Measurement of the t dependence in exclusive photoproduction of gamma(1s) mesons at HERA
Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2012.01.009

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Measurement of the t dependence in exclusive photoproduction of $\Upsilon(1S)$ mesons at HERA

ZEUS Collaboration

H. Abramowicza,53, I. Abta, L. Adamczykm, M. Adamusbb, R. Aggarwalg,21, S. Antonellid, P. Antoniollic, A. Antonioa, M. Arneodoax, V. Aushevz,aa,44, Y. Aushevaa,44,46, O. Bachynskao, A. Bambergers, A.N. Barakbaevy, G. Barbaglid, G. Baric, F. Barreirond, N. Bartosikaa,47, D. Bartsche, M. Basiled, O. Behnkeo, J. Behro, U. Behrenso, L. Bellagambac, A. Bertolinam, S. Bhadrabe, M. Bindid, C. Blohmo, V. Bokhonovz,44, T. Boldm, K. Bondarenkoaa, E.G. Boosy, K. Borraso, D. Boscherinic, D. Boto, I. Brocke, E. Brownsonbd, R. Brugneraan, N. Brümmerak, A. Brunic, G. Brunic, B. Brzozowskaba, P.J. Busseyt, B. Bylsmaak, A. Caldwellai, M. Capuah, R. Carlinan, C.D. Catterallbe, S. Chekanova, J. Chwastowski1,23, J. Ciborowskiba,57, R. Cifarellid, F. Cindoloc, A. Contind, A.M. Cooper-Sarkaral, N. Coppolao,26, M. Corradic, F. Corriveauae, M. Costaaw, G. D'Agostiniad, F. Dal Corsoam, J. del Pesoad, R.K. Dementievy, S. De Pasqualed,19, M. Derricka, R.C.E. Devenishal, D. Doburs,37, B.A. Dolgosheinag,45, G. Dolinskaz,aa, A.T. Doylei, V. Drugakovp, L.S. Durkinak, S. Dusiniam, Y. Eisenbergbc, P.F. Ernolovah,45, A. Eskreysl,45, S. Fango,27, S. Fazioh, J. Ferrandoal, M.I. Ferreroaw, J. Figielt, M. Forrestl,40, B. Fostera, G. Gachm, A. Galasi, E. Galloq, A. Garfagninian, A. Geisero, I. Gialasu,41, L.K. Gladilinah,48, D. Gladkovag, C. Glasmanad, O. Gogotaz,aa, Yu.A. Golubkovah, P. Göttlichero,28, I. Grabowska-Boldm, J. Grebenyuko, I. Gregorg, G. Grigorescuaj, G. Grzelakbo, O. Guetaas, M. Guzikm, C. Gwenlanal,50, T. Haaso, W. Haino, R. Hamatsuav, J.C. Hartar, H. Hartmanne, G. Hartnerbe, E. Hilgere, D. Hochmanbc, R. Horiau, K. Hortonai,51, A. Hüttmannm, Z.A. Ibrahimi, Y. Igaap, R. Ingbiras, M. Ishitsukaat, H.-P. Jakobe, F. Januscheko, T.W. Jonesaz, M. Jüngste, I. Kadenkoaa, B. Kahleo, S. Kananovas, T. Kannoat, U. Karshonbc, F. Karstenss,38, I.I. Katkovo,29, M. Kaurg, P. Kaurg,21, A. Keramidasaj, L.A. Kheinsh, J.Y. Kimt, D. Kisielewskam, S. Kitamuraav,55, R. Klannerv, U. Kleino,30, E. Koffemanaj, P. Kooijmanaj, L.E. Korol2,aa, I.A. Korzhavinaah,48, A. Kotańskin,24, U. Kötzo, H. Kowalskio, O. Kuprashio, M. Kuzeat, A. Leeak, B.B. Levchenkoah, A. Levyas,e, V. Libovo, S. Limentanian, T.Y. Lingak, M. Lisovyio, E. Lobodzinskao, W. Lohmannp, B. Löhr, E. Lohrmannv, K.R. Longw, A. Longhinam, D. Lontkovskiyo, O.Yu. Lukinaah, J. Maedaat,54, S. Magilla, I. Makarenkoo, J. Malkao, R. Mankelo, A. Margottic, G. Mariniad, J.F. Martinay, A. Mastroberardinob, M.C.K. Mattinglyb, I.-A. Melzer-Pellmanno, S. Mergelmeyere, S. Miglioranzio,31, F. Mohamad Idris1, V. Monacoaw, A. Montanario, J.D. Morrisf,20, K. Mujico,32, B. Musgravea, K. Naganox, T. Namsso0,33, R. Naniac, A. Negroaq, Y. Ningk, T. Nobeaf, U. Noorbe, D. Notzo, R.J. Nowakba, A.E. Nuncio-Quiroze, B.Y. Ohao, N. Okazakiau, K. Olivera, K. Olkiewicz1, Yu. Onishchukaa.

