Measurement of the integrated luminosities of the data taken by BESIII at $\sqrt{s} = 3.650$ and 3.773 GeV

To cite this article: M. Ablikim et al 2013 Chinese Phys. C 37 123001

View the article online for updates and enhancements.

Related content

- Determination of the number of events at BESIII
 M. Ablikim, M. N. Achasov, O. Albayrak et al.

- Determination of the number of J/ events with J/ inclusive decays
 M. Ablikim, M. N. Achasov, D. J. Ambrose et al.

- Observation of a pp mass threshold enhancement in $\psi(3686)\to J/\psi+pp$ decay
 M. Ablikim, M. N. Achasov, L. An et al.

Recent citations

- Measurements of the branching fractions of the singly Cabibbo-suppressed decays D_0, η_0 and J/ψ
 M. Ablikim et al

- Observation of c_2^{+} and c_0^{+2}
 M. Ablikim et al

- Observation of $(3686)e^+e^-J$ and cJ/e^+e^-J
 M. Ablikim et al
Measurement of the integrated luminosities of the data taken by BESIII at $\sqrt{s}=3.650$ and 3.773 GeV*

M. Ablikim(麦迪娜)1, M. N. Achasov6,8,9,0, O. Albayrak4, D. J. Ambrose41, F. F. An(安芬芬)1, Q. An(安琪)42, J. Z. Bai(白景芝)1, R. Baldini Ferroli10,4, Y. Bai(班勇)28, J. Becker4, J. V. Bennett18, M. Bertani19,4, J. M. Bian(边溪鸣)40, E. Boger21,6, O. Bondarenko22, I. Boyko21, S. Braum37, R. A. Briere4, V. Bytev21, H. Cai(蔡浩)46, X. Cai(蔡颂)1, O. Cahik36,4, A. Calcaterra19,4, G. F. Cao(曹国富)31, S. A. Cetin36,6, J. F. Chang(常浩帆)1, G. Chekalov21,6, G. Chen(陈刚)1, H. S. Chen(陈和生)1, J. C. Chen(陈江川)26, M. L. Chen(陈立飞)1, S. J. Chen(陈申)26, X. R. Chen(陈元柏)23, Y. B. Chen(陈和生)1, H. P. Cheng(程和生)16, Y. P. Chu(初元萍)1, D. Cronin-Hennessy40, H. L. Dai(代洪亮)1, J. P. Dai(代建平)1, D. Dedovich21, Z. Y. Deng(邓子艳)1, A. Denig26, I. Denysenko21, M. Destefanis6,4,4,5,6, W. M. Ding(丁伟民)30, Y. Ding(丁勇)24, L. Y. Dong(董燎原)1, M. Y. Dong(董明义)1, S. X. Du(杜书先)48, J. Fang(方建)1, S. S. Fang(房双世)1, L. Fava45,5,4,5,6, C. Q. Feng(封常青)42, P. Friedel1, C. D. Fu(傅成栋)31, J. L. Fu(傅金林)26, O. Fuks21,6, Y. Gao(高原宁)35, C. Geng(耿聪)42, K. Goetzew9, W. X. Gong(龚文健)1, W. Gradl20, M. Greco44,4,4,4,4,5,6, M. Gu(顾洪皓)4, Y. T. Gu(顾远丽)11, Y. H. Guan(管意)28, A. Q. Guo(郭爱强)27, L. B. Guo(郭立波)25, T. Guo(郭鹏)25, Y. P. Guo(郭玉萍)27, Y. L. Han(韩艳)4, F. A. Harris39, K. L. He(何康林)1, M. He(何苗)1, Z. Y. He(何振亚)27, T. Held4, Y. K. Heng(衡月昆)1, Z. L. Hou(侯治龙)1, C. Hu(胡皓)25, H. M. Hu(胡海明)1, J. F. Hu(胡峰)37, T. Hu(胡涛)1, G. M. Huang(黄光明)5, G. S. Huang(黄思盛)42, J. S. Huang(黄思盛)42, L. Huang(黄亮)1, X. T. Huang(黄思盛)30, Y. Huang(黄勇)26, T. Hussain44, C. S. Ji(姬金丽)1, J. C. Ji(姬金丽)1, Q. P. Ji(姬金丽)1, X. L. Ji(姬金丽)1, L. L. Ji(姬金丽)1, X. S. Jiang(江晓山)1, J. B. Jiao(焦建波)30, Z. Jiao(焦建波)16, D. P. Jin(金大鹏)1, S. Jin(金山)1, F. F. Jing(景蓬凡)35, N. Kalantar-Nayestanaki42, M. Katsav42, B. Klose20, B. Kopf3, M. Kornicer39, W. Kuehn37, W. Lai(赖蔚)1, J. S. Lange37, M. Lara18, L. L. Lin(李建民)1, C. H. Li(李春花)1, Cheng