Penning-trap Q-value determination of the $^{71}\text{Ga}(\nu, e^-)^{71}\text{Ge}$ reaction using threshold charge breeding of on-line produced isotopes

D. Frekers a, M.C. Simon b, C. Andreoiu c, J.C. Bale b,c, M. Brodeur d, T. Brunner b,m, A. Chaudhuri b, U. Chowdhury b,e, J.R. Crespo Lópezu-Urrutia f, P. Delheij b, H. Ejiri g, S. Ettenuau b,h, A.T. Gallant b,h, V. Gavrin i, A. Grossheim b, M.N. Harakeh j, F. Jang h, A.A. Kwiatkowski b, J. Lassen b,k, A. Lennartz a,b, M. Luicht b, T. Ma c, T.D. Macdonald b,h, E. Mané b, D. Robertson b, B.E. Schultz b, V.V. Simon b,f,l, A. Teigelhöfer b,e, J. Dilling b,h

a Institut für Kernphysik, Westfälische Wilhelms-Universität, 48149 Münster, Germany
b TRIUMF, Vancouver, BC V6T 2A3, Canada
c Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
d NSCL, Michigan State University, East Lansing, MI 48824, USA
e Department of Physics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
f Max Planck Institute for Nuclear Physics, 69117 Heidelberg, Germany
g Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 560-0047, Japan
h Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
i Institute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312, Russia
j Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen, The Netherlands
k Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
l Fachhochschule für Physik, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
m Physik Department E12, Technische Universität München, 85748 Garching, Germany

Abstract

We present a first direct Q-value measurement of the $\text{^{71}Ga}(\nu, e^-)^{\text{71}Ge}$ reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like $^{71}\text{Ga}^{21+}$ and $^{71}\text{Ge}^{22+}$ using isobar separation of the on-line produced mother and daughter nuclei through threshold charge breeding in an electron-beam ion trap. In addition, isoinonic samples of $^{71}\text{Ga}^{21+}$ and $^{71}\text{Ge}^{21+}$ were stored concurrently in the Penning trap and provided a separate Q-value measurement. Both independent measurements result in a combined Q-value of 233.5 ± 1.2 keV, which is in agreement with the previously accepted Q-value for the ν cross-section calculations. Together with a recent measurement of the ν-response from the excited states in 71Ge, we conclude that there are no further uncertainties in the nuclear structure, which could remove the persistent discrepancy between the SAGE and GALLEX calibration measurements performed with neutrinos from reactor-produced 51Cr and 37Ar sources and the theoretical expectation.

© 2013 Elsevier B.V. Open access under CC BY license.

1. Introduction

As neutrino physics experiments advance to increased precision, there has been a renewed interest in scrutinizing the discrepancy observed in the SAGE and GALLEX neutrino calibration measurements. SAGE and GALLEX have been the two leading initiatives to determine the electron-neutrino flux from the basic solar pp-fusion process [1–5] and thereby significantly contributed to our modern understanding of neutrino oscillations and neutrino matter effects in the Sun. Both experiments used the $^{71}\text{Ga}(\nu_e, e^-)^{71}\text{Ge}$ charged-current (CC) reaction and the subsequent 11.43 d electron-capture (EC) decay of ^{71}Ge as a signature for the neutrino reaction. Detector-calibration measurements were subsequently performed with neutrinos from the decays of reactor-produced 51Cr and 37Ar sources [2–6]. Based on neutrino cross-section calculations performed by Bahcall [7], the ratio of measured to predicted 71Ge event rates, however, turned out to be consistently below expectation with an average deficit of 13% and $\approx 2.5 \sigma$ significance according to Ref. [4].
While arguments are made to explain the deficit with new physics and possible extensions to presently known neutrino properties [8–10], one obvious check is to verify the underlying nuclear physics assumptions as suggested by Haxton [11] and Bahcall [7]. In this context the contributions from the two lowest lying states in 71Ge at 175.0 keV (5/2−) and 499.9 keV (3/2−), which can be reached by the CC reaction from the 51Cr and 37Ar neutrino sources, were recently re-evaluated from a high-precision 71Ga(He, f) charge-exchange experiment to be 7.2 ± 2.0% [12] for the 51Cr source. This value even slightly amplifies the afore-mentioned SAGE/GALLEX discrepancy, since Bahcall’s calculations [7] used in the SAGE/GALLEX calibration were based on a 5.1% contribution.