a Corresponding author.
1 E-mail address: levy@albt.tau.ac.il (A. Levy).
2 Supported by the US Department of Energy.
3 Supported by the Italian National Institute for Nuclear Physics (INFN).
4 Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05 H009PDF.
5 Supported by the Science and Technology Facilities Council, UK.
6 Supported by an FRGS grant from the Malaysian government.
7 Supported by the Polish Ministry of Science and Higher Education as a scientific project No. DPN/N88/DESy/2009.
Article history:
Received 7 November 2011
Received in revised form 2 January 2012
Accepted 4 January 2012
Available online 9 January 2012
Editor: W.-D. Schäly

ABSTRACT
The exclusive photoproduction reaction $\gamma p \rightarrow \gamma'(1S)p$ has been studied with the ZEUS detector in ep collisions at HERA using an integrated luminosity of 468 pb$^{-1}$. The measurement covers the kinematic range $60 < W < 220$ GeV and $Q^2 < 1$ GeV2, where W is the photon–proton centre-of-mass energy and Q^2 is the photon virtuality. The exponential slope, b, of the t dependence of the cross section, where t is the squared four-momentum transfer at the proton vertex, has been measured, yielding $b = 4.3^{+2.3}_{-1.0}$(stat.\ldots8(syst.) GeV$^{-2}$. This constitutes the first measurement of the t dependence of the $\gamma p \rightarrow \gamma'(1S)p$ cross section.

© 2012 Elsevier B.V. Open access under CC BY license.
equal to that expected from the size of the proton \((b \approx 4 \text{ GeV}^{-2}) \), in agreement with calculations based on \(\text{pQCD} \) [9]. This suggests that the size of the \(J/\psi \) is small compared to that of the proton. A similar picture is expected in the case of exclusive \(\Upsilon(1S) \) production [10,11].

The present Letter reports on the first measurement of \(b \) in exclusive \(\Upsilon(1S) \) photoproduction, observed in the \(\mu^+\mu^- \) decay channel in the kinematic range \(60 < W < 220 \text{ GeV} \), and complements the previous results [8,12,13] on \(\Upsilon(1S) \) photoproduction. The data correspond to an integrated luminosity of 468 pb\(^{-1}\), collected in the period 1996–2007.

2. Experimental set-up

In 1998–2007 (1996–1997), HERA provided electron\(^61\) beams of energy \(E_e = 27.5 \text{ GeV} \) and proton beams of energy \(E_p = 920 \) (820) GeV, resulting in a centre-of-mass energy of \(\sqrt{s} = 318 \) (300) GeV.

A detailed description of the ZEUS detector can be found elsewhere [14]. A brief outline of the components that are most relevant for this analysis is given below.

