Library-to-Library Synthesis of Highly Substituted α-Aminomethyl Tetrazoles via Ugi Reaction

Pravin Patil,† Bhupendra Mishra,† Gitanjali Sheombarsing,† Katarzyna Kurpiewska,‡ Justyna Kalinowska-Tłucik,‡ and Alexander Dömling*†

†University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
‡Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Biocrystallography Group, Ingardena 3, 30-060 Kraków, Poland

Supporting Information

ABSTRACT: α-Aminomethyl tetrazoles, recently made accessible by an Ugi multicomponent reaction (MCR), were shown to be excellent starting materials for a further Ugi MCR, yielding substituted N-methyl-2-(((1-methyl-1H-tetrazol-5-yl)methyl)amino)acetamides having four points of diversity in a library-to-library approach. The scope and limitations of the two-step sequence was explored by conducting more than 50 reactions. Irrespective of electron-rich and electron-deficient oxo-components and the nature of the isocyanide component, the reactions give excellent yields. Sterically less hindered α-aminomethyl tetrazoles give better yields of in further Ugi MCR. The target scaffold has four points of diversity and is finding applications to fill screening decks for high-throughput screening (HTS) in the European Lead Factory and in structure-based drug design.

KEYWORDS: Ugi reaction, library-to-library approach, high-throughput screening, structure-based drug design, European Lead factory

High-throughput screening (HTS) often yields poor or no results for difficult post-genomic targets, such protein−protein interactions. One potential reason is the overpopulation of certain types of molecular shapes in many pharmaceutical screening libraries, which are often based on the preferential use of certain reactions, such as Suzuki−Miyaura and Buchwald−Hartwig coupling processes. In other words, libraries are often designed with synthetic chemistry in mind rather than oriented toward targets and properties. Library generation employs familiar steps incorporating easy-to-functionalize groups (e.g., amine, OH, −CHO) addressed with standard commercial reagents (e.g., acid chlorides, boronic acids, sulfonyl chlorides). Multicomponent reaction chemistry different from this standard library approach in that MCRs build complex scaffolds in one step after which no further functionalization is needed or performed. We focus here on the tetrazole functional group, a metabolically stable and drug-like fragment accessible by MCR but largely underrepresented in screening libraries. Some MCR-prepared tetrazole scaffolds are shown in Scheme 1 and have been recently reviewed.

We have recently introduced a Ugi tetrazole variation in which ammonia can be used as an amine component and α-aminomethyl tetrazoles are formed in good yields and diversity. To take advantage of the large scope of the reaction, we decided to use the products of the Ugi tetrazole reaction as educts in another Ugi-3CR (Scheme 2), thus perusing a library-to-library approach.

α-Amino monosubstituted methyl tetrazoles can be obtained from aldehydes, whereas α-amino disubstituted methyl tetrazoles are derived from ketones. To initiate the study, we scaled up few α-amino mono or disubstituted methyl tetrazoles with selected aldehydes and ketone (Table 1). These reactions proceeded at 10−25 mmol scale in the same manner as the previously reported

Received: September 21, 2017
Revised: November 21, 2017
Published: December 7, 2017

© 2017 American Chemical Society
For the optimization of the reaction conditions, we tested the Ugi three-component reaction (U-3CR) of tert-octyltetrazolo-5-methylamine (A1), p-chlorobenzaldehyde (1b), and benzyl isocyanide (1c) with various Lewis acids, such as Sc(OTf)3, Al(OTf)3, Cu(OTf)3, Zn(OTf)2, ZnCl2, HClO4, TiCl4, ZrCl4, BCl3, B(OH)3, CH3SO3H, Al(OTf)3, Cu(OTf)3, Zn(OTf)3, ZnCl2, HClO4, TiCl4, ZrCl4, BCl3, B(OH)3, CH3SO3H, p-TSA in 10 to 20 mol % and HCl in methanol (1 equiv), in solvents such as toluene, dichloromethane, and methanol. Disappointingly, all initial attempts failed to provide good yield of product 1d. Then, we increasing the reaction time with various temperature combinations from room temperature to 55 °C, but again we did not obtain satisfactory product 1d formation. Next, we followed the procedures of List and Li and we tested this reaction with 10% phenyl phosphinic acid in toluene and 20% p-toluenesulfonic acid (p-TSA) in methanol. Encouragingly, p-toluenesulfonic acid (20 mol %) in methanol stand out giving the desired product in moderate yield (1d, 40%). Thus, we selected p-TSA to optimize the reaction conditions further with respect to solvent, temperature, reaction time and ratio of p-TSA (Table 2).

