to approximate G_P by the Lorentzian profile with the width Δv_P depending upon pressure. This approximation substantially simplifies the fitting procedure. Because both functions G_{iP} and G are Lorentzian, their convolution G' is also a Lorentzian function, albeit with unknown width $\Delta v = \Delta v_{r} + \Delta v_{p}$, which can be determined by fitting procedure. Therefore, for pressures above 1 atm concentrations of the species and the width of the Lorentzian function (Δv) are also fitted.

6. Results and discussion

6.1. Atmospheric pressure spectra

Figures 3-5 show the NO$_2$/CO$_2$, SO$_2$/CO$_2$ and H$_2$S/CO$_2$ absorption spectra measured at atmospheric pressure and room temperature. By fitting the measured absorption spectrum via the methodology described above the species concentrations of NO$_2$, SO$_2$ and H$_2$S were determined, see Table 1. Here we note that the fractions given in Table 1, and mentioned in this paper, are converted to values at laboratory conditions ($T=294K$, $P=1.0$ bar). As shown in Table 1, the agreement between the experimental and fitted concentrations is better than 10% for studied gas mixtures.

<table>
<thead>
<tr>
<th>No.</th>
<th>P, bar</th>
<th>Experimental fractions</th>
<th>Fitted fractions</th>
<th>Deviation1, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NO$_2$, ppm</td>
<td>SO$_2$, ppm</td>
<td>H$_2$S, ppm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>207</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>505</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>199</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>0</td>
<td>211</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>79.6</td>
</tr>
</tbody>
</table>

For the ternary mixtures the largest deviation found between the experimental and fitted component fraction is presented

In Figures 3-5 the resulting fitted NO$_2$, SO$_2$ and H$_2$S in CO$_2$ absorption spectra are shown as well. The NO$_2$ absorption spectrum (Figure 3) calculated by using the cross section given in Ref. [23] show excellent agreement with the measured absorption spectrum. Furthermore good agreement is found between the calculated NO$_2$ fraction (518 ppm) and the known NO$_2$ fraction (505 ppm) in the gas mixture.
Figure 3: Measured and fitted NO\textsubscript{2} spectrum, measurement No. 2 (Table 1)

Figure 4: Measured and fitted SO\textsubscript{2} spectrum, measurement No. 1 (Table 1)

Figure 4 shows the SO\textsubscript{2} absorption spectrum measured in 207 ppm SO\textsubscript{2} in CO\textsubscript{2}. The fitted absorption spectrum by using the cross section taken from Ref. [25] show good agreement at the left hand side of the figure (225-285 nm) while at the right hand side (285-305nm) the fitted absorption spectrum is slightly underpredicted. Nevertheless, the deviation between the fitted (211 ppm) and known SO\textsubscript{2} fraction (207ppm) is less than 5%.
Despite the noise observed in the measured spectrum a very good agreement is found between the measured and fitted and absorption spectrum for H$_2$S in CO$_2$ as presented in figure 5. The fitted absorption spectrum of H$_2$S is obtained by using the cross sections described in Ref. [24]. Furthermore the fitted H$_2$S fractions (201 ppm) are in excellent agreement with the known fraction in the calibration bottle (199 ppm).

Figure 5: Measured and fitted H$_2$S spectrum, measurement No. 3 (Table 1)

6.2. Absorption spectra of ternary mixtures (H$_2$S, SO$_2$ and NO$_2$) in CO$_2$

As an example, Figure 6 shows the theoretical absorption spectrum of NO$_2$, SO$_2$ and H$_2$S in CO$_2$. The marked area shows the experimental spectral range, which is limited by the spectrometer (~220 nm). From Figure 6 it can be clearly seen that the absorption spectra of NO$_2$, SO$_2$ and H$_2$S overlap each other within this spectral range, which complicates the determination of the mole fractions of the individual species for ternary mixtures.

As a test the computer code was used to determine the mole fractions of the individual species from the absorption spectra measured in ternary H$_2$S, NO$_2$ and SO$_2$ gas mixtures using known fractions (~35-250 ppm) in CO$_2$. As an illustration Figure 7 presents the measured (red line) and fitted (blue line) absorption spectra of mixture no. 12 as given in Table 1. A very good agreement between the measured and fitted absorption spectra is observed in Figure 7. For all three components the fitted NO$_2$, SO$_2$ and H$_2$S concentrations of the mixture are in excellent agreement with the experimental values. Table 1 presents the experimental and fitted mole fractions of all studied ternary (NO$_2$, SO$_2$ and H$_2$S) mixtures in CO$_2$. For all studied mixtures, having different ratios of NO$_2$, SO$_2$ and H$_2$S, the difference between the experimental and fitted mole fractions is better than 10%.
Figure 6: Theoretical absorption spectrum of NO₂, SO₂ and H₂S.

