Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes

Peeters, Eveline; Albers, Sonja-Verena; Vassart, Amelia; Driessen, Arnold J. M.; Charlier, Daniel

Published in: Molecular Microbiology

DOI: 10.1111/j.1365-2958.2008.06578.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2009

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 30-07-2019
Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes

Eveline Peeters,1 Sonja-Verena Albers,2† Amelia Vassart,1 Arnold J. M. Driessen2 and Daniel Charlier1*
1Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussel, Belgium. 2Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, the Netherlands.

Summary
Ss-LrpB is an Lrp-like transcriptional regulator from Sulfolobus solfataricus. Previously, in vitro binding of Ss-LrpB to the control region of its own gene has been extensively studied. However, nothing was known about the physiological role of this regulator yet. Here, using the knowledge of the DNA-binding sequence specificity of Ss-LrpB, several potential binding sites were predicted in silico in promoter regions of genes located adjacent to the Ss-lrpB gene. These genes include an operon encoding a pyruvate ferredoxin oxidoreductase (porDAB) and two genes encoding putative permeases. In vitro protein–DNA interaction studies allowed the identification of the Ss-LrpB binding sites in the cognate control regions. Intriguingly, the binding site organization in the por operator is identical to that in the Ss-lrpB control region. An Ss-lrpB gene disruption mutant was constructed and the gene expression of the three predicted targets. Based on these results, it appears that not all regulators belonging to the archaeal Lrp family perform a function related to the amino acid metabolism, unlike the bacterial Lrp-like regulators.

Introduction
It is well established that the archaeal basal transcription apparatus is a simplified version of the eukaryotic RNA polymerase (RNAP) II machinery (Bell and Jackson, 2001; Geiduschek and Ouhammouch, 2005). The core apparatus consists of RNAP, TATA-binding protein (TBP) and transcription factor B (TFB) which are homologues of their eukaryotic counterparts. An additional eukaryola-like factor, transcription factor E (TFE), exerts a stimulatory effect on TBP binding and RNAP recruitment and stabilizes the transcription bubble during the early elongation phase (Grünberg et al., 2007).

In contrast to the basal machinery, the regulation of transcription in archaea appears to be related to the bacterial system. In almost all sequenced archaeal genomes, several genes can be identified that are predicted to encode orthologues of bacterial transcription regulators (Aravind and Koonin, 1999; Kyrpides and Ouzounis, 1999). Most of these candidate regulators contain a helix-turn-helix (HTH) DNA-binding motif (Aravind and Koonin, 1999). Regulation performed by DNA-binding proteins occurs primarily at the level of transcription initiation and the effect can be either negative or positive (Ouhammouch et al., 2003). In the case of activation, binding occurs upstream of the TATA box promoter element.

The best-studied transcription regulator family in archaea is the Leucine-responsive Regulatory Protein (Lrp) family, also called Feast/Famine Regulatory Proteins (Brinkman et al., 2003; Yokoyama et al., 2006). The Lrp family is widely conserved among many bacteria and
almost all archaea. The number of \textit{lrp}-like genes in a genome can range from one up to more than 10 (Brinkman \textit{et al}., 2003). \textit{Lrp}-like proteins have an N-terminal DNA-binding domain that contains a HTH motif. This domain is connected through a flexible hinge with the C-terminal oligomerization and cofactor response domain, also called Regulation of Amino acid Metabolism (RAM) domain (Ettema \textit{et al}., 2002). The latter exhibits an $\alpha\beta$ sandwich motif. For several archaeal and bacterial \textit{Lrp}-like regulators, the crystal structure has been solved (for an overview, see Kawashima \textit{et al}., 2008). Recently, the first cocrystal structure of an \textit{Lrp}-like dimer bound to a short DNA duplex was obtained for FL11 of \textit{Pyrococcus OT3} (Yokoyama \textit{et al}., 2007). The basic structural unit of \textit{Lrp}-like proteins is always a dimer; usually they crystallize into octamers or higher association states demonstrating their ability to oligomerize. Many \textit{Lrp}-like regulators interact with amino acids as cofactors (Brinkman \textit{et al}., 2003). Based on the several crystal structures, a structural code was developed to predict potentially interacting amino acids for a regulator (Okamura \textit{et al}., 2007). Cofactor binding plays an important role in the regulatory mechanism of \textit{Lrp}-like regulators. It results in minor structural changes (allosteric control) or may lead to a change in the oligomeric state of the protein thereby affecting the DNA-binding affinity (Brinkman \textit{et al}., 2003; Okamura \textit{et al}., 2007).

As opposed to their structure, the regulation mechanisms and regulatory target genes of \textit{Lrp} regulators are not as conserved. \textit{Lrp}-like regulators can act as an activator or a repressor, or both. Their regulon can be either limited (one target gene, e.g. \textit{AsnC} from \textit{Escherichia coli}; Kölling and Lother, 1985) or very extended (e.g. the global regulator \textit{E. coli} \textit{Lrp} which regulates about 10\% of all genes; Hung \textit{et al}., 2002; Tani \textit{et al}., 2002). Target genes of \textit{Lrp}-like regulators often encode proteins performing functions in the amino acid or central metabolism of the cell.

In archaea, the physiological role of most identified \textit{Lrp}-like regulators remains elusive. Archaeal \textit{Lrps} with a known function include \textit{LysM} from \textit{Sulfolobus solfataricus} which positively regulates an operon-encoding enzymes catalysing lysine biosynthesis (Brinkman \textit{et al}., 2002) and \textit{Ptr2} from \textit{Methanococccus jannaschii} and its orthologues FL10/LrpA from \textit{Pyrococcus} species activating the expression of rubredoxin and ferredoxin genes (Ouhammouch \textit{et al}., 2003; Ouhammouch and Geiduschek, 2005; Kawashima \textit{et al}., 2008). The only global archaeal \textit{Lrp}-like regulator that has been studied is FL11 from \textit{Pyrococcus OT3} (Yokoyama \textit{et al}., 2007). Based on \textit{in silico} analysis, it is predicted that this regulator represses the expression of about 20\% of all genes directly or indirectly (genes involved in lysine biosynthesis, ATP synthesis, transmembrane transport and genes encoding other regulators thereby leading to regulatory cascades).

The genome of \textit{S. solfataricus}, a hyperthermoadiphilic crenarchaeon, is predicted to encode seven full-length \textit{Lrp}-like proteins (Yokoyama \textit{et al}., 2006). To date, five of these regulators have been characterized, including \textit{Ss-LrpB} (Napoli \textit{et al}., 1999; 2001; Brinkman \textit{et al}., 2002; Enoru-Eta \textit{et al}., 2002; Peeters \textit{et al}., 2004). \textit{Ss-LrpB} binds the control region of the \textit{Ss-lrpB} gene itself, which suggests that the protein regulates its own expression (Peeters \textit{et al}., 2004). Binding occurs at three specific binding sites (boxes) on the same face of the DNA helix with the two outer boxes being high-affinity targets. These two boxes need to be occupied by \textit{Ss-LrpB} dimers before the middle low-affinity box is bound as well. Furthermore, \textit{Ss-LrpB} binding induces strong DNA deformations and, upon occupation of all three binding sites, even DNA wrapping (Peeters \textit{et al}., 2006).

