The Herschel view of the environment of the radio galaxy 4C+41.17 at z = 3.8

Published in:
Monthly Notices of the Royal Astronomical Society

DOI:
10.1093/mnras/sts264

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
The *Herschel* view of the environment of the radio galaxy 4C+41.17 at z = 3.8

¹European Southern Observatory, Karl-Schwarzschildstr.2, D-85748 Garching bei München, Germany
²Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
³INAF - Osservatorio di Roma, Via Frascati 33, I-00040 Monteporzio, Italy
⁴CASS, PO Box 76, Epping, NSW 1710, Australia
⁵Centre for Astrophysics Research, STRI, University of Hertfordshire, Hatfield, AL10 9AB
⁶Physics Department, University of the Western Cape, Bellville 7535, South Africa
⁷Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands
⁸Institut d’Astrophysique de Paris, 98bis Bd Arago, F-75014 Paris, France
⁹Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT
¹⁰Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstr. 150, Gebäude NA 7/173, D-44780 Bochum, Germany
¹¹School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD
¹²UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ
¹³Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ
¹⁴GEPI, Observatoire de Paris, UMR 8111, CNRS, Université Paris Diderot, 5 place Jules Janssen, F-92190 Meudon, France
¹⁵Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
¹⁶Leiden Observatory, University of Leiden, PO Box 9513, NL-2300 RA Leiden, Netherlands
¹⁷Institut d’Astrophysique Spatiale, CNRS, Université Paris-Sud, F-91405 Orsay, France

Accepted 2012 October 22. Received 2012 October 8; in original form 2012 July 19

ABSTRACT

We present *Herschel* observations at 70, 160, 250, 350 and 500 μm of the environment of the radio galaxy 4C+41.17 at z = 3.792. About 65 per cent of the extracted sources are securely identified with mid-infrared sources observed with the *Spitzer Space Telescope* at 3.6, 4.5, 5.8, 8 and 24 μm. We derive simple photometric redshifts, also including existing 850 and 1200 μm data, using templates of active galactic nuclei, starburst-dominated systems and evolved stellar populations. We find that most of the *Herschel* sources are foreground to the radio galaxy and therefore do not belong to a structure associated with 4C+41.17. We do, however, find that the spectral energy distribution (SED) of the closest (~25 arcsec offset) source to the radio galaxy is fully consistent with being at the same redshift as 4C+41.17. We show that finding such a bright source that close to the radio galaxy at the same redshift is a very unlikely event, making the environment of 4C+41.17 a special case. We demonstrate that multiwavelength data, in particular on the Rayleigh–Jeans side of the SED, allow us to confirm or rule out the presence of protocluster candidates that were previously selected by single wavelength data sets.

Key words: techniques: photometric – galaxies: clusters: general – galaxies: high-redshift – galaxies: individual: 4C+41.17.

1 INTRODUCTION

1.1 High-redshift radio galaxies as tracers of protoclusters

High-redshift radio galaxies (HzRGs) are galaxies in the distant Universe (z > 1) showing enormous radio luminosities (∼ L_500 MHz > 10^{26} W Hz^{-1} Mpc^{-2}). HzRGs act as rare tracers of structure, allowing us to study the formation of supermassive black holes, the effect of radio jets on their host galaxies, the feedback from these black holes, and the early mass assembly of the rich cluster environments of the nearest protoclusters, protovirga and protoclusters. HzRGs are therefore important probes of structure formation in the first billion years of the Universe.
10^{-7} \, \text{W Hz}^{-1}; \text{Miley \& De Breuck 2008}. They are extremely rare objects, with number densities \sim 10^{-9} \, \text{Mpc}^{-3} in the redshift range 2 < z < 5 (Dunlop \& Peacock 1990; Willott et al. 2001; Venemans et al. 2007). Investigating their spectral energy distribution (SED) reveals features of their stellar, dust and active galactic nucleus (AGN) components. In particular, studies of the stellar and dust component have shown that HzRGs are amongst the most massive galaxies in the early Universe (e.g. Seymour et al. 2007; Bryant et al. 2009; De Breuck et al. 2010). According to the hierarchical model of galaxy assembly (White \& Rees 1978), this implies that they reside in peaks of dark matter overdensities. As galaxy clusters represent the most massive structures in the Universe, HzRGs are expected to preferentially reside in sites of galaxy cluster formation. At z = 2, the Universe is only \sim 3.2 \, \text{Gyr old and galaxy clusters are likely still forming but have not had time to virialize.} For this reason, we refer to these matter overdensities as protoclusters. Observations have indeed shown that HzRGs preferentially reside in overdense environments (e.g. Stevens et al. 2003, 2010; Falder et al. 2010; Galametz et al. 2010, 2012; Mayo et al. 2012) and protoclusters are very likely to be found in the vicinity of these objects. As HzRGs are found up to very high redshift, they serve as efficient beacons for identifying very high redshift galaxy clusters. The fields of HzRGs are therefore unique laboratories to study the formation and evolution of the first galaxies and galaxy structures.