In view of the importance centered around neutrino physics, a critical review of the various other quantities, which enter into the neutrino cross-section calculation, may therefore be in order. Whereas the decay properties of the 51Cr nucleus are known to rather high precision, we find that there is a need to re-examine the experimental Q-value of the 71Ge EC-decay. One may note that the Q-value enters quadratically in first order into the cross-section calculation, and an 8 keV increase is sufficient to reach consistency at a 1σ-level. Past measurements of the 71Ge Q-value were performed by extrapolating a measured internal bremsstrahlung (IB) spectrum to the end-point energy. The bremsstrahlung component by itself is a highly suppressed process, and photon-emission probability near the end-point drops even further by several orders of magnitude, thereby making precise end-point measurements highly non-trivial. One may also note that the Q-value determination for 71Ge was mostly a side-product of experiments motivated by searches for a 17 keV neutrino [13–15]. The quoted values range from 225 keV to 237 keV [16–22] with $Q = 232.69 ± 0.15$ keV being the value used by Bahcall [7]. Only one additional Q-value measurement based on a different technique has been reported [23], where a (p, n) charge–exchange threshold measurement gave a Q-value of 236 ± 2 keV.

High-precision Penning-trap mass spectrometry [24,25] is at present the most competitive technique to assess whether the previous 71Ge EC Q-value measurements could have suffered from unknown systematic effects. Many Penning-trap measurements with both singly and highly charged ions (HCIs) [26], using on-line [27,28] as well as off-line [29–36] produced ion beams, have led to numerous Q-values with precisions of order 1 ppb. In the present work we further introduce a new scheme, by which an additional efficient isobaric ion separation can be realized. This separation is based on threshold charge breeding using an electron-beam ion trap charge breeder (EBIT) [37].

2. Experiment and results

The measurement was performed at the ISAC facility at TRIUMF using the TITAN (TRIUMF’s Ion Trap for Atomic and Nuclear science) ion trap and mass-measuring setup [38], whose successful operation on unstable nuclei has been demonstrated in a series of recent experiments [39–45].

TITAN consists of three essential components, a radio-frequency quadrupole cooler and buncher (RFQ) [46], the afore-mentioned EBIT, and a precision mass-measurement Penning trap (MPET) [39].

For the present measurement the two isotope species, 71Ge and 71Ga, were co-produced by irradiating Ta target foils with a 50 μA proton beam at 500 MeV from the TRIUMF main cyclotron. The TRIUMF Resonant Ionization Laser Ion Source (TRILIS) [47] provided a beam of resonantly ionized Ge atoms in parallel to surface-ionized Ga atoms. One may note that germanium does not easily surface ionize due to its larger ionization potential of $E_{IP} = 7.9$ eV as opposed to 6.0 eV for gallium [48]. The titanium-sapphire laser-ionization scheme, which was developed off-line by Kessler et al. [49], uses a 3-step resonant excitation into an auto-ionizing state of germanium. This scheme was successfully employed on-line for the first time and provided a 71Ge+ beam intensity of $1.8 \cdot 10^7$ ions per second, as measured at the ISAC yield station. It allowed switching from a mono-isotopic 71Ga to a mixed 71Ga/71Ge ion beam by blocking or unblocking the laser (cf. Fig. 1).

The ions were extracted as 20 keV ion beams, mass separated, and delivered to the TITAN RFQ, where they were accumulated, cooled and bunched. The bunches from the RFQ were subsequently captured in the EBIT [50] for fast charge breeding through successive electron-impact ionization. The electron beam was set to a current of 70 mA and an energy of 2.00 keV, which is just at the ionization-potential thresholds of neon-like ions, i.e., $E_{IP}(Ge^{22+}) = 2.01$ keV and $E_{IP}(Ge^{21+}) = 2.18$ keV [48]. Therefore, for germanium one can reach the charge state $q = 22$, whereas for gallium only $q = 21$. This allows subsequent separation of the two ion species owing to the different m/q ratios. It is the first time that this threshold charge-breeding scheme was applied to separate isobaric samples of on-line produced isotopes.