Besides the proposed autoregulatory role of \textit{Ss-LrpB}, nothing was known yet about its physiological role. Here, we have determined its function by a combination of \textit{in silico} binding site analysis, \textit{in vitro} DNA-binding studies and \textit{in vivo} gene expression analysis. Since most specific \textit{Lrp}-like regulators target juxtaposed genes, we employed the knowledge of the genomic context of \textit{Ss-lrpB} and its binding sequence specificity (Peeters \textit{et al}., 2007) to search for its potential target genes. \textit{Ss-lrpB} is located adjacent to an operon predicted to encode subunits of a pyruvate ferredoxin oxidoreductase (POR) and preceded by two genes encoding potential permeases with an as yet unknown function (Fig. 1A). \textit{Ss-LrpB} binding sites were identified in the promoter regions of all three targets (\textit{por} operon and two permease genes) and protein-DNA binding was extensively studied. Furthermore, an \textit{Ss-lrpB} gene disruption mutant was constructed and gene expression of the above-mentioned targets was analysed in isogenic \textit{Ss-lrpB}+ and \textit{Ss-lrpB::lacS} strains. Our data demonstrate that \textit{Ss-LrpB} acts as a positive regulator of the \textit{POR}-encoding operon and of the two permease genes.

\section*{Results}

\textit{The genomic context of Ss-LrpB and binding to promoter regions of neighbouring genes}

The \textit{Ss-lrpB} gene (Sso2131) is encoded on the reverse genome strand and located downstream of a 170-amino-acid (aa)-long hypothetical protein-encoding gene (Sso2125), two permease genes (Sso2126 and Sso2127) and three pyruvate ferredoxin oxidoreductase (POR) subunit-encoding genes (Sso2128, Sso2129, Sso2130) respectively (Fig. 1A; She \textit{et al}., 2001). On the opposite side of \textit{Ss-lrpB}, a gene encoding a glycerol kinase can

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd, \textit{Molecular Microbiology}, 71, 972–988
be found (Sso2133). All these genes are transcribed in a direction opposite to that of Ss-lrpB. Primer extension analysis allowed the mapping of the transcription start sites (see Fig. S1) and the prediction of the promoter elements of the Sso2126, Sso2127 and Sso2128 genes (Fig. 2). The Sso2128, Sso2129 and Sso2130 genes, annotated as POR δ, POR α and POR β subunits, respectively (She et al., 2001), form an operon. The existence of a porDAB polycistronic messenger was experimentally demonstrated by performing reverse transcription polymerase chain reaction (RT-PCR) with total RNA extracted from S. solfataricus P2 cells (Fig. S1). The porDAB transcript is leaderless, but a Shine-Dalgarno motif is found 13 nt upstream of the ATG start codon of porB, 5′-GAGGTGA-3′, which is the reverse complement of a part of the 16S rRNA 3′ terminus, 5′-AUCACCUCC-3′ (Torarinsson et al., 2005). No apparent ribosome binding motif was found around the translational start of porA. The 4 nt overlap between the coding parts of the porD and porA genes suggests a mechanism of translational coupling and rephasing of the ribosomes. Analysis of the genomic DNA of strains P2 and PBL2025 used in this work demonstrated the absence of a copy of the insertion sequence (IS) element ISC1078 in between Ss-lrpB and Sso2133. This is in contrast to the published genome sequence of S. solfataricus P2 (Fig. S1). However, PCR and sequencing analysis has shown that a copy of ISC1078 is inserted about 6 kbp further upstream in PBL2025 (between Sso2126 and Sso2127), but not in P2 (Fig. S1). These observations pinpoint the high genomic plasticity of S. solfataricus (Brügger et al., 2002; Redder and Garrett, 2006).

Specific regulators often control the expression of genes located adjacently or closely to the regulator gene itself. Therefore, because of the search for Ss-LrpB target genes, a survey of in vitro Ss-LrpB binding to the promoter/operator regions of Sso2126, Sso2127 and Sso2128 (porDAB). The positions of the wells of the gel (W), of the bound protein-DNA complexes (B) and of the free DNA (F) are indicated. Ss-LrpB concentrations (nM) are mentioned above each lane.

Fig. 1. A. Schematic representation of the genomic environment of Ss-lrpB. ORFs are represented by large open arrows. From left to right Sso2125, Sso2126, Sso2127, Sso2128, Sso2129, Sso2130, Sso2131 and Sso2133 are depicted with indication of the promoter regions (arrows). B. EMSAs of binding of purified Ss-LrpB to the promoter/operator regions of Sso2126, Sso2127 and Sso2128 (porDAB). The positions of the wells of the gel (W), of the bound protein-DNA complexes (B) and of the free DNA (F) are indicated. Ss-LrpB concentrations (nM) are mentioned above each lane.

Fig. 2. A–C. Nucleotide sequences of the control regions of porDAB (A), Sso2126 (B) and Sso2127 (C). In silico predicted potential binding sites are indicated on top of the sequence. The actual Ss-LrpB binding sites are boxed. The protected regions against DNase I cleavage are indicated in a red letter type (protection at low and high Ss-LrpB concentration) and in an orange letter type (protection only at high Ss-LrpB concentration). DNase I hyperreactive sites are indicated by a red ball-and-stick symbol (hyperreactivity at low Ss-LrpB concentration) or by an orange ball-and-stick symbol (hyperreactivity at high Ss-LrpB concentration). Depurination binding interference effects are represented by open light blue rectangles (weak effects), filled light blue rectangles (intermediate effects) and dark blue rectangles (strong effects). Depyrimidation binding interference effects are represented by open light green rectangles (weak effects), filled light green rectangles (intermediate effects) and dark green rectangles (strong effects). The promoter elements, transcription start sites and start codons (boxed) are displayed as well. D. Cartoon of the Ss-LrpB consensus binding sequence (Peeters et al., 2004) with indication of the centre of the inverted repeat (red dot), conserved palindromic half sites (arrow) with highly conserved bps in red and an A+T-rich centre (dashed line).
Electrophoretic mobility shift assays (EMSAs) were performed with purified Ss-LrpB and labelled DNA fragments containing the promoter regions of the above-mentioned genes (Fig. 1B). The results indicate that Ss-LrpB binds specifically and with a high affinity to the Sso2126, Sso2127 and porD promoter regions, suggesting that these genes belong to the Ss-LrpB regulon. At low protein concentrations, a highly specific and stable complex is formed which probably corresponds to binding of one Ss-LrpB dimer to a specific binding site. At higher protein concentrations, multiple Ss-LrpB molecules bind resulting in the formation of higher-order nucleoprotein complexes that appear less stable as indicated by the observed smearing. Supershifting of these higher-order complexes and the formation of complexes which do not enter the gel are most likely due to protein aggregation (Peeters et al., 2006). The highest binding affinity was observed with a 307 bp fragment containing the Sso2126 promoter region (ranging from –263 to +44). The overall apparent equilibrium dissociation constant \(K_D \) of this interaction, 10 nM, is comparable with the \(K_D \) for binding to the Ss-LrpB control region of the gene itself (Peeters et al., 2004). The apparent \(K_D \)s of binding to a fragment encompassing the promoter regions of Sso2127 (–209 to +59) or porD (–138 to +57) were slightly higher, about 30 and 40 nM respectively (Fig. 1B). No specific binding was observed to the promoter regions of Sso2125 and Sso2133 (data not shown).

High resolution contact mapping of Ss-LrpB–porDAB operator interactions

In the control region of the por operon, a cluster of several potential binding sites for Ss-LrpB was predicted (Fig. 2A): the partially overlapping pot Box 3 and pot Box 3* sites, the partially overlapping pot Box 2 and pot Box 2* sites and the most downstream pot Box 1. Based on the in silico predictions alone, the binding site which is actually recognized by the regulator is not evidently allocated, since both alternative binding sites share a highly conserved half site (Fig. 2D). Therefore, in vitro binding to this control region was further studied by employing a combination of footprinting, premodification binding interference and mutant studies. DNase I footprinting revealed three discrete regions of protection both for the top and bottom strand (Fig. 3A), indicating the existence of three separate binding sites (Fig. 2A). Binding to these sites is highly cooperative, as indicated by the fast formation of the lowest migrating specific complex in the EMSA experiment, which can be assumed to correspond to a complex having the three regions bound. The positions of the corresponding protected regions on the two strands are slightly shifted with respect to one another in the 3′ direction due to the conformation of the DNA helix. DNase I hyperreactivity was observed at several regularly spaced positions in the operator region (Figs 2A and 3A).