1.2 The HeRG\^{E} project

With the launch of the Herschel satellite (Pilbratt et al. 2010), it is possible for the first time to obtain full coverage of the far-IR SED for a large sample of HzRGs. The Herschel Radio Galaxy Evolution project (HeRG\^{E}) makes use of the two imaging instruments onboard Herschel: the Photodetecting Array Camera (PACS; Poglitsch et al. 2010) and the Spectral and Photometric Imaging Receiver (SPIRE; Griffin et al. 2010). These instruments cover a wavelength range of 70–500 \mu m and thus constrain the far-infrared (IR) dust peak very well for a range of redshifts. The project was granted \sim 27 h of OT1 observing time (PI: N. Seymour) allowing 71 HzRGs to be observed in five bands in PACS and SPIRE (PACS: 70/100 \mu m, 160 \mu m; SPIRE: 250, 350, 500 \mu m). In addition to studying the radio galaxies themselves in more detail (Ivison et al. 2012; Rocca-Volmerange et al. 2012; Seymour et al. 2012) project HeRG\^{E} allows us, for the first time, to systematically study the environments of the radio galaxies at these wavelengths, reaching out 1–3 arcmin from the HzRGs. This complements our statistical studies of the HzRG environments in the mid-IR (Galametz et al. 2012; Mayo et al. 2012). Reaching out to longer wavelengths allows us to constrain the dust peak of the SEDs and derive photometric redshift estimates to confirm or rule out overdensities associated with the HzRG.

This work reports our pilot study of the well-known HzRG 4C+41.17. This analysis will be expanded systematically to the whole data set in future work.

1.3 4C+41.17

4C+41.17 at z = 3.792 is one of the best-studied HzRGs. It was discovered by Chambers, Miley \& van Breugel (1990). The steep radio spectrum (\alpha \sim -1.3) together with extended optical continuum emission and the large rest frame Ly\alpha equivalent width (\sim 270 \AA) identified 4C+41.17 as an HzRG. Its high far-IR luminosity, L_{\text{FIR}} \sim 10^{11} L_{\odot} (Benford et al. 1999; Humphrey et al. 2011), large dust mass (Dunlop et al. 1994) and molecular gas reservoir (De Breuck et al. 2005) make this radio galaxy a very likely site of an enormous starburst at high redshift. Similar far-IR luminosities have also been found for other HzRGs (Barthel et al. 2012; Seymour et al. 2012), accumulating the evidence for massive starburst in these galaxies. Deep observations at 450 and 850 \mu m carried out with Submillimetre Common-User Bolometer Array (SCUBA; Holland et al. 1999) by Ivison et al. (2000) in the field centred on 4C+41.17 show an order-of-magnitude overdensity of luminous sub-mm galaxies within a 2.5 arcmin diameter region centred on the radio galaxy. From tentative redshift constraints based on the 450 to 850 \mu m and the 850 \mu m to 1.4 GHz flux density ratios of sources then available, Ivison et al. (2000) conclude that the overdensity is consistent with lying at the same redshift as the radio source, 4C+41.17, and therefore suggests a likely protocluster. However, photometric redshifts estimated from the 1.6 \mu m stellar bump by Greve et al. (2007) place at least two out of the five sub-mm sources reported by Ivison et al. (2000) at redshifts lower than 1.3. Greve et al. (2007) also present deep SHARC-II (Dowell et al. 2003) 350 \mu m and Max-Planck Millimetre Bolometer Array (MAMBO; Krysa et al. 1998) 1200 \mu m imaging of the field around 4C+41.17 and combine them with multiwavelength data at 3.6, 4.5, 5.8, 8 \mu m from Spitzer Infrared Array Camera (IRAC; Fazio et al. 2004), 24 and 70 \mu m data from Spitzer Multiband Imaging Photometer (MIPS; Rieke et al. 2004) and 850 \mu m observations from SCUBA. They find a surface density of \sim 0.24 1200-\mu m sources per arcmin^{-2} to a depth of \sim 2 mJy, consistent with the blank field source density at this wavelength. From cross-correlation analysis and estimation of photometric redshifts, Greve et al. (2007) conclude that at least half of the sub-mm galaxies are foreground sources and are not, in fact, associated with 4C+41.17.

In this paper, we present a multiwavelength study of the environment of the HzRG 4C+41.17, recently observed within the HeRG\^{E} project in five PACS and SPIRE bands. Rocca-Volmerange et al. (2012) present a full, in-depth study of the SED of the radio galaxy itself. We make use of the data at hand to derive photometric redshifts and to confirm or rule out the companion galaxy of the galaxies in the field with the HzRG. Section 2 describes the observations and reduction of the multiwavelength data. Section 3 gives details of the source extraction and cross-correlation. In section 4, we present our analysis and draw conclusions in Section 5. Throughout the paper, we assume H_0 = 70 \, \text{km s}^{-1} \, \text{Mpc}^{-1}, \Omega_{\text{matter}} = 0.3, \Omega_{\Lambda} = 0.7.

2 OBSERVATIONS AND DATA REDUCTION

2.1 Far-IR observations

Observations at 70 and 160 \mu m were obtained with the Herschel/PACS instrument on UT 2010 October 12. The image covers \sim 20 arcmin^2. We retrieved the Level 0 data from the Herschel Science Archive and processed it using version 7.3.0 of the Herschel Interactive Processing Environment (HIPE; Ott 2010). The data were taken to Level 1 following the standard pipelines provided in HIPE. To create Level 2 products, we slightly adapted the standard pipeline to correct for the slew to target data and to improve the point source sensitivity by decreasing the high-pass filter radius.\footnote{1 \url{http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/bolopsf_v1.01.pdf}}

The Herschel/SPIRE instrument observed a region covering \sim 80 arcmin^2 around 4C+41.17 on UT 2010 September 21 with all three bands, at 250, 350 and 500 \mu m. The exposure times for the PACS/SPIRE observations were 2 \times 1404 and 721 s, respectively,
reaching an average 1σ depth of 6.0, 6.4, 10.2, 9.6, 11.2 mJy at 70, 160, 250, 350 and 500 μm, respectively. Both the SPIRE and PACS observations are part of the guaranteed time key programme The Dusty Young Universe: Photometry and Spectroscopy of Quasars at z > 2 (Observation ID: 1342206336/7 and 1342204958, PI: Meisenheimer).