In the kinematic range of the analysis, charged particles were tracked in the central tracking detector (CTD) [15–17] and, for the data taken after 2001, also in the microvertex detector (MVD) [18]. These components operated in a magnetic field of 1.43 T provided by a thin superconducting solenoid. The CTD consisted of 72 cylindrical drift chamber layers, organised in nine superlayers covering a polar angle of \(15^\circ \leq \theta \leq 164^\circ \). The MVD provided polar angle coverage from \(7^\circ \) to \(150^\circ \). The transverse-momentum resolution for full-length tracks was \(\sigma(p_T)/p_T = 0.0058 p_T + 0.0065 \) \(\oplus \) 0.0020/\(p_T \), with \(p_T \) in GeV, for data taken before 2001 and \(\sigma(p_T)/p_T = 0.0029 p_T + 0.0081 \oplus 0.0012/p_T \), for data taken after 2001.

The high-resolution uranium-scintillating calorimeter (CAL) [19–22] consisted of three parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each part was subdivided transversely into towers and longitudinally into one electromagnetic section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections (HAC). The smallest subdivision of the calorimeter is called a cell. The CAL energy resolutions, as measured under test-beam conditions, are \(\sigma(E)/E = 0.18/\sqrt{E} \) for electrons and \(\sigma(E)/E = 0.35/\sqrt{E} \) for hadrons, with \(E \) in GeV.

The muon system consisted of barrel, rear (B/RMUON) [23] and forward (FMUON) [14] tracking detectors. The B/RMUON consisted of limited-streamer (LS) tube chambers placed behind the BCAL (RCAL), both inside and outside the magnetised iron yoke surrounding the CAL. The barrel and rear muon chambers covered polar angles from \(34^\circ \) to \(135^\circ \) and from \(135^\circ \) to \(171^\circ \), respectively. The FMUON consisted of six planes of LS tubes and four planes of drift chambers covering the angular region from \(5^\circ \) to \(32^\circ \). The muon system exploited the magnetic field of the iron yoke and, in the forward direction, of two iron toroids magnetised to 1.6 T to provide an independent measurement of the muon momentum.

The iron yoke surrounding the CAL was instrumented with proportional drift chambers to form the Backing Calorimeter (BAC) [24]. The BAC consisted of 5142 aluminium chambers inserted into the gaps between 7.3 cm thick iron plates (10, 9 and 7 layers in

\(^61\) Electrons and positrons are both referred to as electrons in this article.

\(^{62}\) The ZEUS coordinate system is a right-handed Cartesian system, with the \(Z \) axis pointing in the proton beam direction, referred to as the “forward direction”, and the \(X \) axis pointing left towards the centre of HERA. The coordinate origin was located at the nominal interaction point for data collected before 2001. After 2001 it was redefined as the centre of the CTD. The polar angle, \(\theta \), is measured with respect to the proton beam direction.
The reaction $ep \rightarrow e\gamma p \rightarrow \mu^+\mu^-$ is described by the following variables (Fig. 1, top):

- $s = (k + P)^2$, the centre-of-mass energy squared of the electron–proton system;
- $Q^2 = -q^2 = -(k - k')^2$, the negative four-momentum squared of the exchanged photon;
- $y = (q \cdot P)/(k \cdot P)$, the fraction of the electron energy transferred to the hadronic final state in the rest frame of the initial-state proton;
- $W^2 = (q + P)^2 = -Q^2 + 2y(k \cdot P) + m_p^2$, the centre-of-mass energy squared of the photon–proton system, where m_p is the proton mass;
- $M_{\mu^+\mu^-}$, the invariant mass of the $\mu^+\mu^-$ pair;
- $t = (P - P')^2$, the squared four-momentum transfer to the proton vertex, determined from the approximate formula: $t \approx -(p_x^2 + p_y^2) - (p_x^2 + p_y^2)$, where $p_{x,y}$ are the components of the transverse momentum of the decay muons.