For the unambiguous identification of the binding sites, EMSAs were performed with mutated operator fragments (Fig. 4A). These operator mutants contained a single bp substitution predicted to either impair or improve the theoretical binding affinity to one of the potential Boxes. All these substitutions are targeted at position –5 or +5 of the corresponding potential site (Figs 2D and 4D), for which it is crucial that it contains a G-C or C-G bp respectively (Peeters et al., 2007). Replacing G-C at position –5 of pot Box 3 (sub1) resulted in the formation of the specific complex with a much lower affinity while substituting C-G at position +5 of pot Box 3* (sub2) did not noticeably affect binding (Fig. 4A). For pot Box 2, the T-A bp at position –5 was substituted by a more optimal G-C bp (sub3); binding to this mutant operator occurred with a remarkably higher affinity as compared with binding to the wild-type fragment. In contrast, substitution of C-G at position +5 of pot Box 2* (sub4) had hardly any effect on complex formation. These results strongly indicate recognition by Ss-LrpB of the most upstream Box of either of the pairs of alternative sites. Furthermore, EMSAs with 45 bp oligonucleotide duplexes containing the isolated (potential) binding sites demonstrated specific binding to pot Box 1 and pot Box 3 (called Box 1 and Box 3 hereafter), but not to any of the other fragments (Fig. 4B). Both pot Box 2 and pot Box 2* exhibit no detectable specific binding but the previous observation of improved binding to the pot Box 2 operator mutant (sub3) proves the involvement of the prior (called Box 2 hereafter) in the context of the full-length operator. Box 3 is bound with a slightly higher affinity than Box 1 (Fig. 4B).

Depurination binding interference (Brunelle and Schleif, 1987) allowed a higher resolution analysis and screening of the purines which are important for recognition by Ss-LrpB (Fig. 3B). A DNA preparation of the porD operator fragment was obtained in which purines were sparingly removed, with an average of one modification per DNA molecule. This population of modified DNA molecules was then subjected to Ss-LrpB binding in an EMSA. The various populations of molecules [input (I) and free (F) DNA and bound complexes (B1 and B3)] were recovered from the gel, cleaved at the depurinated positions and analysed by denaturing gel electrophoresis. DNA molecules missing a purine at a position that is important for Ss-LrpB binding, will be under-represented in the bound population while molecules that miss a purine at a position which is irrelevant for binding, will be equally represented in the bound and free populations. The removal of purines at several positions had an effect on binding (Fig. 2A). Most of these effects were located in or at the border of the three previously identified binding sites. In between Box 3 and Box 2, a few weak effects were also observed.
for A-96, A-95, G-91, A-90 and A-89. All effects were observed for bound population B3, corresponding to the complex that is assumed to have all three binding sites bound. Concerning B1, no clear-cut effects could be observed (Fig. 3B). This might be explained by the heterogeneity of B1 complexes, containing DNA fragments bound each at a different site. Therefore, creating an abasic site in one binding site does not affect binding to
the other binding sites. The depurination binding interference indicates that Box 2 (not Box 2*) and Box 3 (not Box 3*) are bound by Ss-LrpB and is therefore in full agreement with the mutant operator binding studies.

Intriguingly, the binding site organization in the control region of porD is almost exactly identical as the organization in the control region of Ss-lrpB itself (Fig. 4D; Peeters et al., 2004). Box 2 is separated from Box 3 by a 16 bp and 17 bp linker respectively. Also common to both is that the central Box 2 has a very low affinity whereas the outer Boxes are high-affinity sites. Both outer binding sites are required to stimulate binding to the central site through cooperative actions. This is demonstrated by performing EMSAs with truncated fragments, containing either Box 2 +3 or Box 1 +2 (Fig. 4C). The presence of only one of the two high-affinity sites does not suffice to promote stable binding to Box 2. This is especially the case for the Box 1 +2 combination: there is no detectable formation of a complex with the two sites bound.

Ss-LrpB binding to the control regions of the two permease genes, Sso2126 and Sso2127

An in silico approach combining different methods (see Experimental procedures) indicated the existence of two potential Ss-LrpB binding sites in the promoter/operator (p/o) region of Sso2126: one at position -61 (pot Box 1) and a second site much further upstream starting at posi-
tion −220 (pot Box 2) (Fig. 2B). Characterization of the recognized binding sites in this promoter region was done by footprinting and premodification binding interference experiments (Fig. 5). At low Ss-LrpB concentration, DNase I footprinting resulted in clear protection in a region corresponding to pot Box 2 (called Box 2 hereafter; Figs. 5A and 2B). At higher concentrations (> 336 nM), this protection extended further downstream, encompassing almost the entire control region including Box 1 and the promoter elements. DNase I hyperreactivity was observed at the borders of Box 2 and, at higher Ss-LrpB concentrations, between positions −134/−135 and in pot Box 1 (between positions −50/−51 and −60/−61). This indicates minor groove widening due to protein-induced DNA deformations. To confirm the identity of the recognized Box in the highly specific, fastest migrating complex in the EMSA, which is already formed at very low Ss-LrpB concentration (> 0.8 nM; Fig. 1B), in-gel Cu-phenantroline footprinting was performed (Fig. 5B). Indeed, protection is only apparent in the upstream region encompassing Box 2 indicating that the bound population is uniform and composed only of nucleoprotein complexes with Ss-LrpB bound specifically to this upstream Box. Furthermore, Ss-LrpB exhibits binding to a 45 bp oligonucleotide duplex containing the Box 2 sequence but not to a duplex containing the pot Box 1 sequence (Fig. 5C and D). DNase I and in-gel footprinting was also performed with a probe having the downstream end located closer to Box 2, allowing a higher resolution contact mapping (Fig. 5E). Whether the top strand or the bottom strand was labelled, the protection was situated at Box 2 (Fig. 2B, top strand shown only). Protection against DNase I was most apparent at the two half sites of the Box (Fig. 5E). Depurination and depyrimidation binding interference experiments revealed that almost all residues inside or at the borders of Box 2 are involved in the interaction between Ss-LrpB and this binding site (Fig. 5F).

The in silico approach also indicated the presence of two potential binding sites in the promoter/operator region of Sso2127: one at position −106 (pot Box 1) and a second at position −235 (pot Box 2) (Fig. 2C). The sequence of pot Box 1, 5′-TTGCATTATGTGCAA-3′, corresponds well to the Ss-LrpB consensus site (Fig. 2D; Peeters et al., 2004), having two perfect half sites and an A+T-rich centre. At the lower protein concentrations used, DNase I footprinting of Ss-LrpB tetramers showed one discrete region of protection extending from position −126 to −85, indicating specific binding of pot Box 1 (called Box 1 hereafter; Fig. 6A). Two sites of DNase I hyperreactivity border Box 1. The hypothesis that recognition of Box 1 is responsible for complex formation, is empowered by an EMSA with a 45 bp oligonucleotide duplex containing the Box 1 site (Fig. 6B). The K D of this interaction is comparable to the K D of binding to the entire operator fragment. At higher Ss-LrpB concentrations, the DNase I protection zone is enlarged by extending both upstream and downstream and several additional sites of hyperreactivity are generated indicating conformational changes in the DNA (Figs. 6A and 2C). The downstream protection encompasses both the BRE and TATA box promoter elements. These data cannot exclude the involvement of pot Box 2 in the regulation of Sso2127, since all binding experiments were performed with a DNA fragment starting at position −206 of the Sso2127 control region. However, no binding of Ss-LrpB to this isolated pot Box 2 present on a 45 duplex could be detected (data not shown).