2.2 Mid-IR data

In addition, we include Spitzer IRAC and MIPS observations in the analysis from Seymour et al. (2007). The field was deeply mapped using all four IRAC bands (3.6, 4.5, 5.8 and 8 μm – referred to as channels 1, 2, 3 and 4), covering an area of 5.3 × 5.3 arcmin², and all three MIPS bands (24, 70 and 160 μm), covering an area of ~8.0 × 7.4 arcmin². The exposure times were 5000 s for the IRAC observations and 267, 67 and 2643 s for the three MIPS bands, in order of increasing wavelength. The data were reduced using the Spitzer reduction package, MOPEX. In this work, we only use the 24 μm images given the deeper PACS observations at longer wavelengths. The 3σ depths reached were 0.8, 1.1, 3.2 and 4.3 μJy for the IRAC channels 1, 2, 3 and 4, respectively, and 30 μJy for the MIPS 24 μm image (Greve et al. 2007).

2.3 (Sub)millimetre data

A field covering ~58 arcmin² around 4C+41.17 was imaged at 1200 μm with MAMBO. Details of the observations, data reduction and analysis are reported by Greve et al. (2007). Positions and flux densities of the extracted sources are taken from there.

4C+41.17 was also observed at 850 μm with SCUBA (covering an area ~2.5 arcmin in diameter; Ivison et al. 2000; Stevens et al. 2003). The data were initially published by Ivison et al. (2000) and details can be found there.

3 SOURCE EXTRACTION AND CROSS-CORRELATION ANALYSIS

3.1 Source extraction

3.1.1 PACS/SPIRE source extraction

Source extraction in the PACS and SPIRE images is performed using the tool SOURCEEXTRACTORDaophot that is included in HIPE. The fluxes densities and uncertainties (including the 15 and 7 per cent flux calibration uncertainties added in quadrature to the statistical uncertainties for PACS and SPIRE flux densities, respectively; Seymour et al. 2012) are given in Table 2. The full width at half-maximum (FWHM) of the different bands are taken from the PACS Observer’s Manual2 and are 5.2, 12, 18.1, 25.2 and 36.3 arcsec for 70, 160, 250, 350 and 500 μm, respectively. The parameters for the source extraction, such as shape parameters roundness and sharpness, are tuned such that false detection rates and source blending is minimized (Table 2). We extract sources at a significance ≥2.5σ within a circle of 3.3 arcmin (corresponding to 34.2 arcmin²) radius around the radio galaxy. Due to the scanning mode the coverage is inhomogeneous further away from the image centre. We extract two sources from the PACS 70 μm image, eight sources from the PACS 160 μm image, 27 sources from the SPIRE 250 μm image, 16 sources from the SPIRE 350 μm image and eight sources from

3 http://herschel.esac.esa.int/Docs/PACS/html/pacs_om.html

Figure 1. 0.6 arcmin × 0.6 arcmin postage stamps of the data (left), synthetic image derived by STARBINDER (centre) and residuals (right) for source 16 and 4C+41.17. From top to bottom the images at 250, 350 and 500 μm are shown. The sources are blended in all three images but the homogeneous residual image shows the good deblending with STARBINDER. The red crosses indicate the positions of 4C+41.17 (upper source) and source 16 (lower source).

the SPIRE 500 μm image. The extracted source positions and given names are listed in Table 3 in order of increasing RA. We derive aperture photometry for the extracted sources applying an aperture correction of 1.45 and 1.44 to the blue and red PACS flux densities, respectively.3 Due to the inhomogeneous coverage in the Herschel images, the uncertainty on the flux densities is derived from sky annuli (see Table 2) around each source.

Aperture photometry is, however, not applicable in the case of source 16 and 4C+41.17, which are blended. We therefore apply point spread function (PSF) photometry to those sources using STARBINDER (DIOLAITI et al. 2000), a code designed to analyse images in very crowded fields. The deblending strategy in STARBINDER consists of an iterative search for residuals around the object and subsequent fitting. We assumed the PSF to be Gaussian with an FWHM corresponding to the beam size. The positions of the two sources were determined independently in each Herschel image as different material is probed at different wavelengths. The flux density measurements with STARBINDER are consistent with the ones obtained with HIPE for unblended sources. Postage stamps of the image, synthetic image and residual image after deblending are shown in Fig. 1. No other sources in the field are blended.

3.1.2 IRAC/MIPS source extraction

Source extraction is performed using SExtractor (BERTIN & ARNOTS 1996) in dual image mode using the 4.5 μm image for detection. We only report sources detected with a significance ≥3σ. Unlike Greve et al. (2007), we use a smaller 4 arcsec diameter aperture for the IRAC images because of the close proximity of other sources in that crowded field. Tests with an aperture of 9.26 arcsec diameter show that flux from neighbouring sources results in overestimated flux

Downloaded from https://academic.oup.com/mnras/article-abstract/428/4/3206/997959 by Bibliothek der Rijksuniversiteit user on 16 April 2018
densities (e.g. for 4C+41.17 itself). We apply aperture corrections of 1.205, 1.221, 1.363 and 1.571 to IRAC channels 1, 2, 3 and 4, respectively. MIPS 24 μm flux densities are measured in 5.25 arcsec aperture radii. The aperture correction applied, 1.78, is calculated as described by the MIPS instrument handbook.\(^4\) The uncertainties reported in Table 1 include the 10 and 45 per cent systematic uncertainties for the IRAC and MIPS flux densities, respectively, that were added in quadrature to the statistical uncertainties to account for the absolute flux calibration and colour correction uncertainties (Seymour et al. 2007).