We observed that raising the reaction temperature (entry 3, Table 2) and using methanol—water as 9:1 mixture to promote this reaction (entry 4, Table 2), also did not improve the yield. By changing the solvent from methanol to dichloromethane we found only trace product formation (entry 5, Table 2). Finally, we decided to use p-TSA in an (semi)stoichiometric amounts (entry 6–8, Table 2). Surprisingly, we observed the stoichiometric use of p-TSA at room temperature gave the product 1d in excellent 96% yield, while rising the temperature again resulted in lower yields.

1–2 mmol scale under identical reaction conditions (entry 1–10, Table 1).

With these optimized reaction conditions in hand we initiated our study to explore the scope and limitations of the N-alkyl tetrazolo-5-methylamines (A), oxo components (B), and isocyanides (C) (Table 3).

First, the reaction of various oxo-components (aldehydes and ketones) and isocyanides with N tert-octyl tetrazolo-5-methylamine (A1) as the amine component was studied (Table 3, entries 1–22). Aromatic, substituted aromatic and heterocyclic aldehydes, for example indole-3-carboxaldehyde (Table 3, 12b, 73%) gave good yields (Table 3, entries 1–12). The electronic properties of aromatic aldehydes did not influence the yields of the reactions (Table 3, entry 4–11). Aliphatic aldehydes and ketones including sterically demanding cyclic ketones, similarly, gave excellent yields (Table 3, entries 13–22). Moreover, the reaction of A3 with bulky 1-adamantyl isocyanide (26c) also gave good yield (26d, 71%). Use of hydrophilic 2-morpholinoethyl isocyanide resulted in lowering of the yield (23d, 63%), presumably due to loss of material during workup.

Furthermore, we extend the scope and limitation analysis toward the amine component using several other N-alkyl tetrazolo-5,α,α-disubstituted methylamines, such as A4–A10 (Table 3, entries 28–52). For example, the gem-dimethyl moiety is frequently used to improve PKPD and target engagement properties of compounds.8 9 Use of N-tert-butyl tetrazolo-5,α,α-dimethyl methylene (A4) provided the product in 42–81% yields (Table 3, entry 28–36). Aromatic aldehydes gave excellent yields (Table 3, entry 33–35). When we used bulkier N-tert-octyl tetrazolo-5,α,α-dimethyl methylene (A5), yields dropped as compared to N-tert-octyl tetrazolo-5-methylamine (A1). In this case, aromatic heterocyclic aldehydes failed to give any products (Table 3, entries 41–44).

Next, we investigated combinations of bulky α,α-disubstituted methylamines with N-tetrazolyl side chains, such as phenylethyl, benzyl, and cyclohexyl groups (Table 3, entry 45–52). Surprisingly, excellent results were also obtained in these cases (Table 3, entries 45–52).

The same reaction strategy was also applied to N-H tetrazolo-5-methylamine,25,26 as analogously to the report of Ley et al.27 (Scheme 3a) but no product could be isolated. However, we could synthesize a similar product (5) by acidic cleavage of the N-tert-octyl group of the intermediate Ugi adducts (14d). Usage of 6N aqueous hydrochloric acid and stirring overnight accomplished the product 5 in excellent yield (Scheme 3b).
Table 3. Ugi-3CR of Different Amino Methyl Tetrazoles with Different Oxo Components and Isocyanides