Li(李澄)42, Cui Li(李莹)42, M. Li(李德民)48, F. Li(李飞)1, G. Li(李刚)1, H. B. Li(李波海)1, J. C. Li(李家才)1, K. Li(李康)12, Lei Li(李蕾)1, P. R. Li(李培昌)38, Q. J. Li(李秋菊)1, W. D. Li(李卫东)1, W. G. Li(李卫国)1, X. L. Li(李晓玲)30, X. N. Li(李小男)1, X. Q. Li(李学尊)37, X. R. Li(李秀荣)29, Z. B. Li(李志兵)44, H. Liang(梁冬)42, Y. F. Liang(梁勇飞)23, Y. T. Liang(梁羽晨)47, G. R. Liao(廖广瑞)35, D. X. Lin(林立)13, B. J. Liu(刘北江)1, C. L. Liu4, C. X. Liu(刘春秀)1, F. H. Liu(刘福林)41, Fang Liu(刘芳)7, Feng Liu(刘峰)5, H. B. Liu(刘宏波)11, H. H. Liu(刘汇文)15, H. M. Liu(刘怀民)4, J. P. Liu(刘静平)46, K. Liu(刘凯)35, K. Y. Liu(刘魁勇)24, P. L. Liu(刘凯华)30, Q. Liu(刘庆)38, S. B. Liu(刘树彬)42, X. Liu(刘海)23, Y. B. Liu(刘玉峰)27, Z. A. Liu(刘振安)4, Zhiqiang Liu(刘志强)1, Zhiqiang Liu(刘智强)1, H. Loechner22, X. C. Lou(娄金玉)1, G. R. Lu(鲁公信)14, H. J. Lu(吕海江)26, J. G. Lu(吕先会)48, X. R. Lu(吕晓红)48, Y. P. Lu(吕云鹏)1, C. L. Luo(罗成林)25, M. X. Luo(罗民)47, T. Luo39, X. L. Luo(罗小兰)1, M. Lv(吕蒙)1, F. C. Ma(马风起)44, H. L. Ma(马海龙)27, Q. M. Ma(马思博)1, S. Ma(马斯)1, T. Ma(马西)1, X. Y. Ma(马晓艳)4, F. E. Maas13, M. Maggiora44,4,4,5,6, Q. A. Malik44, Y. J. Mao(毛俊杰)28, Z. P. Mao(毛明普)1, J. G. Messchendorp22, J. Min(闵建)1

Received 9 July 2013, Revised 26 August 2013

*Supported by the Ministry of Science and Technology of China (2009CB825024), National Natural Science Foundation of China (10625524, 10821063, 10825524, 10935007, 11125525, 11235011), Joint Funds of the National Natural Science Foundation of China (11079008, 11179007), Chinese Academy of Sciences Large-Scale Scientific Facility Program, CAS (KJCX2YW-N92, KJCX2YW-N45), 100 Talents Program of CAS, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R13-2008-000-10155-0) ©2013 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2 Beihang University, Beijing 100191, China
3 Bochum Ruhr-University, D-44780 Bochum, Germany
4 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
5 Central China Normal University, Wuhan 430079, China
6 China Center of Advanced Science and Technology, Beijing 100190, China
7 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Rawind Road, 54000 Lahore, Pakistan
8 G. I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
9 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
10 Guangxi Normal University, Guilin 541004, China
11 GuangXi University, Nanning 530004, China
12 Hangzhou Normal University, Hangzhou 310036, China
13 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55128 Mainz, Germany
14 Henan Normal University, Xinxiang 453007, China
15 Chinese Physics C Vol. 37, No. 12 (2013) 123001