Gene expression analysis of target genes in an Ss-lrpB gene disruption mutant

To study the effects of the Ss-LrpB regulator in vivo, a gene disruption mutant was constructed (Fig. 7), as described (Albers and Driessen, 2007). Targeted gene disruption of Ss-lrpB was achieved by electroporation of strain PBL2025, which is lacking the lacS gene and is unable to catabolize lactose (Schelert et al., 2004), with the pET2268-Ss-lrpB knockout plasmid. This plasmid contains the flanking regions of Ss-lrpB and a lacS cassette in between. Homologous recombination resulted in the integration of the lacS cassette at the Ss-lrpB locus after selection on lactose minimal medium (Fig. 7A). Three rounds of single colony picking, culturing in liquid medium and replating, were necessary before the Ss-lrpB::lacS mutant was obtained with complete absence of the wild-type allele. This was demonstrated by PCR analysis (data not shown) and Southern blotting using NdeI-restricted genomic DNA (Fig. 7B). The growth of the Ss-lrpB::lacS strain is not affected in medium supplemented with either tryptophan or glucose as compared with the growth of PBL2025 (data not shown).

Expression of Sso2126, Sso2127 and the por operon was notably lower in the Ss-lrpB::lacS strain, as observed by RT-PCR (Fig. 8A). This was confirmed and quantified by real-time quantitative PCR (Table S1; Fig. 8B), indicating a 3.1- and 5.9-fold lower expression for Sso2127 and porDAB respectively. The effect was less pronounced for Sso2126, for which the relative expression level is only 0.70. These results lead us to conclude that Ss-LrpB acts as an activator in the transcriptional regulation of its three neighbouring target genes under the given growth conditions.

Discussion

Overall, we show that Ss-LrpB activates the expression of a neighbouring por operon and two putative permease genes by binding to (multiple) binding sites in the corresponding control regions. Target genes of only a few
archaeal Lrp-like regulators have been identified. Ss-LrpB appears to share its physiological role with Ptr2 from M. jannaschii. We noticed that the first gene of the porDAB operon regulated by Ss-LrpB, annotated to encode a POR delta subunit, is highly similar to fdxA, one of the identified targets of Ptr2 (Ouhammouch et al., 2003). The 61 aa long C-terminal part of porD has an aa sequence identity of 41% with fdxA, which codes for a ferredoxin. POR catalyses the oxidative carboxylation of pyruvate into acetyl-coA, thereby reducing ferredoxin. This enzyme is active in all archaea, whether they grow under anaerobic or aerobic conditions. It belongs to the family of two oxoacid:ferredoxin oxidoreductases (OR), that can recognize several different substrates, all performing functions in the central or amino acid metabolism (besides POR, 2-ketoglutarate OR catalyses a citric acid cycle reaction and indolepyruvate OR oxidizes 2-keto acids generated from aromatic amino acids; Schut et al., 2001). Furthermore, POR is also important in performing the reversed reaction of acetyl-coA reduction to pyruvate during autotrophic growth with fixation of CO2 via a reductive citric acid cycle or during growth on acetate for the functioning of the gluconeogenesis. Some OR enzymes have a broad substrate specificity, not limited to one of the
three classes of the above-mentioned substrates. This is also the case for the only characterized OR of *Sulfolobus* thus far (an αβ heterodimer, encoded by Sso2815 and Sso2816), which has been shown to catalyze all three key reactions (Zhang et al., 1996; Fukuda and Wakagi, 2002).

Based on the fact that the expression of the POR enzyme studied here seems to be tightly regulated, it can be speculated that the enzyme is responsible for catalysis of a reaction that is involved in a more specific growth condition, rather than a central metabolic reaction. Previously, it has been shown that central metabolic enzymes in *S. solfataricus* undergo very little transcriptional and translational regulation (Snijders et al., 2006). The POR enzyme subject of this study is annotated in the genome sequence as being specific for pyruvate (She et al., 2001), although it has never been characterized biochemically. The subunit composition of this putative enzyme (composed of δ, α, and β) appears to be novel, although there is a large variation in the subunit compositions for archaeal OR enzymes while the catalytic core is highly conserved.

The function of the two permeases, encoded by Sso2126 and Sso2127, is as yet unknown. Blast analyses indicate that Sso2126 exhibits homology with bacterial L-lactate permeases and that Sso2127 is related to halophilic oxalate/formate antiporters. The link between the POR enzyme and the two permeases, explaining their coregulation by a specific transcriptional regulator, and the exact functions of these proteins in the cell is currently not clear. A very tentative link can be made with the metabolism of the sulphate-reducing anaerobic euryarchaeote *Archaeoglobus fulgidus* (Klenk et al., 1997). This organism is able to metabolize lactate during sulphate reduction. Part of the lactate oxidation pathway is the conversion of pyruvate in acetyl-coA and CO₂, catalyzed by POR (Labes and Schönheit, 2001); incomplete lactate oxidation can result in the production of formate (Habicht et al., 2005). To the best of our knowledge, growth of *S. solfataricus* on lactate has not been reported.

Many Lrp-like regulators bind amino acids allowing a response in function of the *in vivo* concentration of the involved amino acid(s). Depending on the regulator, ligand specificity can vary notably. Some regulators have a broad aa specificity range while other regulators are restricted to binding to only one type of amino acid (e.g. LysM which can only bind lysine; Brinkman et al., 2002).

Several ligand-bound cocrystal structures of Lrp-like regulators have recently been determined (Thaw et al., 2006; Okamura et al., 2007; Ren et al., 2007; Shrivastava and Ramachandran, 2007; Kumarevel et al., 2008; Reddy et al., 2008). These structures allowed the identification of residues that are important in the formation of the ligand-binding pocket and the establishment of specific interactions with the ligand. The aa conservation of Ss-LrpB of these residues is very low (Fig. 9), and this is also observed for Ptr2 and LrpA. The binding pocket is formed between the loop connecting two β strands of one monomer (β3 and β4) and β5 of another subunit that forms a dimer with the former. The weak conservation is especially observed for the loop, in which only a glycine is conserved that is present in all Lrp-like regulators studied so far (position 37 of the C-terminal domain; Thaw et al., 2006). This suggests that if Ss-LrpB is bound by an effector molecule, this might be another small molecule apart from an amino acid.

The *porDAB* operator exhibits a binding site organization identical to that in the control region of the *Ss-lrpB* gene itself (Fig. 5D; Peeters et al., 2004). It is highly

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd, Molecular Microbiology, 71, 972–988
plausible that the formation of the different complexes follow the same sequential assembly as shown for the autoregulation. In contrast, the architecture of the Sso2126 and Sso2127 operators is fundamentally different with only one binding site that is bound specifically with a high affinity. At a higher protein concentration, this binding extends further downstream (and in the case of Sso2127, somewhat upstream as well) until the protection reaches and overlaps the promoter elements. Suppos-

edly, one Ss-LrpB dimer which is bound to the core high-affinity Box triggers the cooperative binding of additional dimers. It can be noted that Ss-LrpB binding to the operator fragments of all three regulatory targets results in the formation of rather unstable higher order complexes and that the K_Ds of these interactions are somewhat higher as compared with binding to the Ss-lrpB control region (overall K_D of about 10 nM; Peeters et al., 2004). This might be explained by the lack of an effector molecule in the in vitro binding experiments, which is supposedly not required for autoregulation but would enhance complex formation in the control regions of the target genes. It is worth noting that most Lrp-like regulators perform an effector-independent autoregulation (Kölling and Lother, 1985; Madhusudhan et al., 1993; 1995; Keuntje et al., 1995; Jafri et al., 1999).