Figure 7: Measured and fitted absorption spectrum of NO₂ (101 ppm), SO₂ (149 ppm) and H₂S (102 ppm) in CO₂ (mixture no. 12, Table 1).
6.3. Absorption spectra of SO$_2$ and H$_2$S in CO$_2$ measured at 40 bar

To test if the above described broad band absorption methodology can be applied for determining the NO$_2$, SO$_2$ and H$_2$S fractions at conditions relevant to CO$_2$ transport, we performed absorption measurements at a pressure up to 40 bar. As an example, Figure 8 presents the absorption spectrum of 211 ppm SO$_2$ measured at 2 bar and 40 bar. First, the cell was filled with a gas mixture containing SO$_2$ in CO$_2$ (no. 4, Table 1) at 2 bar and the absorption spectrum was recorded (green line). Subsequently the cell was further pressurized to 40 bar by adding pure CO$_2$ to the cell and the absorption spectrum (blue line) was recorded again. Clearly visible in Figure 8 are the fine structures of the SO$_2$ absorption spectrum in the region between ~280-315 nm for the measurements performed at 2 bar. However, as a result of pressure broadening the fine structures of the SO$_2$ absorption spectrum measured at 40 bar are substantially smoothed (blue line). The fitted SO$_2$ spectrum at 40 bar (red line in Figure 8) is obtained by using the cross sections determined at atmospheric pressure given in Ref. [25]. As mentioned above, the width of the Lorentzian function (Δv, see equation 9) is fitted to approximate the change in the cross sections due to pressure broadening [25]. The computed SO$_2$ spectrum shows a very good agreement with the measured SO$_2$ spectrum at 40 bar. Here we remark that the width of the Lorentzian function (Δv) increases by approximately one order due to pressure broadening when going from 1 to 40 bar.

Additionally, absorption measurements are performed in H$_2$S/CO$_2$ and NO$_2$/CO$_2$ mixtures. The fitted and experimental concentrations for these measurements are shown in Table 1.

Figure 8: Measured absorption spectrum of 211 ppm SO$_2$ in CO$_2$ at 2 bar (green line) and at 40 bar (blue line), measurement number 4 (Table 1). The red line presents the fitted spectrum at 40 bar.

Following the same procedure as described above the H$_2$S spectra presented in Figure 9 were measured at 2- and 40 bar. As can be seen the noise at 40 bar is slightly increased in comparison to the absorption spectrum measured at 2 bar. Furthermore a small deviation of the fitted and experimental spectrum at 40 bar is observed. Despite of this deviation good agreement is found in the fitted H$_2$S fraction, see Table 1.
Here we have to note that it was not possible to measure NO2 under stationary conditions. During the experiments, it was surprisingly discovered that the concentration of NO2 decreases in time, which may be due to accumulation or stickiness to the high pressure cell wall. Despite this result under stationary conditions we do not expect problems when measuring NO2 concentrations at non stationary transport conditions. This was confirmed by experiments in this study at 1 bar in which the NO2 was measured in a flowing gas stream consisting of NO2/CO2 (see for example Table 1 and Figure 3).

7. Conclusion

In this paper a methodology is described to measure quantitatively H2S, SO2 and NO2 fractions in gaseous CO2 by using broadband absorption spectroscopy in the UV/VIS range. To test this methodology absorption spectra in mixtures of H2S, SO2 and NO2 in CO2 with known mole fractions ranging from about 35-250 ppm have been measured in an absorption cell at flowing conditions (atmospheric conditions) and at stationary, non-flowing conditions (1-40bar). To derive the concentrations from the measured absorption spectra a method is developed that calculates the absorption spectra by using the absorption cross sections for H2S, NO2 and SO2 reported in literature. By fitting the calculated and the experimentally determined absorption spectrum the concentrations of H2S, NO2 and SO2 are determined in CO2.

Comparison between the measured and fitted spectra obtained at atmospheric flowing conditions shows very good agreement over the entire range of measured component fractions. The difference between the fitted and experimental mole fractions of H2S, SO2 and NO2 in CO2 is less than 10%. Additionally, although the absorption spectra of H2S, SO2 and NO2 gas mixtures studied show substantial interference the developed methodology can be successfully used to derive the individual species concentration within 10% accuracy.

Increasing the pressure from 1 to 40 bar, without changing the molecular concentration results in broadening of the fine structures of the measured SO2/CO2 absorption spectra. The calculations successfully take into account the observed pressure broadening.
The agreement between the fitted and experimental mole fractions for H$_2$S and SO$_2$ at 40 bar is better than 10% for the mixtures studied. Unfortunately, it was not possible to measure the NO$_2$ spectra under stationary conditions due to an observed decrease of the NO$_2$ fraction in time. However, as confirmed by the measurements at 1 bar it is expected that NO$_2$ can be successfully measured at 40 bar under flowing (transport) conditions.

The results of this study demonstrate that species concentrations of H$_2$S, SO$_2$ and NO$_2$ in CO$_2$ can be fast and accurately determined using broad band absorption spectroscopy.

Nomenclature

- C: sensitivity of photo detector
- l: absorption path length, cm
- I: intensity of light, mV
- $f(\nu)$: absorbance
- G: Lorentz function, cm
- k_B: Boltzmann constant, 1.38×10^{-23} J/K
- N_i: number density of species i, molecules/m3
- P: pressure, Pa
- T: temperature, K
- X_i: mole fraction
- α: absorption coefficient, cm$^{-1}$
- ε: quantum efficiency of photo detector
- $\Delta\nu$: FWHM of the Lorentzian profile, cm$^{-1}$
- ν: wavenumber, cm$^{-1}$
- σ_i: absorption cross section of species i, cm2/molecule

Acknowledgement

This research has been financed by a grant from the Energy Delta Gas Research (EDGaR) program. EDGaR is co-financed by the Northern Netherlands Provinces, the European Fund for Regional Development, the Ministry of Economic Affairs, Agriculture and Innovation and the Province of Groningen. We also gratefully acknowledge the financial support from the N.V. Nederlandse Gasunie.

References