The four-momenta of the incoming and outgoing electron and proton are denoted by k, k', P and P', respectively. The exclusive reaction under study

$$ep \rightarrow e\gamma p \rightarrow \mu^+\mu^- p \quad (1)$$

is used to select dimuon events with a transverse momentum of the muon pair below 5 GeV. A muon trigger was required if at least one CTD track associated with a muon was present in the BAC [29,30]; if not explicitly identified as a muon, the second track had to be associated with a minimum-ionising energy deposit in the CAL.

The energy resolution $\sigma(E)/E = 1.0/\sqrt{E}$, where E is expressed in GeV. The position information from the wires allowed the reconstruction of muon trajectories in two dimensions (XY in barrel and YZ in endcaps) with a spatial accuracy of a few mm.

The luminosity was measured using the Bethe–Heitler reaction $ep \rightarrow e\gamma p$ with the luminosity detector which consisted of independent lead–scintillator calorimeter [25] and magnetic spectrometers [26] systems.

3. Kinematics

The reaction $ep \rightarrow e\gamma Y$ (Fig. 1, bottom), where Y denotes a hadronic state originating from proton dissociation, constitutes an important background. These events mimic exclusive γ production when the hadrons from proton dissociation remain undetected.

Events used in the analysis were restricted to Q^2 values from the kinematic minimum, $Q_{\text{min}}^2 = m_e^2y^2/(1 - y) \approx 10^{-9}$ GeV2, where m_e is the electron mass, to a value at which the scattered electron starts to be observed in the CAL, $Q_{\text{max}}^2 \approx 1$ GeV2, with an estimated median Q^2 value of 10^{-3} GeV2. The photon–proton centre-of-mass energy can then be expressed as

$$W^2 \approx 4Epe^{-}\gamma y \approx 2E_p(E - p_Z), \quad (2)$$

where E is the energy and p_Z is the longitudinal momentum of the $\mu^+\mu^-$ pair.

The approximate formula for t introduces dispersion 3 times smaller then that in the experimental resolution of this variable after all event selections; approximation (2) has a negligible effect in the case of W.

4. Event selection

Exclusive $\mu^+\mu^-$ events in photoproduction were selected online by requiring at least one CTD track associated with a F/B/RMUON deposit or with a signal in the BAC consistent with the reaction under study

$$ep \rightarrow e\gamma p \rightarrow \mu^+\mu^- p \quad (1)$$

is described by the following variables (Fig. 1, top):

- $s = (k + P)^2$, the centre-of-mass energy squared of the electron–proton system;
- $Q^2 = -q^2 = -(k - k')^2$, the negative four-momentum squared of the exchanged photon;
- $y = (q \cdot P)/(k \cdot P)$, the fraction of the electron energy transferred to the hadronic final state in the rest frame of the initial-state proton;
- $W^2 = (q + P)^2 = -Q^2 + 2y(k \cdot P) + m_p^2$, the centre-of-mass energy squared of the photon–proton system, where m_p is the proton mass;
- $M_{\mu^+\mu^-}$, the invariant mass of the $\mu^+\mu^-$ pair;
- $t = (P - P')^2$, the squared four-momentum transfer to the proton vertex, determined from the approximate formula: $t \approx -(p_x^2 + p_y^2) - (p_x^2 + p_y^2)$, where $p_{x,y}$ are the components of the transverse momentum of the decay muons.

The four-momenta of the incoming and outgoing electron and proton are denoted by k, k', P and P', respectively. The exclusive reaction under study

$$ep \rightarrow e\gamma p \rightarrow \mu^+\mu^- p \quad (1)$$

is described by the following variables (Fig. 1, top):

- $s = (k + P)^2$, the centre-of-mass energy squared of the electron–proton system;
- $Q^2 = -q^2 = -(k - k')^2$, the negative four-momentum squared of the exchanged photon;
- $y = (q \cdot P)/(k \cdot P)$, the fraction of the electron energy transferred to the hadronic final state in the rest frame of the initial-state proton;
- $W^2 = (q + P)^2 = -Q^2 + 2y(k \cdot P) + m_p^2$, the centre-of-mass energy squared of the photon–proton system, where m_p is the proton mass;
- $M_{\mu^+\mu^-}$, the invariant mass of the $\mu^+\mu^-$ pair;
- $t = (P - P')^2$, the squared four-momentum transfer to the proton vertex, determined from the approximate formula: $t \approx -(p_x^2 + p_y^2) - (p_x^2 + p_y^2)$, where $p_{x,y}$ are the components of the transverse momentum of the decay muons.

