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The use of antidepressant treatment during pregnancy is increasing, and selective

serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in

pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters

are expressed in two-cell mouse embryos. Thus, the aim of the present study was

to evaluate whether fluoxetine, one of the most prescribed SSRI antidepressant

world-wide, exposure influences the timing of different embryo developmental stages,

and furthermore, to analyze what protein, and protein networks, are affected by fluoxetine

in the early embryo development. Human embryos (n = 48) were randomly assigned to

treatment with 0.25 or 0.5µM fluoxetine in culture medium. Embryo development was

evaluated by time-lapse monitoring. The fluoxetine-induced human embryo proteome

was analyzed by shotgun mass spectrometry. Protein secretion from fluoxetine-exposed

human embryos was analyzed by use of high-multiplex immunoassay. The lower dose

of fluoxetine had no influence on embryo development. A trend toward reduced time

between thawing and start of cavitation was noted in embryos treated with 0.5µM

fluoxetine (p = 0.065). Protein analysis by shotgun mass spectrometry detected 45

proteins that were uniquely expressed in fluoxetine-treated embryos. These proteins

are involved in cell growth, survival, proliferation, and inflammatory response. Culturing

with 0.5µM, but not 0.25µM fluoxetine, caused a significant increase in urokinase-type

plasminogen activator (uPA) in the culture medium. In conclusion, fluoxetine has marginal

effects on the timing of developmental stages in embryos, but induces expression and

secretion of several proteins in a manner that depends on dose. For these reasons, and in

line with current guidelines, the lowest possible dose of SSRI should be used in pregnant

women who need to continue treatment.

Keywords: embryo development, selective serotonin reuptake inhibitors, serotonin, human, time-lapse

monitoring, proteomics, secretomics, shotgun mass spectrometry

INTRODUCTION

The prevalence of major depression during pregnancy is approximately 3–5% (Andersson et al.,
2003; Gavin et al., 2005). Nowadays, selective serotonin reuptake inhibitors (SSRIs) are the most
widely prescribed antidepressants in pregnant women as these drugs, besides proven efficacy, are
associated with fairly few side-effects. While generally also considered safe to use during pregnancy
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(Barbey and Roose, 1998; Gentile, 2005), SSRI treatment has been
associated with increased risk of pregnancy complications such
as preterm birth and preeclampsia (Qiu et al., 2009; Wisner et al.,
2009). With regards to the offspring, reduced fetal head growth
and low birth weight have been reported (Kallen, 2004; Wen et al.,
2006; El Marroun et al., 2012). SSRIs have also been associated
with cardiac malformations (Olivier et al., 2013; El Marroun et al.,
2014; however, see also Furu et al., 2015) and increased risk of
persistent pulmonary hypertension, although these conditions
are rare (Wogelius et al., 2006; Kieler et al., 2012). Behavioral
defects caused by antenatal SSRI exposure include increased
risk for autism spectrum disorders and externalizing behaviors
(Oberlander et al., 2007; Croen et al., 2011). However, other
studies suggest that these malformations and behavioral defects
may be caused by the underlying depression and not by the
treatment itself (reviewed in Olivier et al., 2013, 2015a; Waters
et al., 2014).

SSRIs inhibit the reuptake of released serotonin (5-HT) by
blocking the serotonin transporter, which results in increased
levels of 5-HT in the synaptic cleft. Serotonin is important
during brain development, where it acts as a neurotrophic factor
(Lauder et al., 1981; Gaspar et al., 2003; Ansorge et al., 2007).
Lauder and Krebs (1978) found that serotonin is involved in early
neurogenesis in chicken embryo and it has been shown in mice
that 5-HT produced by the placenta is accumulated in the fetal
forebrain during critical periods of brain development (Bonnin
and Levitt, 2012). 5-HT is also important for the regulation
of embryogenesis in such diverse species like sea urchins and
mice (reviewed in Buznikov et al., 2001), where high and low
levels of serotonin can have both positive and negative effects,
depending on the stage of development (Khozhai et al., 1995;
Il’kova et al., 2004). Of relevance for the research question at
hand, serotonin transporters are expressed as early as in two-
cell mouse embryos (Amireault and Dube, 2005). In addition,
serotonin plays a crucial role during craniofacial development
(Moiseiwitsch and Lauder, 1995) and cardiac morphogenesis in
mice (Yavarone et al., 1993). SSRIs are found in cord blood and
amniotic fluid of SSRI-treated pregnant women (Hendrick et al.,
2003; Loughhead et al., 2006), indicating that the fetus is exposed
to SSRIs during pregnancy.