3.2 Cross-correlation between bands

After extracting sources in the different images with very different spatial resolutions, we cross-correlate the sources in order to derive a clean, multiwavelength source catalogue. We only consider the 17 sources that have at least two detections in the Herschel bands in order to minimize false detections. For the cross-correlation, we choose the SPIRE 250 μm whose 1σ positional accuracy (∼0.6 × \(\text{FWHM}\))\(^5\) outperforms the other bands. Although the PACS images have an even better spatial resolution, they cannot be used systematically as reference images due to their shallowness and small field of view (see Fig. 2). We then cross-correlate the cleaned source list with the sources detected at shorter and longer wavelengths.

We look for MIPS counterparts within 10 arcsec of the 250 μm sources which corresponds to about the half-width at half-maximum for the 250 μm observations and which also corresponds to their 3σ positional error assuming that the bulk of the 250 μm detections has a signal to noise ratio (SN) of ∼3 (Magnelli et al. 2012). Following Sutherland & Saunders (1992), we calculate the reliability \(R = \text{exp}(-\tau\pi\sigma_1\sigma_2 N)\) of finding no random source closer than the nearest candidate, where \(N\) is the number density of background objects, \(r = \sqrt{(d_1/\sigma_1)^2 + (d_2/\sigma_2)^2}\) is the normalized distance, \(d_1\) and \(d_2\) are the positional differences in each axis between the sources, and \(\sigma_1\) and \(\sigma_2\) are the standard deviations of the error ellipse. Since \(\sigma_1 = \sigma_2\) for our case, \(R\) simplifies to \(R = \text{exp}(-\pi(d_1^2 + d_2^2)/N)\). Mayo et al. (2012) find a surface density 0.549 arcmin\(^{-2}\) at the depth of the MIPS image. This is in agreement with the density found by Papovich et al. (2004) for the 23.1 μJy depth of the MIPS image of 4C+41.17. We adopt this value for calculating the reliability of MIPS 250 μm sources counterparts. Candidates with reliabilities \(R \geq 90\) per cent are counted as correct identifications. We then cross-correlate the MIPS identifications with the IRAC catalogues and compute the reliability in the same way using a surface density of 2.80 arcmin\(^{-2}\) from Galametz et al. (2012). For sources with no MIPS identification, we cross-correlated the 250 μm sources directly with the IRAC catalogues. Again, candidates with reliabilities \(\geq 90\) per cent are counted as correct identifications. Although we require \(R \geq 90\) per cent, the reliabilities for MIPS identifications are all above 96 per cent and for IRAC identifications above

we use both synthetic and empirical AGN and starburst templates from the SWIRE template library (Polletta et al. 2007) complemented with our own newly derived templates. The latter are obtained by combining a set of 11 far-IR sources (65 per cent). We checked the identifications where better resolved PACS, intermediate wavelength data were available and confirmed our identified sources.

In Appendix A, we show postage stamps of all sources with SPIRE 250 μm sources that have high-probability (R > 90 per cent) counterparts in at least two IRAC bands and are detected in at least two Herschel bands (see Fig. A1–A11). We also overplot the sub-mm position from Greve et al. (2007) where available. Except for sources 19 and 24, the Greve et al. (2007) astrometry is in very good agreement with our mid-IR identifications.

4 ANALYSIS

4.1 Photometric redshifts

We now derive photometric redshifts in order to investigate a physical connection between the radio galaxy and the objects in its vicinity. The following issues must be kept in mind when deriving photometric redshifts from combined sub-mm, far-IR and near-IR observations.

(1) As the far-IR emission is of thermal origin, changing the dust temperature has the same effect on the sub-mm/mm colours as shifting the spectrum in redshift (Blain et al. 2002). It is thus impossible to estimate the redshift from far-IR data alone; supporting observations are necessary to constrain a redshift.

(2) The dust (at far-IR, sub-mm wavelengths) to stellar flux density (at near-IR wavelengths) ratio has a range of about three decades and varies with morphology, total IR luminosity and gas-phase metallicity (Skibba et al. 2011). This is not always well represented in the available template libraries. When deriving our own empirical templates, we therefore create templates with a wide range of dust to stellar ratios, ranging from 100 to 5000.

(3) Differing error bars for near-IR and far-IR observations will introduce a bias in the photometric redshift fitting procedure, giving the high SN ratio of the IRAC data more weight.