<table>
<thead>
<tr>
<th>Sr</th>
<th>Amine</th>
<th>Oxo comp.</th>
<th>Isocyanide</th>
<th>Product D</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td></td>
<td></td>
<td>1d, 96</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td></td>
<td></td>
<td>2d, 97</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td></td>
<td></td>
<td>3d, 98</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A1</td>
<td></td>
<td></td>
<td>4d, 97</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A1</td>
<td></td>
<td></td>
<td>5d, 97</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A1</td>
<td></td>
<td></td>
<td>6d, 99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A1</td>
<td></td>
<td></td>
<td>7d, 94</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A1</td>
<td></td>
<td></td>
<td>8d, 94</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A1</td>
<td></td>
<td></td>
<td>9d, 95</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A1</td>
<td></td>
<td></td>
<td>10d, 96</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A1</td>
<td></td>
<td></td>
<td>11d, 99</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A1</td>
<td></td>
<td></td>
<td>12d, 73</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A1</td>
<td></td>
<td></td>
<td>13d, 97</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>A1</td>
<td></td>
<td></td>
<td>14d, 97</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A1</td>
<td></td>
<td></td>
<td>15d, 85</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>A1</td>
<td></td>
<td></td>
<td>16d, 90</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>A1</td>
<td></td>
<td></td>
<td>17d, 79</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>A1</td>
<td></td>
<td></td>
<td>18d, 37</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>A1</td>
<td></td>
<td></td>
<td>19d, 87</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A1</td>
<td></td>
<td></td>
<td>20d, 96</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>A1</td>
<td></td>
<td></td>
<td>21d, 97</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A1</td>
<td></td>
<td></td>
<td>22d, 98</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>A2</td>
<td></td>
<td></td>
<td>23d, 63</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>A2</td>
<td></td>
<td></td>
<td>24d, 78</td>
<td></td>
</tr>
</tbody>
</table>

* Isolated yields. †Cis/trans ratio 4:3. ‡Cis/trans ratio 3:2. §Cis/trans ratio 5:1.

Scheme 3. (a) Ugi-3CR Reaction of N-H-Tetrazolo-5-methylamine and (b) Deprotection of N-tert-Octyl Group

With these overall results, we propose a plausible reaction mechanism (Scheme 4). Accordingly, the reaction proceeds with N-alkyl tetrazolo-5-methylamines to form an imine (I-1), with loss of one equivalent of water. Protonation with p-toluene-sulfonic acid activates the imine to yield the iminium ion (I-2), which then undergoes nucleophilic addition to the isocyanide (C) to give the intermediate nitrilium ion species (I-3). The nucleophilic trapping of this intermediate by the p-toluene-sulfonate counteranion affords the p-toluene-sulfonic imidoyl species (I-5). The final step is a Mumm rearrangement with the transfer of the p-toluene-sulfonate group (I-3) from the oxygen atom to the nitrogen atom of the former amine (Scheme 4) to form p-toluene-sulfonic amide (I-6, pathway A). Since p-toluene-sulfonate is a good leaving group, it is replaced by the nucleophile water which was generated during the imine formation process. Alternatively, water attacks...
Scheme 4. Plausible Reaction Mechanism

Crystallographic information file for compound 1d (CIF)
Crystallographic information file for compound 2d (CIF)
Crystallographic information file for compound 17d (CIF)
Crystallographic information file for compound 18d (CIF)
Crystallographic information file for compound 22d (CIF)

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The work was financially supported by the NIH (NIH 2R01GM097082-05) and by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115489, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in-kind contribution and was also supported by the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Moreover, funding has also been received from the European Union’s Horizon 2020 research and innovation program under MSC ITN “Accelerated Early stage drug DIScovery” (AEGIS, grant agreement No 675555), and CoFund ALERT (grant agreement No 665250).

REFERENCES

Figure 1. Crystal structure analysis and hydrogen bonding interactions (red dotted lines) of 1d, 2d, 17d, 18d, and 22d. Compound 1d for example is a noncovalent dimer formed by hydrogen bonds between tetrazole-N3 and the amide NH of the adjacent molecule.