In previous studies, we have shown that SSRI treatment
affects gene expression and protein levels in human placenta
(Kaihola et al., 2015; Olivier et al., 2015b). While these effects
were minor (at least in terms of fold change) in comparison
to what is typically seen in preeclampsia or other placental
disorders (Winn et al., 2009), it may be speculated that the
changes we see, for instance in nerve growth factor signaling
(Kaihola et al., 2015), may influence placental function, and thus,
the intrauterine development of the fetus. To further investigate
the impact of SSRIs on fetal development, studies focusing on
embryonic development before implantation are needed. The
aim of the present study was to evaluate whether fluoxetine, one
of the most widely prescribed SSRI antidepressants, exposure
influences the timing of different embryo developmental
stages, and furthermore, to analyze what protein, and protein
networks, are affected by fluoxetine in the early embryo
development.

MATERIALS AND METHODS

All the couples who were asked to participate attended the
Center for Reproduction, Uppsala University Hospital, Uppsala,
Sweden, and written informed consent was obtained from all
couples donating embryos for this study. No reimbursement was
given to couples participating.

Embryo Collection, Culturing, and
Developmental Scoring
Couples who had undergone in vitro fertilization (IVF) treatment
at the Center for Reproduction, Uppsala, Sweden, were asked to
donate surplus cryopreserved embryos that otherwise, according
to Swedish law, had to be destroyed following 5 years of
cryopreservation.

Before freezing the oocytes were inseminated with sperm
in IVF medium (G-IVF PlusTM) (catalog no. 10136, Vitrolife,
Sweden) and transferred to G1 medium (G1 PlusTM) (catalog
no. 10128, Vitrolife, Sweden) after evaluation of fertilization.
Only zygotes with two pro-nuclei were selected for further
culture. Embryos were cultured in 25 µL droplets of medium
under an oil overlay, in a humidified incubator at 37◦C and
6% CO2/6% O2.

All in all, 48 human embryos were used and no embryos
were obtained from the same couple. The experiments were
performed in two parts: (1) six embryos in each group were used
for mass spectrometry analysis (see below) and (2) 10 embryos
in each group were used for protein detection in culture medium
and for immunofluorescent staining (see below). Cryopreserved
2-day embryos were thawed using a thawing kit (Sydney IVF
Thawing Kit) (catalog no. G19014 Cook Medical Inc., US) and
transferred to equilibrated culture medium used for human
cleavage stage embryos (CCM) (catalog no. 10093, Vitrolife,
Sweden) (Hambiliki et al., 2013). An independent embryologist
scored the embryos and ensured that the three treatment groups
would be as similar as possible at baseline. Following this group
allocation, each group was randomly assigned to treatment with
0.25 or 0.5 µM fluoxetine or control. The fluoxetine doses were
chosen based on the literature, information on maternal SSRI
concentrations from one of our studies, and a pilot study. The
literature suggested that 0.25 and 0.5 µM fluoxetine are within
the ranges found in amniotic fluid of women treated with
fluoxetine during pregnancy (Hendrick et al., 2003; Rampono
et al., 2004; Loughhead et al., 2006). According to yet unpublished
findings, fluoxetine concentrations in late pregnant women vary
between 0.1 and 0.7 µmol/L, which should approximate the
concentration to which the embryo is exposed. Finally, in a pilot
study we found that embryos treated with 1.0 µM fluoxetine
(n = 3) tended to develop faster but also die to a higher degree
than control embryos.