For all 11 sources with detections in more than five wavelength bands, we calculate photometric redshifts using the code HYPERZ (Bolzonella, Miralles & Pelló 2000) which minimizes the reduced χ² to find the best photometric redshift solution. We use both synthetic and empirical AGN and starburst templates from the SWIRE template library (Polletta et al. 2007) complemented with our own newly derived templates. The latter are obtained by combining a 1 Gyr old stellar population template from the PÉGASE.2 spectral evolution model (Fioc & Rocca-Volmerange 1999) dominating the near-IR emission and empirical dust templates dominating the far-IR/sub-mm emission. Three dust templates are derived by (1) fitting the dust peak of 4C+41.17, a typical AGN-dominated galaxy at high redshift; (2) the dust peak of the lensed ‘eyelash’ galaxy at z = 2.3 (SMM J2135−0102; Ivison et al. 2010; Swinbank et al. 2010), a typical starburst galaxy at high redshift and (3) source 11, which is very well sampled at far-IR/sub-mm wavelengths and for which the spectroscopic redshift is known (zspec = 1.18; Greve et al. 2007).
In this way, not only templates derived from lower redshift galaxies, such as the SWIRE templates, are available to us but also templates derived from higher redshift galaxies. For each of the three dust templates, we create 15 composite templates with different ratios between the stellar emission in the near-IR and the dust emission in the far-IR. In order to get a matching wavelength coverage of the self-derived templates and the SWIRE templates, we extend our templates by using greybody fitting results (see Section 4.2) for \(\lambda > 1200 \mu \text{m} \). We then extract the best-fitting templates from our 45 self-derived templates and the SWIRE library templates. Ultimately, a set of nine different templates (see Table 5) are used for the 11 sources for which we derive photometric redshifts. Templates 1 (Spiral C) and 3 (starburst) (both from the SWIRE library) are generated from the SED of these objects using the GRASIL code (Silva et al. 1998) and improved by using IR spectra from the PHT-S spectrometer on the Infrared Space Observatory and from IRS on Spitzer (Houck et al. 2004). Template 2 is an empirical composite AGN + starburst template that fits IRAS 19254−7245. Template 4, 5, 6, 7, 8 and 9 are new, self-derived templates, with their properties described in Table 5. The resulting \(\chi^2 \) distribution and the best \(\chi^2 \) are thus derived by considering all redshifts and all templates in the final set. Note that the final \(\chi^2 \) curve shows the minimum \(\chi^2 \) for the template set as a function of redshift and therefore is dependent on the template set used.

Because of varying spatial coverage of the multwavelength data, filters are ignored for ‘out-of-field’ sources, but when a source is observed, but undetected, 3\(\sigma \) upper limits are taken into account by HYPERZ. We present the results of our photometric redshift estimates in Table 6 and show the best-fitting SEDs in Appendix A.

As mentioned above, differing error bars for the near-IR and far-IR observations introduce a bias in the fitting procedure giving the high SN IRAC data more weight. However, by allowing a range of various ratios between the stellar (near-IR) and dust (far-IR) emission in the fitting templates, we already make sure that the fits are not only dependent on the IRAC data but also that the relative contribution of the sources of emission is taken into account. To test this in more detail, we repeat the fitting procedure by relaxing the IRAC uncertainties to 20 per cent. The best-fitting redshifts are in agreement with the previously derived ones within the uncertainties. This shows that our results are not strongly biased by the IRAC data.

Greve et al. (2007) derived photometric redshifts using the 1.6\(\mu \text{m} \) rest-frame stellar ‘bump’ in the observed IRAC data. They estimate the redshift from the radio/sub-mm/mm colour, but these only yield crude estimates, consistent with the redshift estimation from the stellar bump. Therefore, we only list \(z_{\text{phot}} \) in Table 6, which compares to our photometric redshifts and spectroscopic redshifts that exist for some of the sources. The uncertainties listed in Table 6 only reflect the 1\(\sigma \) formal uncertainties near the minimum of the \(\chi^2 \) distribution and may be severely underestimated.

We describe the quality of the photometric redshifts for each source in Appendix A. Fig. 2 shows the spatial distribution of the sources, with white, open stars representing lower redshift objects (\(z < 3 \)) and filled stars representing objects with \(z > 3 \). The average redshift for these 11 sources is 2.0 ± 0.8. This agrees with the average redshift for SPIRE 250 \(\mu \text{m} \) selected sources, \(z = 1.8 ± 0.2 \), recently found by Mitchell-Wynne et al. (2012).

Most of the SPIRE-selected sources are found to be at \(z < 2.5 \), ruling out any physical connection with the radio galaxy and confirming that most of the far-IR sources in the vicinity of 4C+41.17 are likely foreground. Only one source, object 16, potentially lies at the same redshift as 4C+41.17. The \(\chi^2 \) distribution of this source shows a clear dip at \(z = 3.8 \). We therefore assume that object 16

Figure 2. Coverage map and spatial distribution of sources with derived photometric redshifts, centred on 4C+41.17. The dark pixels indicate regions with low coverage. White, open stars indicate sources that have \(z_{\text{phot}} < 3 \), orange, filled stars show sources with \(z_{\text{phot}} > 3 \). 4C+41.17 and source 16 are very likely to be at the same redshift. The dashed circle (\(r = 3.3 \text{arcmin} \)/ellipse (\(a = 2.5 \text{arcmin} \), \(b = 1 \text{arcmin} \)) indicates the area for identifying targets in the SPIRE and PACS maps, respectively. The dotted box shows the coverage of IRAC1 and IRAC3, the dot–dashed box shows the coverage of IRAC2 and IRAC4 and the long dashed circle shows the coverage of SCUBA. The MIPS and MAMBO images cover the whole SPIRE area and are therefore not illustrated here. The coverage/error in the region used for extraction is not homogeneous.

Table 4. Separation between MIPS and 250 \(\mu \text{m} \) sources, between IRAC and MIPS sources, and calculated reliabilities for the nearest source to be the correct identification. Where no value is given, the IRAC and/or MIPS source is either outside the field of view or there are no detections within a 10 arcsec radius. Italized numbers indicate that there are only IRAC2 and 4 or IRAC1 and 3 detections for the 250\(\mu \text{m} \) source as the other bands are outside the field of view.