The reaction $ep \rightarrow e\gamma Y$ (Fig. 1, bottom), where Y denotes a hadronic state originating from proton dissociation, constitutes an important background. These events mimic exclusive γ production when the hadrons from proton dissociation remain undetected.

Events used in the analysis were restricted to Q^2 values from the kinematic minimum, $Q_{\text{min}}^2 = m_e^2y^2/(1 - y) \approx 10^{-9}$ GeV2, where m_e is the electron mass, to a value at which the scattered electron starts to be observed in the CAL, $Q_{\text{max}}^2 \approx 1$ GeV2, with an estimated median Q^2 value of 10^{-3} GeV2. The photon–proton centre-of-mass energy can then be expressed as

$$W^2 \approx 4Epe^{-}\gamma y \approx 2E_p(E - p_Z), \quad (2)$$

where E is the energy and p_Z is the longitudinal momentum of the $\mu^+\mu^-$ pair.

The approximate formula for t introduces dispersion 3 times smaller then that in the experimental resolution of this variable after all event selections; approximation (2) has a negligible effect in the case of W.

5. Monte Carlo simulation

The detector and trigger acceptance and the effects due to detector response were determined using samples of Monte Carlo (MC) events. Exclusive and proton-dissociative vector-meson production were simulated with the DIFVM 2.0 generator [31]. For proton-dissociative events, the simulation was supplemented by the JETSET 7.3 MC package [32]. For exclusive vector-meson production, s-channel helicity conservation (SCHC) was assumed. An exponential dependence, $e^{-b/t}$, was assumed for the differential cross section in t with a slope parameter $b = 4.5$ GeV$^{-2}$, consistent with the value obtained for exclusive J/ψ electroproduction [3, 6]. The W dependence of the $\gamma p \rightarrow T p$ cross section was parameterised as $\propto W^{\delta}$, with $\delta = 1.2$ [8]. Electromagnetic radiative corrections associated with the decay muons are of the order of 1% [33] and were not included in the simulation.

The non-resonant background, consisting of the exclusive and proton-dissociative Bethe–Heitler (BH) dimuon events, was simulated using the GRAPE v1.1k MC program [34]. After event selection, the contribution of the proton-dissociative events was 25% of the Bethe–Heitler MC sample.

All MC events were generated in the full kinematic range and processed through the simulation of the ZEUS detector based on the GEANT program [64, 35] and were analysed with the same re-
construction and offline procedures as the data. In addition, corrections [29,30] of the muon-detector efficiencies determined from a data set consisting of J/ψ and Bethe–Heitler exclusive production events were applied.

6. Determination of the b slope

The invariant-mass distribution of $\mu^+\mu^-$ pairs after applying the selection criteria is shown in Fig. 2. The simulated contributions from the Bethe–Heitler (exclusive and proton dissociative) process and from the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ resonances are also presented.25 As in the previous paper [8], the BH distributions were normalised to the data in the range [5.0–15.0] GeV excluding the [9.0–11.0] GeV mass window where contributions from the Υ resonances are expected. For the determination of the slope parameter for exclusive $\Upsilon(1S)$ production, only events in the mass window [9.33–9.66] GeV were considered. The width of the mass window was chosen in order to avoid excessive smearing of the t variable and to retain a good signal-to-background ratio. According to MC studies, 71% of all reconstructed $\Upsilon(1S)$ events are expected in this window; the relative contributions of $\Upsilon(2S)$ and $\Upsilon(3S)$ states with respect to $\Upsilon(1S)$ are 1.3% and 0.1%, respectively. The contribution from the $\Upsilon(2S)$ and $\Upsilon(3S)$ states was neglected for the extraction of the slope parameter b. After scanning no cosmic ray muon candidates were found in the signal mass window.