For treatment with fluoxetine, fluoxetine was added to
the culture medium to reach the concentrations of 0.25 or
0.5 µM fluoxetine (catalog no. F132, Sigma-Aldrich Corp.,
US), while control embryos were cultured in CCM medium
without additives. All embryos were treated using the same
batch of culturing medium, and each experiment included a
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blank media. The embryos were then cultured using time-
lapse monitoring in an EmbryoScope R© (Unisense FertiliTech,
Denmark) for 4 days (i.e., until day six after insemination)
in 6% CO2 and 6% O2 at 37◦C (Hambiliki et al., 2013).
Images of the embryos were recorded at 15 min intervals. The
embryo quality was evaluated retrospectively using standard
morphological criteria for cleavage stage embryos, according
to Alpha Scientists in Reproductive Medicine and ESHRE
Special Interest Group of Embryology (2011). The scoring was
performed by an independent observer. Timing of different
embryo developmental stages was determined as time after
thawing, e.g., time to first division after thawing of the embryo.
Embryos from both experiments were used for evaluation (n =

16 in each group). The cut off value for a high-quality embryo was
the same as for blastocysts selected for transfer to the women,
according to Alpha Scientists in Reproductive Medicine and
ESHRE Special Interest Group of Embryology (2011).

Shotgun Mass Spectrometry of Embryos
After the embryos had been cultured, the medium was collected
and saved for further analyses. The embryos (six embryos
per condition) were snap frozen and run individually in a
shotgun mass spectrometry analysis, for the detection of proteins
expressed in the embryos. One embryo per condition was used
for a pilot study and the data presented in the results are based
on the five remaining embryos.

Embryonic samples were dissolved in four times the sample
volume of 2 M thiourea (catalog no. 107979, Merck KGaA,
Germany) /6 M urea (catalog no. 108488, Merck KGaA,
Germany) in 50 mM ammonium bicarbonate (catalog no. 09830,
Fluka, Germany). Cell lysis and protein extraction was performed
by vigorous vortexing followed by 2 h incubation at −20◦C and a
final step of vigorous vortexing. The proteins were reduced with
dithiothreitol (DTT) (catalog no. D5545, Sigma-Aldrich Corp.,
US) and alkylated with iodoacetamide (IAA) (catalog no. I1149,
Sigma-Aldrich Corp., US) prior to enzymatic digestion. The
digestion was performed using two different enzymes. First, the
proteins were digested with Lys-C (catalog no. 129-02541, Wako
Chemicals GmbH, Germany) for 2 h at room temperature (RT).
Thereafter the urea concentration was diluted to <2 M using
50 mM ammonium bicarbonate, and trypsin (catalog no. V5111,
Promega, US) was added to the samples. The tryptic digestion
was carried out at 37◦C overnight. Prior to the analysis by mass
spectrometry the peptides were purified by ZipTips R© (catalog no.
ZTC18SO96, Merck Millipore, US) (Bergquist et al., 2002) and
dried in a SpeedVac R© system.

All analyses were performed using a QExactive Plus Orbitrap
mass spectrometer (Thermo Fisher Scientific, Germany)
equipped with a nano electrospray ion source. Samples were
dissolved in water/ formic acid (0.1%) (catalog no. 100264,
Merck KGaA, Germany), and peptides were separated by
reversed phase liquid chromatography using an EASY-nLC 1000
system (Thermo Fisher Scientific, Germany). A set-up of pre-
column and analytical column was used. The pre-column was a
2 cm EASY-column (1D 100 µm, 5 µm C18) (catalog no. SC001,
Thermo Fisher Scientific, Germany) and the analytical column
was a 10 cm EASY-column (ID 75 µm, 3 µm, C18) (catalog no.

SC2003, Thermo Fisher Scientific, Germany). Peptides were
eluted with a 150 min linear gradient from 4 to 100% acetonitrile
at 250 nL/min. The mass spectrometer was operated in positive
ion mode, acquiring a survey mass spectrum with resolving
power 70,000 and consecutive high collision dissociation (HCD)
fragmentation spectra of the 10 most abundant ions.

The acquired data (RAW-files) were submitted to the
MascotTM search algorithm (Matrix Science, UK) embedded
in Proteome Discoverer software (Version 1.4.0.288, Thermo
Fisher Scientific, Germany) and searched against human proteins
in the UniProtKB/Swiss-Prot database. The search parameters
included: maximum 10 ppm and 0.02 Da error tolerance for the
survey scan and MS/MS analysis, respectively; enzyme specificity
was trypsin; maximum two missed cleavage sites were allowed;
cysteine carbamidomethylation was set as static modification;
oxidation (M) and deamidation (N,Q) were set as variable
modifications. The protein identifications were based on at least
two matching peptides of 95% confidence per protein.