123001-2
1 Introduction

In e^+e^- collider experiments, the number of events for $e^+e^\rightarrow X$ observed in a data set can be written as

$$N_{e^+e^-\rightarrow X}(\sqrt{s}) = L(\sqrt{s}) \times \epsilon_{e^+e^-\rightarrow X}(\sqrt{s}) \times \sigma_{obs}(\sqrt{s}),$$ \hspace{0.5cm} (1)

where X denotes some final state produced in e^+e^- annihilation, $N_{e^+e^-\rightarrow X}$ is the number of events observed, $\epsilon_{e^+e^-\rightarrow X}$ is the detection efficiency for $e^+e^\rightarrow X$, L is the integrated luminosity and $\sigma_{obs}(\sqrt{s})$ is the observed production cross section for the process $e^+e^\rightarrow X$ at center-of-mass energy \sqrt{s}.

To systematically study the properties of the production and decays of $\psi(3770)$ and D mesons, a data set was taken at $\sqrt{s}=3.773$ GeV, with the BESIII detector at the BEPCII collider at the center-of-mass energy of $\sqrt{s}=3.650$ GeV during May 2009 and at $\sqrt{s}=3.773$ GeV from January 2010 to May 2011. By analyzing the large angle Bhabha scattering events, the integrated luminosities of the two data sets are measured to be $(44.49\pm0.02\pm0.44)\text{ pb}^{-1}$ and $(2916.94\pm0.18\pm29.17)\text{ pb}^{-1}$, respectively, where the first error is statistical and the second error is systematic.

Key words: Bhabha scattering events, integrated luminosity, cross section

PACS: 11.30.Rd, 13.66.Bc

DOI: 10.1088/1674-1137/37/12/123001

123001-3
second part was taken from December 2010 to May 2011. For convenience in the following, we call the data taken at \(\sqrt{s} = 3.650 \text{ GeV} \) the continuum data, and call the two parts of the data taken at \(\sqrt{s} = 3.773 \text{ GeV} \) \(\psi(3770) \) data A and \(\psi(3770) \) data B, respectively.

In this paper, we present the measurements of the integrated luminosities of the data sets taken at \(\sqrt{s} = 3.650 \text{ GeV} \) and 3.773 GeV by analyzing the large angle Bhabha scattering events.

2 BESIII detector

The BESIII detector and the BEPC II collider [1] are major upgrades of the BES II detector and the BEPC collider [2]. The designed peak luminosity of the double-ring \(e^+e^- \) collider, BEPC II, is \(10^{33} \text{ cm}^{-2}\text{s}^{-1} \) at a beam current of 0.93 A. The peak luminosity at \(\sqrt{s} = 3.773 \text{ GeV} \) reached \(0.65 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \) in April 2011 during the \(\psi(3770) \) data taking. The BESIII detector, which has a geometrical acceptance of 93% of 4\(\pi \), consists of the following main components: 1) a small-celled, helium-based main drift chamber (MDC) with 43 layers. The average single wire resolution is 135 \(\mu \text{m} \), and the momentum resolution for 1 GeV/c charged particles in a 1 T magnetic field is 0.5%; 2) an electromagnetic calorimeter (EMC) made of 6240 CsI(Tl) crystals arranged in a cylindrical shape (barrel) plus two endcaps. For 1.0 GeV photons, the energy resolution is 2.5% in the barrel and 5% in the endcaps, and the position resolution is 6 mm in the barrel and 9 mm in the endcaps; 3) a Time-Of-Flight system (TOF) for particle identification composed of a barrel and two endcaps. The barrel part is made of two layers, each layer consisting of 88 pieces of 5 cm thick, 2.4 m long plastic scintillator. Each endcap consists of 96 fan-shaped, 5 cm thick, plastic scintillators. The time resolution is 80 ps in the barrel, and 110 ps in the endcaps, corresponding to a 2\(\pi \text{K}/\pi \) separation for momenta up to about 1.0 GeV/c; 4) a muon chamber system (MUC) made of 1600 m\(^2\) of Resistive Plate Chambers (RPC) arranged in 9 layers in the barrel and 8 layers in the endcaps and incorporated in the return yoke of the superconducting magnet. The position resolution is about 2 cm.