Fig. 1(a) displays the time-of-flight spectra of ion bunches extracted from the EBIT and detected on a micro-channel plate detector located in front of the MPET. For comparison, the background spectrum (from the residual gas) extracted with the $A = 71$ beam injection turned off is plotted in Fig. 1(b). The EBIT extraction parameters were chosen such that some fraction of the ions remained in the trap for continued charge breeding [50]. This accumulation enabled delivery of HCIs at time intervals shorter than the actual charge-breeding time, and it produced a charge-state distribution, which peaked at the atomic shell closure. Close to 30% of the extracted Ga or Ge ions appeared in the Ne-like charge state. With the resonant laser-ionization scheme for Ge active, a mono-isotopic Ge$^{22+}$ beam was delivered to the MPET, and a mono-isotopic Ga$^{21+}$ beam was achieved with the laser off. A fast ion gate of the Bradbury-Nielsen (BN) type [51] allowed q/m selection for the mass measurement.

In the MPET the cyclotron frequency $f_c = \frac{e}{2\pi q B}$, and hence the mass m, was determined using the time-of-flight–cyclotron-resonance method (TOF–ICR) [52,26]. With this technique the mass resolution at a given magnetic field B is inversely proportional to the radio-frequency excitation time T_{rf} and to q, i.e.,

![Fig. 1](https://example.com/figure1.png)
the magnetron radius (controlled by the Lorentz-steering potential

13 min acquisition time were performed, and throughout the cam-

reveal any significant shifts. This contamination may therefore be

of surface-ionized 71Ga. This allowed an independent determi-

nation of the Q-value by concurrently injecting both elements

which makes the use of highly charged ions particularly interest-

Alternating measurements on Ga21+ and Ge22+ of typically

13 min acquisition time were performed, and throughout the cam-

paign different settings were chosen for the excitation time and the

magnetron radius (controlled by the Lorentz-steering potential U0

[52], in order to study systematic effects like, e.g., the inter-

action of HClS with the residual gas. Typical TOF–ICR spectra with

example acquisition time. The method is also more sensitive to

the modulation accuracy of the analogue rf-ramping. However, sys-

tematic shifts resulting from any time dependent fluctuations, rel-

ativistic shifts, and/or different m/q ratios are largely eliminated by

this simultaneous isionic measurement.

For both methods the Q-value is calculated from the ratios of the

measured frequencies and the charge states

\[R = \frac{f_{\text{Ga}}}{f_{\text{Ge}}} \cdot \frac{q_{\text{Ga}}}{q_{\text{Ge}}} \] \hspace{1cm} (2)

as

\[Q = M_{\text{Ga}}^\text{Ga} (R - 1) - m_e (R q_{\text{Ga}} - q_{\text{Ge}}) + R B_{\text{Ga}}^{\text{Ga}} - B_{\text{Ge}}^{\text{Ge}}. \] \hspace{1cm} (3)

where \(M_{\text{Ga}}^\text{Ga} \) is the atomic mass of 71Ga, \(m_e \) the electron mass, and \(B_{\text{Ga}}^{\text{Ga}} \) \(B_{\text{Ge}}^{\text{Ge}} \) are the ionization energies, i.e., the sum of all in-

dividual electron-binding energies from the neutral atom towards

the highly charged ion at charge state \(q \). Electron-binding energies

were taken from Ref. [54], which have estimated uncertainties of

order \(\pm 30 \) eV in the relevant \(q \)-range.

We note that the use of HClS increases the ion-ion interac-

tion in the trap causing frequency shifts [55]. The effect can be

accounted for through a count-class analysis, as described in

Ref. [56], however, at the cost of slightly increased statistical un-

certainties (cf. Table 1).

Consecutive runs of Ga21+ and Ge22+ have been interleaved with measurements on 14N4+ and 16O5+ and systematic shifts of up to 1.5 keV between the two charge states of Kr have been observed. Therefore, high-statistic accuracy checks using 14N4+ and 16O5+ were performed after the on-line campaign and confirmed systematic effects on the order of 1.5 keV. The trap compensa-

tion settings were deduced from previous comprehensive studies on

singly charged 6Li and 7Li [39], where sub-ppb precision was

achieved. However, these settings were not optimal for HClS in the

m/q range of this study, and we cannot exclude systematic uncer-

tainties on the order of 20 ppb for the results presented here. The

summary of measurements is shown in Fig. 3(a).

For the 71Ga/71Ge isionic two-component beam measurement the average number of ions injected into the MPET was varied and two different \(T_{rf} \) were chosen. These results are shown in Fig. 3(b).