Immunofluorescent Staining of Embryos
After culturing, two high-quality embryos from each group
were briefly washed in sterile phosphate-buffered saline (PBS)
containing 0.8 mg/mL polyvinylpyrrolidon (PVP) Clinical Grade
(catalog no. 1090500, MediCult, Origio, Denmark), fixated in
2.5% paraformaldehyde in PBS for 15 min at RT and then
stored in PBS/PVP at 4◦C. The embryos were permeabilized
in 0.25% Triton X-100 in PBS/PVP for 30 min at RT, blocked
in blocking solution containing 0.1% bovine serum albumin
(BSA) and 0.01% Tween20 in PBS for 15 min at RT, and
incubated with primary antibody (diluted 1:100 in blocking
solution) overnight at 4◦C. Primary antibodies against urokinase-
type plasminogen activator (uPA) (catalog no. sc-6830) and
nerve growth factor (NGF) (catalog no. sc-548) were used,
both from SantaCruz Biotechnology Inc., US. After incubation,
the embryos were washed 3 × 15 min in blocking solution,
incubated with secondary antibodies (diluted 1:100 in blocking
solution) for 1 h at RT and washed again 3 × 15 min in
blocking solution. The secondary antibodies were labeled with
fluorophores AlexaFluor488 and AlexaFluor594 (catalog no. A-
21206 and A-11058, Life Technologies, Thermo Scientific Inc.,
US). After washing, the embryos were mounted on a slide in
5 µL of VectaShield (Vector Laboratories Inc., US) surrounded
by Vaseline. A cover slip was lowered onto the slide, gently
pressed against the Vaseline, sealed with nail varnish and allowed
to dry. Pictures were taken using a fluorescence microscope (20x
objective; Axio Observer.Z1, Carl Zeiss AG Corp. Germany).

Protein Detection in Embryo Culture
Medium
After embryo culturing, 20 µL of the culture medium was snap
frozen (n = 10 in each group) and protein analysis was run on
each individual sample by using Proseek Multiplex Immunoassay
analysis based on Proximity Extension Assay Technology (Olink
Bioscience, Sweden) (Lundberg et al., 2011; Assarsson et al.,
2014). The Proseek Multiplex Inflammation I96×96 panel was
chosen for this study and the analysis was run at Olink Bioscience
facilities in Uppsala, Sweden.
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Statistical Analyses
For analysis of proteins detected in the embryo, a Venn diagram
was used to elucidate which proteins were uniquely expressed in
each fluoxetine dose group and which proteins were detected in
both fluoxetine groups (http://bioinfogp.cnb.csic.es/tools/venny/
index.html). QIAGEN’s Ingenuity Pathway Analysis (IPA R©)
(QIAGEN, Redwood City, US; www.qiagen.com/ingenuity) was
used to determine which pathways the proteins of interest were
involved in. IPA computes a score for each network according to
the fit of that network to the user-defined set of focus proteins.
The score, derived from a p-value, indicates the likelihood of the
association between the focus proteins and a given pathway.

The timing of developmental stages, the ability to form a
blastocyst, the quality of the embryos, as well as protein levels
were compared by use of Mann-Whitney U-test. All statistical
analyses were performed by the IBM Statistical Package for the
Social Sciences 20.0 (IBM Corp., Armonk, US) for Windows
software package.

Ethical Approval
The study was approved by the Regional Ethical Review Board in
Uppsala, Sweden (2014/298).

RESULTS

Embryo Development
The impact of fluoxetine on embryo development was evaluated.
Human embryos exposed to 0.25 or 0.5 µM fluoxetine were
compared to embryos cultured in control medium (n =

16 in each group). The embryos were cultured for 4 days
under conditions similar to those used in assisted reproduction
and were monitored by a time-lapse system. No differences
between treatment groups were noted at baseline (Table 1).
Embryos treated with 0.25 µM fluoxetine reached the individual

developmental stages after thawing at almost the same time as
control embryos. The embryos treated with 0.5 µM fluoxetine
tended to develop more quickly, with a shorter time for
development to start of cavitation after thawing (p = 0.065;
Table 1). No significant differences in the ability to form a
blastocyst or the proportion of high-quality embryos were
noted between fluoxetine supplement and the control conditions
(Table 1).