<table>
<thead>
<tr>
<th>Source</th>
<th>MIPS250 (\mu \text{m}) separation (arcsec)</th>
<th>IRAC–MIPS separation (arcsec)</th>
<th>(R_{24\mu \text{m}})</th>
<th>IRAC separation (arcsec)</th>
<th>(R_{\text{IRAC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>9.18</td>
<td>0.96</td>
<td>2.81</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.37</td>
<td>0.99</td>
<td>0.58</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.70</td>
<td>0.99</td>
<td>0.89</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.99</td>
<td>0.99</td>
<td>0.62</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.01</td>
<td>0.99</td>
<td>2.46</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.54</td>
<td>0.99</td>
<td>0.51</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.60</td>
<td>0.99</td>
<td>0.59</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>4C+41.17</td>
<td>6.46</td>
<td>0.98</td>
<td>0.96</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.86</td>
<td>0.99</td>
<td>0.71</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>–</td>
<td>–</td>
<td>2.47</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.87</td>
<td>0.99</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5.26</td>
<td>0.99</td>
<td>0.40</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>
and 4C+41.17 are at the same redshift, $z = 3.8$, and adopt this assumption for our subsequent analysis.

4.2 Herschel non-detections

Ivison et al. (2010) report five 850 μm detected sources, of which two are described as marginal detections; for the robust subset, we find viable Herschel counterparts to two. We find the same detection rate for the robust 1200 μm sources reported by Greve et al. (2007). The fact that they are not detected in any other wavelength band may suggest some of them are just statistical fluctuations. This would be especially true for those that are only marginally detected. The 1200 μm sources, however, are all observed at a significance $\gtrsim 5\sigma$. If the sources are real they are likely very dust obscured sources belonging to the high-redshift ($z > 4$) tail of sub-mm bright star-forming galaxies (Swinbank et al. 2012; Walter et al. 2012). None of these sources has significant MIPS detections or unambiguous IRAC detections and we are therefore not able to estimate a likely redshift range.

4.3 Far-IR luminosities, star-formation rates and limits

For sources with more than four detections in the SPIRE, MAMBO and SCUBA bands, we derive dust temperatures, far-IR luminosities, and SFRs. Sources 2, 5, 11, 16, 4C+41.17 and 21 were fitted with a greybody law of the form:

$$S_\nu \propto \nu^\beta B_\nu(T) = \frac{\nu^{\beta+1}}{e^{\nu/kT} - 1},$$

where S_ν is the flux density at the rest-frame frequency ν, β the grain emissivity index and T_d the dust temperature. Dust temperatures for an interstellar medium only heated by star formation are expected to range between ~ 20 and 60 K; β can range between 1 and 2.5 (Casey 2012). Far-IR luminosities were derived by integrating their SEDs over the wavelength range 40–1000 μm and applying the relation $L_{\text{FIR}} = 4\pi D_L^2 F_{\text{FIR}}$, where D_L is the luminosity distance computed from their photometric redshifts. Where spectroscopic redshifts were available those were applied. Source 16 was assumed to be at the redshift of the radio galaxy ($z = 3.8$). We then estimated the SFRs by using SFR ($M_\odot \text{yr}^{-1}$) = $L_{\text{FIR}}/5.8 \times 10^3 L_\odot$ (Kennicutt 1998). The results are listed in Table 7.

Given the shallowness of the SPIRE images, at $z = 3.8$, we are only sensitive to the most massive starbursts. Assuming a dust emission from the starburst with $\beta = 1.5$ and $T_d = 45 \text{ K}$, we find that at $z = 3.8$ we can only detect galaxies with an SFR $\lesssim 2600 \text{ M}_\odot \text{yr}^{-1}$. We therefore can only report on the presence of strongly starbursting galaxies in the field of 4C+41.17.

4.4 Number density

In order to compare the source density to the Herschel wide field surveys Herschel-ATLAS (Eales et al. 2010) and HerMES (Oliver et al. 2012), we restrict this analysis to a flux density limit at which our catalogues are complete. We estimate the incompleteness by placing artificial sources in our images and applying the source extraction algorithm on the modified images. The number of successful recoveries then provides us with an estimate of the incompleteness for various flux density bins.

Table 5. Summary of the templates used for deriving photometric redshifts. Template 1–3 are from the SWIRE template library (Polletta et al. 2007). Template 4–9 are newly derived by combining the far-IR emission of 4C+41.17, the eyelash galaxy (SMM J2135 – 0102) and source 11, for which the spectroscopic redshift is known, with a 1 Gyr old stellar population from the FEGASE2 spectral evolution model (Fioc & Rocca-Volmerange 1999). The far-IR and stellar emission were normalized to their peak flux densities and combined with varying ratios, as indicated.