The value of the slope parameter for exclusive $\Upsilon(1S)$ production was determined as follows: the sum of simulated distributions of all contributing processes was fitted to the observed event yields in the signal mass window [9.33–9.66] GeV in the four t bins shown in Fig. 3. A binned Poissonian log-likelihood function, ln(L), was used. The expected number of Bethe–Heitler background events was fixed to the value obtained from the $\mu^+\mu^-$ spectrum outside the signal region as described earlier. Due to insufficient statistics it was not possible to evaluate the contribution of proton-dissociative $\Upsilon(1S)$ events in the final sample with the present data. However, the fraction of such events, f_{pdiss}, is expected to be similar in all diffractive vector-meson production processes [37]. Therefore, the value $f_{\text{pdiss}} = 0.25 \pm 0.05$, determined for diffractive J/ψ production [5], was used. The values of the slope parameter for the exclusive and proton dissociative $\Upsilon(1S)$ production processes differ [38]; in the MC the value for the latter was taken to be $b_{\text{pdiss}} = 0.65 \pm 0.1$ GeV$^{-2}$ [5].

The fit was performed with two free parameters: the slope b and the number of expected $\Upsilon(1S)$ events in the signal mass window. During the parameter scan, the contribution of the exclusive $\Upsilon(1S)$ production to the t distribution was reweighted at generator level to the function $b \cdot \exp(-b|t|)$. The small statistical uncertainties of the MC sample were neglected in the fit. The fit yielded: $b = 4.3^{+1.0}_{-1.3}$ (stat.) GeV$^{-2}$ and $41 \pm 10 \Upsilon(1S)$ events (44% of the events in this mass window). The fit provides a good description of the data; the equivalent χ^2 is 0.61 for 2 degrees of freedom.

7. Systematic uncertainties

The following sources of systematic uncertainty were considered, where the numbers in parenthesis correspond to the uncertainties on b in GeV$^{-2}$:

25 The ratio of the number of events $N_{\Upsilon(1S)} : N_{\Upsilon(2S)} : N_{\Upsilon(3S)}$ was fixed in the MC to 0.73 : 0.19 : 0.08 according to a CDF measurement [36] of the production of Υ resonances.
The exclusive photoproduction reaction $\gamma p \to \Upsilon(1S) p$ was studied with the ZEUS detector in ep collisions at HERA using an integrated luminosity of 468 pb$^{-1}$ collected in the period 1996–2007. The analysis covered the kinematic range $60 < W < 220$ GeV and $Q^2 < 1$ GeV2. The measurement of the exponential slope of the t dependence yielded $b = 4.3^{+2.0}_{-1.3} \text{(stat.)} \pm 0.5 \text{(syst.)}$ GeV$^{-2}$. This is the first determination of the b parameter for $\Upsilon(1S)$ production. The result is in agreement with expectations of an asymptotic behaviour of the slope parameter as a function of the effective scale present in the process, $Q^2 + M_{VM}^2$. This measurement indicates the value of the scale to ≈ 90 GeV2, the highest achieved to date in the measurement of the t-slope parameter for a vector meson.

Acknowledgements

We appreciate the contributions to the construction and maintenance of the ZEUS detector of many people who are not listed as authors. The HERA machine group and the DESY computing staff are especially acknowledged for their success in providing excellent operation of the collider and the data-analysis environment.

We thank the DESY directorate for their strong support and encouragement.

References

Fig. 4. Comparison of the HERA measurements of the slope parameter b as a function of the scale $Q^2 + M_{VM}^2$ for exclusive $\Upsilon(1S)$ production (the rightmost data point), for other exclusive vector-meson production [39–41,38,42–44,5,6] and for deeply virtual Compton scattering (DVCS) [45–47].