Proteomics and Secretomics
A proteome analysis on the human embryos was performed
to investigate unique protein expression patterns induced
by fluoxetine. Total protein lysate from single embryos,
cultured in ordinary medium supplemented with 0.25 or
0.5 µM fluoxetine, were analyzed by use of shotgun mass
spectrometry and compared to embryos cultured in ordinary
medium. As presented in Table 2 and Figure 1, a number
of differentiated proteins were detected in the embryos. In
total, 45 proteins were uniquely expressed in fluoxetine-treated
embryos, among which 24 were detected in both fluoxetine-
dose groups (Table 2). Nine proteins were uniquely expressed
by embryos treated with 0.25 µM fluoxetine and 12 unique
proteins were detected in embryos treated with the higher
fluoxetine dose (Table 2). Only proteins that were detected
in at least three out of five embryos in one group are
presented. In order to determine the biological relevance of
these proteins, an IPA analysis was performed, focusing on
proteins that were expressed in embryos treated with 0.5 µM
fluoxetine (in total 36 proteins). Three protein networks of
relevance were detected in 0.5 µM fluoxetine-treated embryos
(Table 3 and Figure S1): (1) Cell Death and Survival, Cellular
Growth and Proliferation, Hematological Disease with an IPA
score of 23; (2) Cancer, Organismal Injury and Abnormalities,
Reproductive System Disease with an IPA score of 18;

TABLE 1 | Embryo demographics at thawing, timing of different developmental stages after thawing, the number of embryos that developed into

blastocysts, and the number of high-quality embryos following treatment with 0.25 or 0.5mM fluoxetine.

Embryo demographics and time difference

from thawing (hours)

Control

na = 16

median (IQR)

0.25mM fluoxetine

na = 16

median (IQR)

0.5mM fluoxetine

na = 16

median (IQR)

Number of cells at thawing, n 4 (4–4) 4 (4–4.8) 4 (4–5.5)

Number of embryos with ≥ 75% live cells at

thawing, n (%)

15 (93.8%) 16 (100%) 15 (93.8%)

Number of embryos with 100% live cells at

thawing, n (%)

10 (62.5) 10 (62.5) 11 (68.8%)

First cell division, h 9.8 (4.7–16.7) 8.1 (2.5–21.2) 11.8 (4.8–14.5)

Fourth cell division, h 33.4 (13.8–41.4) 30.6 (21.2–38.8) 22.5 (17.0–30.1)

Compaction, h 52.8 (45.0–60.3) 53.0 (41.0–63.4) 47.8 (40.6–55.3)

Cavitation, h 65.1 (53.3–70.8) 60.4 (50.1–72.6) 54.0 (43.6–63.5)b

Start of expansion, h 75.2 (69.8–90.4) 75.4 (65.4–86.6) 69.0 (66.0–75.9)

Number of blastocysts, n (%) 10 (62.5%) 10 (62.5%) 13 (81.3%)

High-quality embryo, n (%) 8 (50.0%) 5 (31.3%) 10 (62.5%)

IQR, interquartile range.
aNumber of embryos from start of culture.
bp = 0.065 in comparison with control, Mann-Whitney U-test.
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TABLE 2 | Proteins detected by mass spectrometry that were found uniquely in 0.25mM fluoxetine- and 0.5mM fluoxetine-treated embryos.

0.25mM fluoxetine 0.5mM fluoxetine 0.25 and 0.5mM fluoxetine

UniProtKB Protein Description UniProtKB Protein Description UniProtKB Protein Description

P27105 STOM Erythrocyte band 7

integral membrane

protein

P05387 RPLP2 60S acidic ribosomal

protein P2

P02790 HPX Hemopexin

P04217 A1BG Alpha-1B-

glycoprotein

P62917 RPL8 60S ribosomal protein

L8

P06748 NPM1 Nucleophosmin

P49411 TUFM Elongation factor Tu,

mitochondrial

P68871 HBB Hemoglobin subunit

beta

P07737 PFN1 Profilin-1

P07954 FH Fumarate hydratase,

mitochondrial

P19338 NCL Nucleolin P00738 HP Haptoglobin

P02749 APOH Beta-2-glycoprotein 1 P46459 NSF Vesicle-fusing ATPase P62937 PPIA Peptidyl-prolyl cis-trans

isomerase A

P43652 AFM Afamin P62249 RPS16 40S ribosomal protein

S16

Q07021 C1QBP Complement component 1 Q

subcomponent-binding

protein, mitochondrial

P02766 TTR Transthyretin P04350 TUBB4A Tubulin beta-4A chain P04075 ALDOA Fructose-bisphosphate

aldolase A

Q12931 TRAP1 Heat shock protein

75 kDa, mitochondrial

P00441 SOD1 Superoxide dismutase

[Cu-Zn]