3 Method

In principle, any QED process can be used to measure the integrated luminosity of the data set using

\[
L(\sqrt{s}) = \frac{N_{\text{obs}}^{\text{QED}}(\sqrt{s}) \times (1-\eta)}{\sigma_{\text{QED}}(\sqrt{s}) \times \epsilon \times \epsilon_{\text{trig}}} ,
\]

where \(N_{\text{obs}}^{\text{QED}} \) is the observed number of events of the final state in question, \(\sigma_{\text{QED}} \) is the production cross section, which can be determined by theoretical calculation, \(\epsilon \) is the detection efficiency, \(\eta \) is the contamination ratio and \(\epsilon_{\text{trig}} \) is the trigger efficiency for collecting the QED process in the on-line data acquisition.

Usually, the processes \(e^+e^- \rightarrow (\gamma)e^+e^- \) and \(e^+e^- \rightarrow (\gamma)\mu^+\mu^- \) are used to measure the integrated luminosity of the data because of their simpler final state topologies, larger production cross sections, higher detection efficiencies, as well as more precise expected cross sections available from theory. In this work, the large angle Bhabha scattering events of \(e^+e^- \rightarrow (\gamma)e^+e^- \) are adopted. Throughout the paper, the symbol of “(\gamma)” denotes the possible photon (s) produced due to Initial State Radiation or Final State Radiation.

4 Luminosity measurement

4.1 Event selection

In order to select candidate Bhabha events, it is required that there should be only two good charged tracks, with total charge zero, which are reconstructed in the MDC. Each track must originate from the interaction region \(R_{xy} < 1 \text{ cm} \) and \(|V_z| < 5 \text{ cm} \), where \(R_{xy} \) and \(|V_z| \) are the points of closest approach relative to the collision point in the \(xy \)-plane and in the \(z \)-direction, respectively. Furthermore, to ensure that the candidate charged track hits the barrel of the EMC, we require that the polar angle of the charged track satisfies \(\cos\theta < 0.80 \).

Figure 1 shows the energy deposited in the EMC \(E_{\text{EMC}} \) for the good charged tracks of events satisfying the above selection criteria, where the dots with red error bars are the continuum data, the yellow histogram is \(e^+e^- \rightarrow (\gamma)e^+e^- \) Monte Carlo events and the light green histogram is \(e^+e^- \rightarrow (\gamma)\mu^+\mu^- \) Monte Carlo events. From the figure it can be seen that the requirement

![Figure 1](image-url)
$E_{\text{EMC}} > 1.0$ GeV can cleanly separate the $e^+e^- \rightarrow (\gamma)\mu^+\mu^-$ events from the Bhabha scattering events. To further remove background from cosmic rays, the momentum of at least one of the two charged tracks in the candidate Bhabha events should be less than $E_{\text{threshold}} + 0.15$ GeV, where $E_{\text{threshold}}$ is the calibrated beam energy.

After applying the above selection criteria, the accepted events are mostly Bhabha scattering events. But there may still be a small amount of background from $e^+e^- \rightarrow (\gamma)J/\Psi$, $e^+e^- \rightarrow (\gamma)\psi(3686)$, $e^+e^- \rightarrow (\gamma)J/\Psi X$ and $e^+e^- \rightarrow \psi(3770)$, where $X = \pi^0\pi^0$, η, η^\prime or $\gamma\gamma$. In order to remove these background events, the sum of the momenta of the two good charged tracks is required to be greater than $0.9 \times E_{\text{EMC}}$. The remaining contamination from these background sources is estimated by Monte Carlo simulation, which will be discussed in Section 4.3.