The observation of DNase I hyperreactivity at several sites in the three target operator regions (mainly at the borders of the binding sites and in between two juxtaposed Boxes) points out that binding of Ss-LrpB notably induces DNA deformations. Previously we have shown that at each specifically bound Box in the Ss-lrpB operator a local bending is induced with an average bending angle of about 50°C (Peeters et al., 2004). In the case of p/o porDAB, the organization of the binding sites ensures that these local bending angles are additive upon formation of the higher-order nucleoprotein complex and additional architectural deformations such as DNA wrapping could occur (similar to the situation in autoregulation; Peeters et al., 2006). In the case of p/o Sso2126 and p/o Sso2127, additional less-specific binding can also lead to increased DNA bending, and even DNA wrapping and/or looping. DNA wrapping is a basic propensity of Lrp-like proteins. Based on octameric crystal structures, several structural models of Lrp-DNA complexes in which the DNA is wrapped around an octameric molecule have been proposed (Leonard et al., 2001; Koike et al., 2004; Thaw et al., 2006; de los Rios and Perona, 2007; Yokoyama et al., 2007). DNA wrapping is not only important when performing regulation of gene expression, but also when playing a more general role in DNA compaction.

Fig. 6. A. DNase I footprinting of the binding of Ss-LrpB to the control region of Sso2127 having the top strand labelled. The used Ss-LrpB concentrations are mentioned above. $A+G$ and $C+T$ represent the Maxam-Gilbert sequencing ladders. Regions which are protected against DNase I cleavage are indicated with a vertical line; hyperreactive sites are pointed out with a ball-and-stick symbol. Additional protection regions and hyperreactive sites that are observed at higher protein concentrations are indicated with a dashed line and a dashed symbol respectively. The position of Box 1 is indicated to the right of the autoradiograph.

B. EMSA of binding of Ss-LrpB to a 45 bp oligonucleotide duplex with Box 1 of p/o Sso2127. The applied Ss-LrpB concentrations are mentioned, as are the positions of free DNA (F) and bound complexes (B).
Fig. 7. A. Schematic overview of the genotype of PL2025 and the Ss-lrpB::lacS gene disruption strain (with indication of the position of the NdeI restriction site in the ORF of Ss-lrpB). Arrows indicate start points of transcription.

B. Southern blot experiment with NdeI-restricted gDNA of PBL2025 and Ss-lrpB::lacS and a combination of Ss-lrpB and lacS probes. Ss-lrpB contains an internal NdeI site in contrast to the lacS cassette; therefore, the labelled Ss-lrpB probe hybridizes to a 1945 bp fragment and the lacS probe to a 6139 bp fragment.

Fig. 8. A. Gene expression analysis by means of RT-PCR comparing the expression of the target genes and 23S rRNA in either the Ss-lrpB::lacS gene disruption strain or PBL2025. Products were analyzed on gel after a PCR with either 15 or 30 cycles, as indicated.

B. Scheme of the average relative expression levels of Sso2126, Sso2127 and porDAB in either the Ss-lrpB::lacS gene disruption strain or PBL2025, based on triplicate real-time qPCR experiments. These data, including standard deviations, are shown in Table S1.
chromosome structure and organization. This has been shown for several bacterial homologues (E. coli Lrp, LrpC from Bacillus subtilis; d’Ari et al., 1993; Tapias et al., 2000; Beloin et al., 2003), and also for Smj12 from S. solfataricus (Napoli et al., 2001).

Despite the dissimilar operator organizations, the regulatory outcome for the different target genes is identical in the given growth conditions: Ss-LrpB exerts an activation at all three promoters. The difference in expression between WT and an Ss-lrpB gene disruption mutant is highest for porDAB (5.9-fold upregulation in the WT), followed by Sso2127 (3.1-fold) and Sso2126 (1.4-fold). Although the latter value is too low to be significant when determined by real-time qPCR, taken together with the fact that Ss-LrpB binds this p/o region in vitro, it might still indicate the possibility of an increased Ss-LrpB activation effect in other growth conditions. The high-affinity Box in p/o Sso2126 is located more upstream than in the other two operators (position 220) and possibly the in vivo concentration of Ss-LrpB in the applied growth conditions (exponential growth in rich medium) is too low to promote sequential binding all the way down to the promoter region. The precise mechanism of Ss-LrpB activation at the porDAB promoter remains to be elucidated, but might be similar to the mechanism employed by Ptr2. Ptr2 activates transcription by direct recruitment of TBP to the Tata box (Ouhammouch et al., 2003). The minimal required upstream activating sequence for Ptr2 regulation is a binding site about 6–8 bp upstream of the Tata box. Therefore, it is very likely that Ss-LrpB activation is exerted by the establishment of protein–protein contacts between Ss-LrpB bound at the most downstream Box 1 and TBP. Box 1 is separated by 7 bp of the Tata box and only by 1 bp of the BRE element (Fig. 3A). Despite this very close spacing, it might be hypothesized that simultaneous binding of Ss-LrpB to Box 1 and TBP/TFB to the promoter elements is possible. Simultaneous binding of the regulator and the transcription factors has previously been shown to occur in the p/o Ss-lrpB, in which Box 1 and BRE overlap with 1 bp. Furthermore, based on the crystal structure of the TBP/TFB/DNA complex (Littlefield et al., 1999), it might be hypothesized that Ss-LrpB and TBP/TFB bind opposing faces of the DNA helix thereby avoiding a steric clash. It is difficult to predict the effect of the protein-induced DNA conformational changes upon the regulatory outcome, although it is likely that DNA bending and wrapping affect the initiation frequency. Together with the fact that different complexes are formed in a concentration-dependent manner, this suggests that different regulatory responses might be generated depending on the Ss-LrpB concentration. For the autoregulation, a theoretical regulatory switch model has been proposed in which it is hypothesized that at low concentrations, upon occupation of only one Box, an activation occurs while at higher concentrations, when all three Boxes are bound, DNA deformations lead to repression (Peeters et al., 2004; 2006).

Here, we describe the first construction of a gene disruption mutant of an archaeal lrp homologue. In the future, this mutant will allow an even more thorough genomewide investigation of the complete Ss-LrpB regulon. Bacterial Lrp-like regulators, having either a global or a specific function, are always involved in modulating the expression of genes that are linked to the amino acid metabolism. The as yet identified ligands that bind these regulators are without exception amino acids. Now, it is becoming clear that the archaeal branch of the Lrp family contains regulators that can fulfil a wider variation of physiological tasks in the cell that are not confined to the amino acid metabolism. Based on their target genes that have been identified so far, and the proposed lack of an amino acid binding pocket in the C-terminal domain,
Ss-LrpB seems to constitute a separate functional Lrp subclass together with the euryarchaeotic orthologues Ptr2 and LrpA (which have 33% and 32% aa sequence identity with Ss-LrpB respectively; Peeters et al., 2004). Their physiological role is related to regulating redox or energy processes in the cell. Furthermore, it is very likely that Ss-LrpB employs the same molecular mechanism of activation as Ptr2, at least for one of the promoters. Here, activation might occur through Ss-LrpB-mediated recruitment of TBP to the TATA box. It is obvious that we are only beginning to understand the enormous complexity of this bacterial/archaeal regulator family with regard to their physiological roles, regulatory mechanisms and ligand responses.

Experimental procedures

In silico binding site identification

A genome-wide in silico binding site prediction was done with the Ss-LrpB binding energy position weight matrix (Peeters et al., 2007), taking cooperativity into account (van Oeffelen et al., 2008). This analysis will be published elsewhere. In addition, based on the sequences of known Ss-LrpB binding sites prediction of sites was performed by employing the web server PredictRegulon (http://www.cdfd.org.in/predictregulon; Yellaboina et al., 2004). Finally, some potential binding sites were found by visual inspection.