P00558 PGK1 Phosphoglycerate kinase 1

P04179 SOD2 Superoxide

dismutase [Mn],

mitochondrial

Q5T2N8 ATAD3C ATPase family AAA

domain-containing

protein 3C

Q08257 CRYZ Quinone oxidoreductase

P05023 ATP1A1 Sodium/potassium-

transporting ATPase

subunit alpha-1

Q3ZCM7 TUBB8 Tubulin beta-8 chain

Q00610 CLTC Clathrin heavy chain 1 P10696 ALPPL2 Alkaline phosphatase,

placental-like

P67809 YBX1 Nuclease-sensitive

element-binding

protein 1

P06733 ENO1 Alpha-enolase

P07910 HNRNPC Heterogeneous nuclear

ribonucleoproteins C1/C2

Q06830 PRDX1 Peroxiredoxin-1

P07237 P4HB Protein disulfide-isomerase

Q9BRA2 TXNDC17 Thioredoxin domain-

containing protein 17

P60174 TPI1 Triosephosphate isomerase

P22626 HNRNPA2B1 Heterogeneous nuclear

ribonucleoproteins A2/B1

P62805 HIST1H4A Histone H4

P05787 KRT8 Keratin, type II cytoskeletal 8

P30086 PEBP1 Phosphatidylethanolamine-

binding protein 1

Q99497 PARK7 Protein DJ-1

P15374 UCHL3 Ubiquitin carboxyl-terminal

hydrolase isozyme L3

P16949 STMN1 Stathmin

Only proteins that were detected in at least three out of five embryos in one group are presented.

and (3) Inflammatory Response, Cell Death and Survival,
Digestive System Development and Function with an IPA
score of 14.

Finally, protein secretion from fluoxetine-treated embryos
was compared with control embryos. Culture medium in which
the different embryos had been cultured was analyzed by use of

the Olink Proseek Multiplex Inflammation I96×96 Immunoassay.
After normalization against culture medium without fluoxetine
supplement, a number of proteins were detected above the
limit of detection (LOD) (Table 4 and Table S1). Urokinase-type
plasminogen activator (uPA) levels were significantly higher in
0.5 µM-treated embryos than in 0.25 µM-treated embryos. For
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the other proteins, there were either no significant differences
between the groups or the number of embryos where the protein
could be detected was too limited for statistical analyses (Table 4
and Table S1).

Immunohistochemical Staining of Cultured
Embryos
To validate true presence in human embryos for some of the
proteins of interest, immunohistochemistry was performed. uPA
and nerve growth factor (NGF) were chosen because of their high
ranking in the Multiplex Immunoassay analysis. Furthermore,
we have previously found differences in NGF signaling in
SSRI-exposed placenta (Kaihola et al., 2015). Staining of uPA
and NGF was found in the cytosol and cellular membrane of the
trophectoderm of the embryos. NGF was also found in the inner
cell mass, whereas uPA had a weak staining in the inner cell mass
(Figure 2)

FIGURE 1 | Venn diagram illustrating the number of proteins detected

by mass spectrometry in embryos treated with 0.25mM fluoxetine

(FLX), 0.5mM fluoxetine and controls.