4.2 Data analysis

The two oppositely charged tracks in the candidate Bhabha scattering events are bent in the magnetic field, so the positions of their two shower clusters in the central detector are not back-to-back. To determine the observed number of Bhabha scattering events, we use the difference of the azimuthal angles of the two clusters in the EMC, which is defined as $\delta\phi = |\phi_1 - \phi_2| - 180^\circ$ in degrees, where ϕ_1 and ϕ_2 are the azimuthal angles of the two clusters in the EMC. Fig. 2 shows the $\delta\phi$ distribution of the candidate Bhabha scattering events selected from the continuum data.

![Fig. 2. The distribution of $\delta\phi$ ($\delta\phi = |\phi_1 - \phi_2| - 180^\circ$) for the selected e^+ and e^- tracks. The main part and the inset are shown with linear and logarithmic scale, respectively.](image)

In the figure, the events in the “signal” regions between the red arrows are taken as the signal events, while the ones in the “sideband” regions between the blue arrows are used to estimate the background in the $\delta\phi$ “signal” region. After subtracting the scaled number of the events in the sideband region from the number of events in the signal region, we obtain the numbers of the Bhabha scattering events observed from data, which are listed in the second row of Table 1.

4.3 Background estimation

For the accepted Bhabha scattering events, there may still be some residual background from $e^+e^- \rightarrow (\gamma)J/\Psi$, $e^+e^- \rightarrow (\gamma)\psi(3686)$, $e^+e^- \rightarrow (\gamma)J/\Psi X$ and $e^+e^- \rightarrow \psi(3770)$, where $X = \pi^0\pi^0$, η, η^\prime or $\gamma\gamma$. As well as some other hadronic decay processes. These are estimated by analyzing the Monte Carlo events, including $16.5 \text{M} e^+e^- \rightarrow (\gamma)J/\Psi$, $51 \text{M} e^+e^- \rightarrow (\gamma)\psi(3686)$, $198 \text{M} e^+e^- \rightarrow \psi(3770)$, $9\text{M} e^+e^- \rightarrow \psi(3770)$, and $183 \text{M} e^+e^- \rightarrow \text{continuum light hadron events}$. Detailed analysis gives the contamination rates to be $\eta = 1.7 \times 10^{-5}$ and 1.7×10^{-4} for the candidate Bhabha scattering events selected from the continuum data and the $\psi(3770)$ data, respectively.

4.4 Detection efficiency for $e^+e^- \rightarrow (\gamma)e^+e^-$

To determine the detection efficiencies for the Bhabha scattering events, we generated 400000 $e^+e^- \rightarrow (\gamma)e^+e^-$ Monte Carlo events with the Babayaga generator [3], within the polar angle range of $|\cos\theta| < 0.83$ at $\sqrt{s} = 3.650$ and 3.773 GeV, where θ is the polar angle for the e^+ and e^-. By analyzing these Monte Carlo events with the same selection criteria as the data analysis, we obtained the detection efficiencies for $e^+e^- \rightarrow (\gamma)e^+e^-$ at $\sqrt{s} = 3.650$ and 3.773 GeV, which are summarized in the fourth row of Table 1.

4.5 Integrated luminosities

Inserting the numbers of observed Bhabha scattering events, the detection efficiencies for $e^+e^- \rightarrow (\gamma)e^+e^-$ obtained by the Monte Carlo simulation, the trigger efficiency and the visible cross sections within the polar angle range of $|\cos\theta| < 0.83$ in Eq. (2), we determine the integrated luminosities of the continuum data, the $\psi(3770)$ data A and the $\psi(3770)$ data B to be $(44.49 \pm 0.21 \pm 0.44)$ pb$^{-1}$, $(927.67 \pm 0.10 \pm 0.28)$ pb$^{-1}$ and $(1989.27 \pm 0.15 \pm 19.89)$ pb$^{-1}$, respectively, where the first errors are statistical and the second are systematic and discussed in the next section. The total luminosity of the $\psi(3770)$ data is $(2916.94 \pm 0.18 \pm 29.17)$ pb$^{-1}$. Here, systematic uncertainties are completely correlated between the two parts of the data, and thus are added linearly when they are combined. Here, for the data sets used in the analysis, the trigger efficiency for collecting $e^+e^- \rightarrow (\gamma)e^+e^-$ events was determined to be $\epsilon_{\text{trig}} = 100\%$ with the statistical error being less than 0.1% [4]. The numbers used in the luminosity measurements are summarized in Table 1.
4.6 Systematic error