Strains and growth conditions

Sulfolobus solfataricus P2 (DSM1617) and PBL2025 (Schellt et al., 2004) were grown aerobically at 80°C in medium described by Brock, supplemented with either 0.1% tryptone or 0.4% glucose as carbon and energy source (Brock et al., 1972). Prior to transformation, *S. solfataricus* PBL2025 was grown in medium supplemented with both 0.1% tryptone and 0.2% sucrose. For selection of transformants, 0.4% lactose was added to the basic mineral medium. Growth of the cells was followed by measuring the optical density at 660 nm.

Sulfolobus solfataricus was grown on plates containing Brock medium with 0.64% Gelrite and with 0.1% tryptone as a sole carbon and energy source (Grogan, 1989). Colonies were obtained after incubation at 78°C during 5–7 days.

Escherichia coli MC1061 or TOP10 (Invitrogen) was used for propagation and production of plasmid DNA and grown in rich medium (853; Glansdorff, 1965) with 50 μg ml⁻¹ ampicillin. Growth was also followed by measuring the optical density at 660 nm.

DNA and RNA extractions

Genomic DNA was extracted from 4 ml of *S. solfataricus* culture with a QuickPick SML gDNA kit (magnetic bead purification; BioNobile). Plasmid DNA was extracted from *E. coli* by means of the alkaline lysis method with a Miniprep kit (Qiagen; Birnboim and Dooly, 1979). RNA extraction from *S. solfataricus* was done with an RNasey mini kit (Qiagen), after performing cell lysis with proteinase K treatment. To prevent genomic DNA contamination, RNA samples were treated on-column with DNase I following the manufacturer’s instructions (Qiagen).

Plasmid constructions

The promoter regions of Sso2126, Sso2127 and porD were amplified from genomic DNA [primer pairs DC348(f)/ DC349(r), DC350(f)/DC351(r) and DC104(f)/DC178] and cloned into the pCR2.1.TOPO vector using a TOPO TA cloning kit (Invitrogen). Site-directed mutagenesis of the porDAB control region was performed with the overlap PCR method (Higuchi et al., 1988) with inside primers DC518(f)/ DC519(r) (Box 3 mutant), DC520(f)/DC521(r) (Box 3* mutant), DC522(f)/DC523(r) (Box 2 mutant) or DC524(f)/ DC525(r) (Box 2* mutant) and outside primers DC104(f)/ DC178.

The pET2268Ss-lrpB knockout plasmid was constructed by cloning the 909 bp Ss-lrpB upstream region, amplified with DC445(f) and DC446(r), in pET2268 (Szabo et al., 2007) using the KpnI and NcoI restriction sites. The downstream region was amplified with DC449(f) and DC448(r), producing a 1068 bp fragment, and cloned into the BamHI and NotI restriction sites. A list of all the oligonucleotides used in this work is provided in the Supplementary material (Table S2).

EMSAs, footprinting and binding interference

Recombinant Ss-LrpB was overexpressed in *E. coli* and purified by a combination of heat treatment and ion exchange chromatography, as described (Peeters et al., 2006). Protein : DNA interaction experiments were performed with purified Ss-LrpB and DNA fragments generated either by PCR by using ReadyMix Taq PCR Mix (Sigma-Aldrich) or by complementary oligonucleotide annealing. The following oligonucleotides were used for annealing: DC283(f)/DC284(r) (%porDABBox 1 + 2 truncated fragment), DC285(f)/DC286(r) (%porDABBox 2 + 3 truncated fragment), DC533(f)/ DC534(r) (%porDAB pot Box 1), DC535(f)/DC536(r) (%porDAB pot Box 2), DC539(f)/DC540(r) (%porDAB pot Box 3), DC537(f)/DC538(r) (%porDAB pot Box 2*), DC541(f)/ DC542(r) (%porDAB pot Box 3*), DC384(f)/DC385(r) (%Sso2126 pot Box 1), DC703(f)/DC704(r) (%Sso2126 Box 2) and DC386(f)/DC387(r) (%Sso2127 Box 1). All primer sequences are listed in Table S2. For fragments containing the promoter regions of Sso2126, Sso2127 and porDAB (including porDAB operator mutants), the same primer pairs were used as for the cloning. A shorter %Sso2126 fragment, with the downstream end located closer to Box 2, was prepared using DC348(f) and DC707(r). All fragments or oligonucleotide duplexes were labelled by having one primer 5’ end labelled with [γ-32P]-ATP (GE Healthcare). Prior to EMSA, footprinting or binding interference analysis, the DNA fragments were purified by polyacrylamide gel electrophoresis.

Electrophoretic mobility shift assays were performed as described previously (Enoru-Eta et al., 2000). All binding reactions were done at 37°C in LrpB binding buffer (Peeters et al., 1998).
et al., 2007) and in the presence of 25 μg ml⁻¹ sonicated herring sperm DNA as non-specific competitor. The binding dissociation constants K_D were determined by estimating the half-saturation point. DNase I footprinting (Enoru-Eta et al., 2000), in-gel Cu-phenanthroline footprinting (Peeters et al., 2004) and depurination/depyrimidation binding interference experiments (Wang et al., 1998) were performed as described previously, using LrpB binding buffer to perform the binding reactions. Reference ladders were generated by chemical sequencing methods (Maxam and Gilbert, 1980).

Gene disruption

For inactivation of Ss-lrpB in PBL2025, the S. solfataricus gene disruption procedure was employed as described (Albers and Driessen, 2007).

Southern blotting

Southern blotting was performed as described (Zolghadr et al., 2007), with the following modifications: 5 μg of genomic DNA (extracted from S. solfataricus PBL2025 or PBL2025 Ss-lrpB::lacS) was digested overnight with NdeI and run on a 0.8% agarose gel. For the blotting, nylon membrane Hybond-NX from GE Healthcare was used. Probes representing lacS and Ss-lrpB were PCR-amplified by using PBL2025 genomic DNA and primers DC559(f)/DC560(r) and DC497(f)/DC498(r) respectively. Subsequently, these fragments were digoxigenin-labelled by using hexanucleotide mix, dNTP labelling mix and Klenow enzyme (Roche Applied Science). Detection was done with a GeneGnome chemiluminescence detector (Syngene).

Primer extension analysis, cDNA synthesis and RT-PCR

Primer extension analysis of S. solfataricus P2 RNA was performed as described previously (Enoru-Eta et al., 2002) by using AMV Reverse Transcriptase (Roche Applied Science). In each experiment, 100 μg of RNA was used. For Sso2126 transcription start determination, primer DC349(r) was used, for Sso2127 primer DC351(r) and for porDAB primer DC178.

cDNA was prepared from total RNA extracted from S. solfataricus PBL2025 or Ss-lrpB::lacS with Superscript II Reverse Transcriptase (Invitrogen). About 2 μg of total RNA was incubated with 200 ng random primers and the reaction was performed following the manufacturer’s instructions. This was followed by RNase H treatment (Fermentas). cDNA was then used as a template in PCR reactions to analyse porDAB operon structure, by using primers DC569(f), DC570(r), DC571(f) and DC572(r) and to analyse gene expression of Sso2126, Sso2127, porD and 23S rRNA using primer pairs DC573(f)/DC574(r), DC575(f)/DC576(r), DC577(f)/DC578(r) and DC579(f)/DC580(r) respectively. All primer sequences are listed in Table S2.

Real-time quantitative PCR

First-strand cDNA synthesis (using 1 μg of total RNA) and preparation of the PCR reactions was done with the SYBR GreenER two-step qRT-PCR kit for iCycler (Invitrogen). The amplicon sizes were between 100 and 300 bp. For each reaction, 1 μl of a 10⁻¹ dilution was used as a template. The primer pairs were the same as used in the RT-PCR analysis described above. Primer concentrations were optimized for each gene by calibration with genomic DNA. Real-time qPCR was carried out in an iCycler IQ (Bio-Rad) using the following protocol: 50°C for 2 min, 95°C for 8.5 min and 40 cycles of 95°C for 15 s and 60°C for 60 s. This was followed by a melting curve analysis. Three replicates per primer pair were performed. The threshold and threshold cycles (Ct) were determined for each reaction and the ratio of gene expression in the Ss-lrpB::lacS versus PBL2025 was quantified with the method of Pfaffl (2001). The results are normalized to the 23S rRNA gene, of which the expression was comparable in the two strains.