DISCUSSION

We have previously shown that SSRI treatment during pregnancy
affects gene expression and protein levels in the placenta, and
pathways of interest for placental function (Kaihola et al.,
2015; Olivier et al., 2015b). Based on the established role
for 5-HT in embryogenesis (Lauder and Krebs, 1978; Lauder
et al., 1981; reviewed in Buznikov et al., 2001), and the
fact that serotonin transporters are expressed in early mouse
embryos (Amireault and Dube, 2005), we hypothesized that
the fetus may also be affected though direct exposure to
SSRIs. In this study we demonstrate that fluoxetine has a
marginal influence on early human embryo development in
culture. Whereas the lower fluoxetine dose had no influence
on embryo development compared to controls, embryos treated
with 0.5 µM fluoxetine tended to need a shorter time between
thawing and start of cavitation. Furthermore, a small dose-
response pilot study was conducted before the trial started,
where even higher concentrations of fluoxetine (1.0 µM)
increased the number of dead embryos. These findings are
in line with prior research in mouse embryos (Kim et al.,
2012), where it was shown that short-term exposure of 2-
cell mouse embryos to fluoxetine increased the percentage
of blastocysts via activation of Ca2+/calmodulin-dependent
protein kinase II (CaMKII)-dependent signal transduction
pathways. Furthermore, fluoxetine enhanced mouse embryonic
development into blastocysts up to a certain dose, followed
by an inhibition of blastocyst formation at higher doses (Kim
et al., 2012). In the study by Kim et al. (2012), short-term
exposure (6 h) of 2-cell mouse embryos to doses up to 5–
10 µM fluoxetine increased the number of blastocysts. However,
longer exposure to 5 µM fluoxetine (up to 72 h) resulted in a
reduction of embryos that developed into blastocysts. Notably,
the doses used in the present study corresponded to one tenth
of the doses used in mice, but were chosen to correspond
with human physiological umbilical cord and amniotic fluid
concentrations of fluoxetine-exposed fetuses (Hendrick et al.,
2003; Rampono et al., 2004; Loughhead et al., 2006). From
research within the field of IVF, it is known that timing to
different developmental stages correlate with embryo quality
and with implantation rate after assisted reproduction (Wong
et al., 2010; Meseguer et al., 2011; Machtinger and Racowsky,
2013; Kaser and Racowsky, 2014). Although the optimal embryo
morphokinetics remains to be settled, i.e., whether accelerated
development is good or bad for the implantation rate, the
lower fluoxetine dose had less impact than the higher dose

TABLE 3 | Networks identified by Ingenuity Pathway Analysis (IPA), focusing on the proteins detected in 0.5mM fluoxetine-treated embryos.

IPA networks top 3 Proteins IPA score

Cell Death and Survival, Cellular Growth and Proliferation,

Hematological Disease

ENO1, HBB, HNRNPA2B1, HNRNPC, NCL, NPM1, PEBP1, PFN1,

PPIA,RPL8, RPS16, YBX1

23

Cancer, Organismal Injury and Abnormalities, Reproductive System

Disease

ALDOA, CLTC, P4HB, PARK7, PGK1, PRDX1, RPLP2, STMN1, TPI1, TUBB4A 18

Inflammatory Response, Cell Death and Survival, Digestive System

Development and Function

ATP1A1, C1QBP, HP, HPX, KRT8, NSF, PPIA, SOD1 14
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TABLE 4 | Top 10 proteins detected by Multiplex Immunoassay analysis in medium from 0.25mM fluoxetine-, 0.5mM fluoxetine-treated and control

embryos.

Protein UniProtKB Control

n D 10

0.25mM fluoxetine

n D 10

0.5mM fluoxetine

n D 10

n Median (range) n Median (range) n Median (range)

uPA P00749 9 1.30 (0.40–3.20) 10 1.15 (0.30–3.00) 10 2.15 (0.90–3.40)*

IL-6 P05231 8 1.35 (0.80– 3.20) 10 1.50 (0.40–2.40) 10 2.05 (0.50–4.90)

ADA P00813 7 1.70 (1.10–2.30) 5 1.40 (1.20–1.80) 5 1.50 (1.10–1.80)

STAMPB O95630 7 0.50 (0.40–1.10) 4 0.45 (0.40–0.70) 6 0.55 (0.40–1.00)

CST5 P28325 6 0.10 (0.10–0.20) 3 0.10 (0.10–0.10) 1 0.10 (N/A)

FGF-23 Q9GZV9 5 0.40 (0.30–0.40) 6 0.35 (0.30–0.50) 1 0.30 (N/A)

Beta-NGF P01138 5 0.60 (0.40–1.50) 2 0.25 (0.20–0.30)

IL-8 P10145 4 0.15 (0.10–5.20) 1 0.10 (N/A) 5 1.30 (0.20–3.20)

IL-10 P22301 4 0.40 (0.30–0.40) 1 0.40 (N/A) 1 0.10 (N/A)

VEGF-A P15692 3 0.60 (0.10–1.80) 6 0.80 (0.20–2.00) 8 0.85 (0.20–1.70)

*P < 0.05 compared to 0.25 �M fluoxetine, Mann-Whitney U-test.