The count-class analysis revealed systematic shifts of \(f_{\text{c}} \) of 0.42 Hz

per additional detected ion (equivalent to 25 ppb) for both iso-

bars. As both resolutions shifted by a similar extent in the same
direction, no significant trend for the derived Q-value was found.
Without count-class analysis the scatter of the Q-values for different settings of T_{rf} and average number of ions resulted in a Birge ratio [57] (which is a measure of the appropriateness of statistical uncertainties) of 1.74, and by including count-class analysis it increased to 2.60. This could point to possible ion–ion interaction effects so far unaccounted for. The total uncertainty was therefore conservatively evaluated to 1.85 keV (in accordance with the Birge ratio of 2.60, or with a systematic uncertainty of 1.71 keV added conservatively evaluated to 1.85 keV (in accordance with the Birge ratio [57] (which is a measure of the appropriateness of statistical uncertainties) of 1.74, and by including count-class analysis it increased to 2.60. This could point to possible ion–ion interaction effects so far unaccounted for. The total uncertainty was therefore conservatively evaluated to 1.85 keV (in accordance with the Birge ratio of 2.60, or with a systematic uncertainty of 1.71 keV added conservatively evaluated to 1.85 keV). The observed GALLEX and SAGE discrepancy in a significant way. The TITAN HCIs, whereby on-line co-produced isobars have been separated through threshold charge breeding for the first time. The TITAN result firmly excludes an incorrect Q-value as a cause for the galium anomaly observed in the GALLEX and SAGE calibration runs. Combined with the recent v-response measurements reported in Ref. [12], we conclude that there are no further uncertainties in the nuclear structure, which could remove the discrepancy.

Charge breeding around thresholds of electron-shell closures can provide clean mono-isotopic ion beams, and thus opens up new opportunities for radioactive isotope facilities beyond those of increasing the mass resolution in Penning-trap measurements. Especially on the proton-rich side, where intense contaminations from less proton-rich isobars are frequently present in ion beams at ISOL-type facilities, the technique described can be a valuable advantage.

Acknowledgements
This work has been supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada. D.F. and A.L. acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) under grant FR 601/3-1, S.E. from the Vanier CGS, T.B. from the Evangelisches Studienwerk e.V. Villigst, V.V.S. from the Studienstiftung des Deutschen Volkes, A.T.G. from the NSERC CGS-D and T.D.M. from the NSERC CGS-M. D.F. further expresses his gratitude to TRIUMF for the hospitality and support during his extended stay. We thank the TRIUMF technical staff, the ISAC beam delivery group, and M. Good for their continuous support.

References

Fig. 3. Summary of Q-value measurements. Figure (a) shows six data sets from a series of measurements with mono-isotopic beams of Ga$^{21+}$ and Ge$^{22+}$ and figure (b) shows four data sets from a series of measurements with a mixed beam of Ga and Ge in charge state $q = 21$. Diamonds/dots show the results with/without count-class analysis [56] together with their combined averages (also indicated by the broken lines). The various numbered sets in (a) indicate measurements with different excitation times T_{rf} and different magnetron radii resulting from different Lorentz-steering potentials U_{LS} [53], which are for T_{rf} and U_{LS}, respectively: (1) 78 ms, 50 V; (2) 156 ms, 50 V; (3) 117 ms, 50 V; (4) 117 ms, 30 V; (5) 39 ms, 30 V; (6) 39 ms, 50 V. The average number of ions detected in all cases was close to one. The sets in (b) differ in excitation times and average number of ions N_{ion} in the trap, which are: (1) 78 ms, 2.0; (2) 78 ms, 2.4; (3) 39 ms, 3.0; (4) 78 ms, 3.5. In these cases the Lorentz-steering potential was kept constant at 50 V.

Fig. 4. Comparison of Q-value measurements (1σ errors) [a] = Ref. [16], [b] = Ref. [17], [c] = Ref. [18], [d] = Ref. [23], [e] = Ref. [19], [f] = Ref. [20], [g] = Ref. [21], [h] = Ref. [22]. Leading to various updated AME values (diamonds) in a given year [58–62]. The individual IB measurements scatter by up to 6σ. The dotted line represents the value taken by Bahcall et al. [7]. The Q-value measurements from this work (circles) are shown for comparison with the average value indicated by the dashed line and the error indicated by the shaded area.