Acknowledgements

We acknowledge Carine Wartel and Merel Sanctorum for their technical assistance and we are grateful to Phu Nguyen Le Minh for performing the primer extension analyses. This work was supported by the Research Foundation Flanders (FWO-Vlaanderen, grant G.0015.04 and a grant for a stay abroad by E.P. in the laboratory of S.V.A. and A.D.), the Research Council of the Vrije Universiteit Brussel (OZR) and the Vlaamse Gemeenschap commissies. E.P. is a postdoctoral fellow of FWO-Vlaanderen. S.V.A. was supported by a VIDI grant by the Dutch Science Organization (NWO).

References

© 2008 The Authors

Additional supporting information may be found in the online version of this article.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
Figure S1. Analysis of the genomic context of *Ss-lrpB*: primer extension analyses, *porDAB* operon structure analysis and analysis of the presence of IS elements.

A. Schematic representation of the genomic environment of *Ss-lrpB*. Bp length is indicated on top and ORFs are represented by large open arrows. From left to right *Sso2125*, *Sso2126*, *Sso2127*, *Sso2128*, *Sso2129*, *Sso2130*, *Sso2131* and *Sso2133* are depicted with indication of the promoter regions (arrows). The hybridization positions of primers used in the *porDAB* operon analysis and in the analysis of presence/absence of ISC1078 are also shown. An asterisk indicates the position of ISC1078 in the different strains. B. Primer extension analysis of the transcripts showing the transcription start sites. The main primer extension products are indicated with an arrow. A^+G and C^+T represent the corresponding Maxam-Gilbert sequencing ladders. A systematic correction in the alignment of the cDNA product with the sequencing ladders has been performed to take into account the difference in migration velocity of the cDNA and the reference ladders due to different ends generated by the AMV reverse transcriptase and the chemical modification and cleavage reactions. C. *porDAB* operon analysis with RT-PCR. Lanes 1 and 2. PCRs with primers DC569(f)/DC570(r); lanes 3 and 4. PCRs with primers DC571(f)/DC570(r); lanes 5 and 6. PCRs with primers DC569(f)/DC572(r). Samples in lanes 2, 4 and 6 have been treated identical as the samples in the respective preceding lanes, but without addition of RT. RT-PCRs with DC569(f)/DC570(r), DC571(f)/DC572(r) and DC569(f)/DC572(r) are expected to form 257 bp-, 237 bp- and 1601 bp-fragments, respectively. D. PCRs with gDNA to analyze IS rearrangements. Lane 1. PCR with P2 gDNA and primers DC449(f)/DC448(r). Lane 2. PCR with PBL2025 gDNA and primers DC449(f)/DC448(r). Lane 3. PCR with P2 gDNA and primers DC591(f)/DC592(r). Lane 4. PCR with PBL2025 gDNA and primers DC591(f)/DC592(r).

Primer extension analysis allowed the mapping of the transcription start sites of the three potential *Ss-LrpB* target genes (Figure S1B). The positions of the transcription starts are indicated in Figure 2 of the main text. For *Sso2127* and *porD*, a single transcript was detected. The transcripts are leaderless. Transcription is initiated at the A residue of the ATG start codon of *porD* and at the residue immediately preceding the start codon of *Sso2127*. *Sso2126*-specific reverse transcription resulted in two
cDNAs with a length differing by 1 nt. The strongest transcript is initiated at an A residue, which is preceded by a T residue. This pyrimidine/purine step at the initiator site is a prerequisite for efficient and correct transcription initiation in archaea (Soppa, 1999) and is also observed for the other genes analyzed here. Transcription of Sso2126 is initiated 8 nt upstream of the ATG start codon. Of this stretch only GAG is complementary to the 3’ end of 16S rRNA. Therefore, this short 5’ untranslated region (5’-UTR) does not seem to harbour a Shine-Dalgarno (SD) site. S. solfataricus, and archaea in general, contain a high fraction of leaderless transcripts (Torarinsson et al., 2005; Brenneis et al., 2007). Ss-lrpB itself also produces a leaderless transcript (Peeters et al., 2004). Based on the transcription start sites, the most probable recognized TATA boxes and transcription factor B recognition elements (BREs) can be predicted in the three promoter regions. These predictions indicate moderately strong promoters. In the case of porD, the TATA box is quite well conserved but the BRE element is not very purine-rich, although it does contain an A residue at positions -32 and -33. This is in contrast to the Sso2126 and Sso2127 promoters, which contain purine-rich BRE elements and weak TATA boxes with conservation mainly in the downstream half sites.

The porDAB genes are assumed to form an operon because of their close packing and their annotations as POR δ, POR α and POR β, respectively (She et al., 2001). We experimentally verified the existence of a porDAB polycistronic messenger by performing RT-PCR with total RNA extracted from S. solfataricus P2 cells (Figure S1C). The primers that were used are complementary to the ORFs of the genes and the corresponding mRNA molecule (Figure S1A). Amplification with cDNA as a template indicates the existence of a mRNA spanning all three por genes (Figure S1C). Equivalent samples to which no reverse transcriptase was added, were not productive, confirming the absence of genomic DNA in the RNA preparations.

The genome of S. solfataricus P2 contains a large number of insertion sequence (IS) elements, including 8 copies of the ISC1078 element (She et al., 2001). According to the published genome sequence, one of these copies is located in between Ss-lrpB and Sso2133 (Figure S1A). However, analysis of the genomic DNA of strains P2 and PBL2025 used in this work demonstrated the absence of this IS element (Figure S1D). A PCR with primer pair DC449(f)/DC448(r) resulted in the amplification of a 1068 bp-fragment instead of the expected 2148 bp-fragment. Sequencing of the P2 genomic region revealed the absence of a 2 bp-direct repeat at the ISC1078 target site (CA at positions -155 and -156 of the Ss-lrpB promoter region). This implies that the P2 strain utilized in this study never carried an ISC1078 copy at that position, as observed previously in other laboratories (Redder and Garrett, 2006). Intriguingly, PCR and sequencing analysis with primers DC591(f) and DC592(r) has shown that a copy of ISC1078 is inserted about 6 kbp further upstream in PBL2025, but not in P2 (Figure S1A and D). This resulted in an amplicon of 1898 bp with PBL2025 genomic DNA as opposed to 825 bp with P2 genomic DNA. The IS element starts 37 nt downstream of the Sso2126 stop codon and ends before position –374 of the Sso2127 control region. It is therefore not assumed to interfere with the expression of Sso2126 or the transcriptional regulation of Sso2127.

Table S1. Real-time qPCR data obtained from a series of triplicate experiments for relative gene expression analysis of Sso2126, Sso2127 and Sso2128 (porD).

<table>
<thead>
<tr>
<th>gene</th>
<th>CP<sub>WT</sub></th>
<th>σ</th>
<th>CP<sub>KO</sub></th>
<th>σ</th>
<th>ratio (WT/KO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sso2126</td>
<td>20.9</td>
<td>0.62</td>
<td>21.4</td>
<td>0.35</td>
<td>0.70</td>
</tr>
<tr>
<td>Sso2127</td>
<td>19.7</td>
<td>0.40</td>
<td>21.3</td>
<td>0.21</td>
<td>0.32</td>
</tr>
<tr>
<td>Sso2128</td>
<td>18.2</td>
<td>0.15</td>
<td>20.9</td>
<td>0.36</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Table S2. List of sequences of oligonucleotides used in this work.