<table>
<thead>
<tr>
<th>Template ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spiral C galaxy template, SWIRE template library</td>
</tr>
<tr>
<td>2</td>
<td>Seyfert 2+Starburst/ULIRG template for IRAS 19254–7245, SWIRE template library</td>
</tr>
<tr>
<td>3</td>
<td>Starburst/ULIRG template for IRAS 20351–4250, SWIRE template library</td>
</tr>
<tr>
<td>4</td>
<td>4C+41.17 far-IR template + old stellar population, stellar peak to dust peak ratio ~ 300 : 1</td>
</tr>
<tr>
<td>5</td>
<td>4C+41.17 far-IR template + old stellar population, stellar peak to dust peak ratio ~ 700 : 1</td>
</tr>
<tr>
<td>6</td>
<td>4C+41.17 far-IR template + old stellar population, stellar peak to dust peak ratio ~ 4500 : 1</td>
</tr>
<tr>
<td>7</td>
<td>SMM J2135-0102 far-IR template + old stellar population, stellar peak to dust peak ratio ~ 500 : 1</td>
</tr>
<tr>
<td>8</td>
<td>Source 11 far-IR template + old stellar population, stellar peak to dust peak ratio ~ 700 : 1</td>
</tr>
<tr>
<td>9</td>
<td>Source 11 far-IR template + old stellar population, stellar peak to dust peak ratio ~ 1700 : 1</td>
</tr>
</tbody>
</table>

Table 6. Photometric redshifts, z_{phot}, were derived with HYPERZ for all sources with at least five detections. Stellar bump photometric redshifts, z_{bump}, and spectroscopic redshifts, z_{spec}, are from Greve et al. (2007). Template IDs are described in Table 5.

<table>
<thead>
<tr>
<th>Source</th>
<th>z_{phot}</th>
<th>Template ID</th>
<th>z_{bump}</th>
<th>z_{spec}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.5±0.4</td>
<td>3</td>
<td>~1.8</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>2.4±0.2</td>
<td>3</td>
<td>~2.6</td>
<td>2.672 ± 0.001</td>
</tr>
<tr>
<td>7</td>
<td>0.5±0.1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0.6±0.1</td>
<td>8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>1.2±0.2</td>
<td>9</td>
<td><1.3</td>
<td>1.184 ± 0.002</td>
</tr>
<tr>
<td>13</td>
<td>2.2±0.4</td>
<td>5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>4.0±0.1</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4C+41.17</td>
<td>3.5±0.2</td>
<td>2</td>
<td>~4</td>
<td>3.792 ± 0.001</td>
</tr>
<tr>
<td>19</td>
<td>2.0±0.1</td>
<td>4</td>
<td><1.3</td>
<td>0.507 ± 0.020</td>
</tr>
<tr>
<td>21</td>
<td>2.7±0.2</td>
<td>7</td>
<td>~1.8</td>
<td>–</td>
</tr>
<tr>
<td>29</td>
<td>1.0±0.1</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 7. Derived dust temperatures (T_d), grain emissivity indices (β), far-IR luminosities (L_{FIR}) and SFRs for sources with at least four detections in SPIRE, MAMBO and SCUBA. Spectroscopic redshifts were used where available and are marked in italics. For source 16, we assumed the redshift of 4C+41.17 ($z = 3.8$).

<table>
<thead>
<tr>
<th>Source</th>
<th>z</th>
<th>T_d (K)</th>
<th>β</th>
<th>L_{FIR} (103 L$_\odot$)</th>
<th>SFR (M$_\odot$ yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.6</td>
<td>38</td>
<td>1.6</td>
<td>0.7</td>
<td>1200</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
<td>40</td>
<td>1.5</td>
<td>0.3</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>1.2</td>
<td>26</td>
<td>1.4</td>
<td>0.1</td>
<td>200</td>
</tr>
<tr>
<td>16</td>
<td>3.8</td>
<td>48</td>
<td>1.7</td>
<td>1.8</td>
<td>3100</td>
</tr>
<tr>
<td>4C+41.17</td>
<td>3.8</td>
<td>52</td>
<td>1.6</td>
<td>1.6</td>
<td>2800</td>
</tr>
<tr>
<td>21</td>
<td>2.7</td>
<td>32</td>
<td>1.7</td>
<td>0.4</td>
<td>700</td>
</tr>
</tbody>
</table>
Herschel⊙0.2.5 (see Fig. 2), the clump detected by Galametz ∼+3.8 will therefore be ∼3.8 for our 250 Herschel≪3.8 radio galaxy. Ivison et al. (2012) 36 mJy) ± ∼= ∼−3.8. This pilot study for the HeRG 3.8 is also only mid-IR observations, we have carried out a multiwavelength z of galaxies at z = 0.1 arcmin yr ´ 30 mJy) Herschel z ∼4 per cent and is a at μ ∼Her- ∼spacecraft was designed, built, ∼+ ≈on 16 April 2018 by Bibliotheek der Rijksuniversiteit user Downloaded from https://academic.oup.com/mnras/article-abstract/428/4/3206/997959 at 16 April 2018

However, close-by companion sources might actually be a common feature for HzRGs. Ivison et al. (2008) find two clumps of emission 3.3 arcsec distant from the HzRG 4C+60.07 that are most likely merging with the z = 3.8 radio galaxy. Ivison et al. (2012) find a bright sub-mm galaxy near the radio galaxy 6C 1909+72 that is most likely sharing the same node or filament of the cosmic web. Also, Nesvadba et al. (2009) find two CO-emission line components at a distance of ∼80 kpc from the HzRG TXS0828+193 (z = 2.6) which may be associated with a gas-rich, low-mass satellite galaxy. Although these companions are found much closer to the HzRG than source 16 is to 4C+41.17, these observations suggest that companion sources around HzRGs may be a common feature (see also Ivison et al. 2012). We find that most of the Herschel far-IR sources in the vicinity of 4C+41.17 are foreground sources. However, this does not rule out the presence of a cluster around 4C+41.17 as our observations are only sensitive to galaxies with SFRs ≳ 2600 M⊙ yr−1.