In the measurements of the integrated luminosities, the systematic errors arise from the uncertainties associated with the Bhabha event selection, the Monte Carlo statistics, the background estimation, the signal region selection, the trigger efficiency and the generator.

In order to estimate the systematic uncertainty due to the $\cos\theta$ requirement, we also determine the integrated luminosities with the selection requirements of $|\cos\theta| < 0.75$ and 0.70. The differences from the standard selection of $|\cos\theta| < 0.80$ are all less than 0.5% for both the continuum data and $\psi(3770)$ data. To be conservative, we take 0.75% as the systematic error due to the $\cos\theta$ selection in this work. The systematic uncertainty due to the MDC measurement information, which includes the uncertainties due to the MDC tracking efficiency and the momentum requirement, is determined to be 0.3% by comparing the integrated luminosities measured with and without the MDC measurement information. The systematic uncertainty due to the E_{EMC} energy selection requirements is determined to be 0.2%, by comparing the E_{EMC} distributions of the data and Monte Carlo events. The uncertainty from the EMC cluster reconstruction is determined to be 0.03% by comparing the efficiencies of the data and the Monte Carlo events.

The uncertainty from the Monte Carlo statistics is 0.1%. The uncertainty in the background subtraction is negligible. The uncertainty due to the $\Delta\phi$ signal region selection is estimated to be 0.01% by comparing the integrated luminosities measured with different signal regions. In these measurements, we use the trigger efficiency for collecting $e^+e^-\rightarrow(\gamma)e^+e^-$ events of $\epsilon_{\text{trig}} = 100\%$ with the statistical error being less than 0.1% [4]. Therefore, we take 0.1% as the systematic uncertainty due to trigger efficiency. The uncertainty due to the Bhabha generator is 0.5%, which is cited from Ref. [3].

Table 2 summarizes the above systematic uncertainties in the luminosity measurement. The total systematic error is determined to be 1.0% by adding these uncertainties in quadrature.

Table 2. The relative systematic uncertainties in the luminosity measurement.

<table>
<thead>
<tr>
<th>sources</th>
<th>$\Delta\sigma^s$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\cos\theta</td>
</tr>
<tr>
<td>$E_{\text{EMC}} > 1$ GeV</td>
<td>0.2</td>
</tr>
<tr>
<td>$E_{\text{EMC}} > 1$ GeV</td>
<td>0.2</td>
</tr>
<tr>
<td>MDC information</td>
<td>0.3</td>
</tr>
<tr>
<td>EMC cluster reconstruction</td>
<td>0.03</td>
</tr>
<tr>
<td>Monte Carlo statistics</td>
<td>0.1</td>
</tr>
<tr>
<td>background estimation</td>
<td>0.0</td>
</tr>
<tr>
<td>signal region selection ($\Delta\phi$)</td>
<td>0.01</td>
</tr>
<tr>
<td>trigger efficiency [4]</td>
<td>0.1</td>
</tr>
<tr>
<td>generator [3]</td>
<td>0.5</td>
</tr>
<tr>
<td>total</td>
<td>1.0</td>
</tr>
</tbody>
</table>

5 Summary

By analyzing the Bhabha scattering events, we measure the integrated luminosities of the data taken with the BESIII detector at $\sqrt{s} = 3.650$ and 3.773 GeV to be $(44.49\pm0.02\pm0.44)\text{ pb}^{-1}$ and $(2916.94\pm0.18\pm29.17)\text{ pb}^{-1}$, respectively. These luminosities can be used for normalization in studies of $\psi(3770)$ production and decays, as well as in studies of D meson production and decays.

The BESIII collaboration thanks the staff of BEPCII and the computing center for their strong support.

References