<table>
<thead>
<tr>
<th></th>
<th>Oligonucleotide</th>
<th>Sequence Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC104(f)</td>
<td>5'-AACTGCAGTTAAAACCTTTCTCCTCCCCCATATCTGCACT-3'</td>
<td></td>
</tr>
<tr>
<td>DC178</td>
<td>5'-CTGGAAGATACCTCTATACACTAC-3'</td>
<td></td>
</tr>
<tr>
<td>DC283(f)</td>
<td>5'-CTAGAATCTCATAAACTTCTATACGTCATAGTTAACATAT-3'</td>
<td></td>
</tr>
<tr>
<td>DC284(r)</td>
<td>5'-CTAGATTGGTACATATGTTAATCTTGGCAATTATTTGCAATTATGATT-3'</td>
<td></td>
</tr>
<tr>
<td>DC285(f)</td>
<td>5'-CTAGACTTGGCACATT</td>
<td></td>
</tr>
<tr>
<td>DC286(r)</td>
<td>5'-CTAGATTTGCAATTATTTGCAATTTATAGATT</td>
<td></td>
</tr>
<tr>
<td>DC348(f)</td>
<td>5'-GACGGCTAATTAGCAGAGATACACG</td>
<td></td>
</tr>
<tr>
<td>DC349(r)</td>
<td>5'-GTTAACCCTACATTACCAGTTGGG-3'</td>
<td></td>
</tr>
<tr>
<td>DC350(f)</td>
<td>5'-CTAGACTTTGCACATTT</td>
<td></td>
</tr>
<tr>
<td>DC351(r)</td>
<td>5'-GCACCTACTACTGACCCACCTAAACC-3'</td>
<td></td>
</tr>
<tr>
<td>DC384(f)</td>
<td>5'-CTAGATTTTAAGAATTTTCAATT</td>
<td></td>
</tr>
<tr>
<td>DC385(r)</td>
<td>5'-CTAGAATTGAAAATTCTTAAAAT</td>
<td></td>
</tr>
<tr>
<td>DC386(f)</td>
<td>5'-CTAGACTTGCATAATAATGCAAGT</td>
<td></td>
</tr>
<tr>
<td>DC387(r)</td>
<td>5'-CTAGACTTGCATAATAATGCAAGT</td>
<td></td>
</tr>
<tr>
<td>DC445(f)</td>
<td>5'-CGGGGTACCGAGGAAAGGAAAAATAAAGCAAGAACC-3'</td>
<td></td>
</tr>
<tr>
<td>DC446(r)</td>
<td>5'-CATGCCATGCTTTAAGATGATGCAAGCGCACATC-3'</td>
<td></td>
</tr>
<tr>
<td>DC448(r)</td>
<td>5'-AAGGAAAAAAAGG</td>
<td></td>
</tr>
<tr>
<td>DC449(f)</td>
<td>5'-CGCGGATCCCCCATCATTATACATTATACATTATC</td>
<td></td>
</tr>
<tr>
<td>DC497(f)</td>
<td>5'-CATATGTACATGTAATCTAGGCCCATTATCTAACCAACC-3'</td>
<td></td>
</tr>
<tr>
<td>DC498(r)</td>
<td>5'-GTAAATATAATAAGACTTGATGATACTGATGAG</td>
<td></td>
</tr>
<tr>
<td>DC518(f)</td>
<td>5'-AACTGCAGTTAAAACCTTTCTCCTCCCCCATATCTGCACT</td>
<td></td>
</tr>
<tr>
<td>DC519(r)</td>
<td>5'-CTTTGGCAAAAATGTTGAAGATATGGGAAG-3'</td>
<td></td>
</tr>
<tr>
<td>DC520(f)</td>
<td>5'-GCACAAGATTACAGAAACGATCTAATAAATTGC-3'</td>
<td></td>
</tr>
<tr>
<td>DC521(r)</td>
<td>5'-GTAAATATAATAAGACTTGATGATACTGATGAG</td>
<td></td>
</tr>
<tr>
<td>DC522(r)</td>
<td>5'-GTTTTGCAATTATTTYGATGATGATGAG</td>
<td></td>
</tr>
<tr>
<td>DC523(r)</td>
<td>5'-GTTTTGCAATTATTTYGATGATGATGAG</td>
<td></td>
</tr>
<tr>
<td>DC524(f)</td>
<td>5'-GTTTTTGGCAAAAATGTTGAAGATATGGGAAG-3'</td>
<td></td>
</tr>
<tr>
<td>DC525(r)</td>
<td>5'-CTAGATTTTACAGTTAAATGATGCAAGCGCACATC-3'</td>
<td></td>
</tr>
<tr>
<td>DC533(f)</td>
<td>5'-AAAAGGCATTA</td>
<td></td>
</tr>
<tr>
<td>DC534(r)</td>
<td>5'-AACATAAAAGGAT</td>
<td></td>
</tr>
<tr>
<td>DC535(f)</td>
<td>5'-AACATAAAAGGAT</td>
<td></td>
</tr>
<tr>
<td>DC536(r)</td>
<td>5'-AACATAAAAGGAT</td>
<td></td>
</tr>
<tr>
<td>DC537(f)</td>
<td>5'-AACATAAAAGGAT</td>
<td></td>
</tr>
<tr>
<td>DC538(r)</td>
<td>5'-AACATAAAAGGAT</td>
<td></td>
</tr>
<tr>
<td>DC539(f)</td>
<td>5'-AACATAAAAGGAT</td>
<td></td>
</tr>
<tr>
<td>DC540(r)</td>
<td>5'-AACATAAAAGGAT</td>
<td></td>
</tr>
</tbody>
</table>
TATGGCAAAATGTGCAAGATAATGCCTTTTTA-3'

DC541(f) 5’-TAAAAAAGGCAAT
 TCTTGCAAAAGATTTACATAATCCTTTTATTGTT-3’

DC542(r) 5’-AACATAAAAGGAT
 TATGGAATCTTTTGCAAGATAATGCCTTTTTA-3’

DC559(f) 5’-TACTGGCAACAGTGTTTGCTTAAG-3’

DC560(r) 5’-CCCTACGGAAGTATCTCAAG-3’

DC569(f) 5’-GCTGAAGTGTGCCTTTTAAGG-3’

DC570(r) 5’-TACATCGGCGTACATTGCATGCATGAG-3’

DC571(f) 5’-ACTTACATAAAGCCAACCCGTATTATTTG-3’

DC572(r) 5’-TATTGTTCCTTGGCTCAAGCAGCTTTAG-3’

DC573(f) 5’-AGCGGAATGGCTTACTCATTAGCTTG-3’

DC574(r) 5’-GAATTTAACGGCTTGGAATTCCTACG-3’

DC575(f) 5’-TGCTGGCGTTCTCTTTGCTTATC-3’

DC576(r) 5’-TTACCCACCATTGCATGTCTTTAC-3’

DC577(f) 5’-AGAGGGTACAGTATCCAGCAGTTC-3’

DC578(r) 5’-TTCAGCGCATATTCCGATCCTACAC-3’

DC579(f) 5’-ACATGCAATTCGCTTACCTCCTGAC-3’

DC580(r) 5’-ACGCCCCCTTAACTGGCAGCTTATC-3’

DC591(f) 5’-CGGGGTACCTCAGCGGAATGGCTTAC-3’

DC592(r) 5’-CATGCCATGGAATTTACCTTCTATACG-3’

DC703(f) 5’-TAAAAAGGCATTA
 TCTTTACATTTTACAAATCCCTTTATGTT-3’

DC704(r) 5’-AACATAAAAAAGGAT
 TATGGAAATAATGTTAAGATAATGCCTTTTTA-3’

DC707(r) 5’-CTATATAAGGCGATCCATGAGTCC-3’