Caution is needed when identifying overdensities from a single wavelength data set. With IRAC and MIPS data available for all sources being observed by the HeRG project we will be able to identify likely protocluster candidates around the HzRGs. However, 850 μm data are required to constrain the Rayleigh–Jeans part of the SED. We have therefore started a systematic SCUBA-2 follow-up campaign to map the full SPIRE area of the HeRG fields.

ACKNOWLEDGMENTS

TRG acknowledges support from the UK Science and Technologies Facilities Council. NS is the recipient of an Australian Research Council Future Fellowship. The work of DS was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The Herschel spacecraft was designed, built, tested and launched under a contract to ESA managed by the HerschelPlanck Project team by an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen) responsible for the payload module and for system testing at spacecraft level, Thales Alenia Space (Turin) responsible for the service module and Astrium (Toulouse) responsible for the telescope, with in excess of a hundred subcontractors.

REFERENCES

In this section, we give more details on all sources with photometric redshifts derived in this work. For each source 60 arcsec × 60 arcsec IRAC and MIPS grey-scale postage stamps are shown in the first row. The second row shows PACS and SPIRE grey-scale postage stamps, 100 arcsec on a side. The postage stamps are centred on the 250 μm centroid, indicated by the orange square. The blue circle in the upper row shows the 10 arcsec search radius for the radio galaxy.

Figure A1. This source is found to be at $z_{\text{phot}} = 2.5$ and best fit with a starburst template (I20551) The dust peak is very well observed and well fit. The χ^2 distribution shows a clear dip at this redshift, placing this source foreground to the radio galaxy.
Far-IR environment of 4C+41.17

Figure A2. The IRAC photometry of this source shows a very prominent stellar bump that is well fitted by the starburst template, leaving no doubt on the low redshift ($z_{\text{phot}} \sim 2.4$) of this source. This is also confirmed by its spectroscopic redshift ($z_{\text{spec}} = 2.672$) consistent with our photometric redshift. Greve et al. (2007) find a very extended Lyα halo extending 50 kpc from this source.

Figure A3. Although the far-IR photometric observations are not well fitted by HYPERZ, the upper limit at 850 μm is very constraining and places the dust peak at ~ 200 μm. The IRAC and MIPS photometric points can only be fitted with a spiral template. The χ^2 distribution places the source unambiguously at low redshift ($z_{\text{phot}} = 0.5$).

cross-correlation analysis; the smaller, red circle in all stamps shows the apertures for the IRAC, MIPS, PACS and SPIRE images. The green diamond indicates the MAMBO position (in case of no MAMBO position, the SCUBA position) from Greve et al. (2007). We also show the SEDs and the minimum χ^2 as a function of redshift from HYPERZ. Black data points are measured values, green arrows upper limits and red dashed lines the best-fitting redshifted template. Detailed notes for each source are given below.
Figure A4. The HYPERZ fit (source 11 dust template + old stellar population) fits the far-IR emission very well. The IRAC observations show the long wavelength tail of the stellar bump (at 1.6 µm rest-frame wavelength) indicating a low redshift. We find no secondary prominent dips in the χ² distribution and this source is thus found to be at lower redshift (z_{phot} = 0.6) than the radio galaxy.

Figure A5. This source is detected in all far-IR bands (160–1200 µm). The best χ² is found with template 9 (this source + old stellar population) and gives a redshift of 1.2, matching the spectroscopic redshift of 1.184.
Figure A6. Only five photometric points are available for fitting the SED of this source. The increasing emission towards 350 µm is not well fitted and the best χ^2 solution gives a redshift of 2.2. Blending of other sources in close proximity may cause this increasing flux at 350 µm.

Figure A7. This source is nicely fitted by an AGN dominated template, similar to the SED of 4C+41.17. The χ^2 distribution shows a clear and prominent dip at the redshift of the radio galaxy. This source is therefore our most likely candidate to be associated with the radio galaxy.
Figure A8. The redshift of the radio galaxy is well constrained by the photometric redshift fitting using a composite AGN+starburst template (I19254). A single significant dip appears at a redshift of \(z \approx 3.5 \) in the \(\chi^2 \) distribution which is consistent with the spectroscopic redshift of 3.792. Note that this source is not fitted by its own template as the stellar to dust peak ratio in those templates is not as optimal as in template 2.

Figure A9. The best \(\chi^2 \) for this source is \(z \approx 2.0 \), but secondary peaks are more consistent with its spectroscopic redshift (\(z_{\text{spec}} = 0.507 \)). Longer wavelength data (e.g. at 850 \(\mu \)m) are needed to constrain the redshift more accurately. The dust peak at \(\sim 200 \) \(\mu \)m and the upper limits at longer wavelengths strongly constrain the source to be at \(z_{\text{phot}} < 3.8 \).
Figure A10. The stellar bump is clearly observed peaking between the IRAC2 and IRAC3 band. HYPERZ nicely fits this peak and puts this source at $z_{\text{phot}} \sim 2.7$.

Figure A11. A weak stellar bump peaking between the IRAC1 and IRAC2 bands is observed for this source. The overall SED is very similar to source 7 suggesting a low redshift. This is also found by the photometric redshift fitting procedure. The far-IR observations are not well fitted but may be due to confusion with another source very bright at 24 µm and very close (~ 6 arcsec) to the centre of detections. The IRAC photometry, however, is very constraining and the χ^2 distribution also confirms a clear low redshift for this source.

This paper has been typeset from a \TeX/LaTeX file prepared by the author.