FIGURE 2 | Immunohistochemical staining of cultured human embryos. (A–D) are embryos cultured in control medium, (E–H) are embryos cultured in 0.5µM

FLX. DAPI staining (blue) shows cell nuclei. Staining for NGF is shown in green and staining for uPA in red. (D,H) are overlay pictures.

on embryo development in our experiments, and this was also
true for the embryo protein expression and secretion. For this
reason, clinicians should adhere to recent National Institute for
Health and Care Excellence (NICE) guidelines (National Institute
for Health and Care Excellence, 2014) on SSRI treatment in
pregnancy, and prescribe the lowest possible dose in women
who need to continue antidepressant therapy when pregnant.
However, while the lower dose had less impact, according to what
could be detected with the present methods, this finding does not
indicate that it is harmless.

The exact mechanism by which SSRI influence early embryo
development is not known, although alteration in serotonin
levels (Lauder et al., 1981) or activation of CaMKII-dependent
signal transduction pathways would be plausible (Kim et al.,
2012). Based on our results from the mass spectrometry and
proteomics analysis, we hypothesize that pathways of relevance

for regulation of cellular growth, proliferation and survival are
affected by fluoxetine. The Multiplex Immunoassay analysis
revealed significantly increased levels of uPA in culture medium
from 0.5 µM fluoxetine-treated embryos. uPA has been shown
to be involved in cell proliferation, cell migration (reviewed
in Noh et al. (2013) and cellular differentiation. Lino et al.
(2014) showed that uPA in complex with its receptor, urokinase-
type plasminogen activator receptor (uPAR), is involved in
cell signaling during neuronal migration and neuritogenesis in
explants from chick embryos. In addition, fluoxetine could be
acting through other, hitherto unknown, mechanism(s).

The inconsistency between the Multiplex Immunoassay and
mass spectrometry as regards uPA may be due to two different
factors. First, the multiplex immunoassay was performed in
the culture medium and the mass spectrometry in the embryo,
whereby the former method would detect proteins secreted by
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the embryo and the latter proteins within the embryo. Thus, high
levels of uPA in the secretome do not necessarily correspond
to the levels detected in the embryo. Potentially, if secretion
is high, the embryonic pool of a specific protein could be
depleted. Secondly, the Multiplex Immunoassay analysis includes
ready-made panels with antibodies directed against target of
interest and even though proteins detected by this method
were not detected by mass spectrometry, they may very well
be expressed in the embryo although not at levels detected by
mass spectrometry. However, the detection of uPA by Multiplex
Immunoassay analysis was verified by immunohistochemistry of
the embryos, where uPA was found mainly in the trophectoderm.
The staining for uPA in the trophectoderm goes well with the
findings of Khamsi et al. (1996), where uPA was detected in
human preimplantation embryos. Both Hofmann et al. (1994)
and Teesalu et al. (1996) showed that uPA is expressed in the
trophoblast at the maternal-fetal interface in human and mouse
implantation sites. Later on in development the trophectoderm
will become the placenta, therefore any alterations in placental
protein levels may ultimately affect the function of the placenta
and then, consequently, also the development of the fetus.
Indeed, uPA seems to play a role in trophoblast invasion and in
the pathophysiology of preeclampsia (Strickland and Richards,
1992; Zhang et al., 1994; Uszynski and Uszynski, 2011), and
may contribute to the increased risk of preeclampsia previously
noted in SSRI users (Toh et al., 2009; De Vera and Berard,
2012; Palmsten et al., 2012, 2013). Also, NGF was detected in
the embryo trophectoderm which is in line with our previous
studies (Kaihola et al., 2015), where the placental NGF levels were
increased in placenta from SSRI-treated women.

Our aim with this study was to investigate the effects of
pharmacologically relevant levels of fluoxetine on human early
embryonic development. For obvious reasons, the number of
human embryos that can be used for research is not unlimited.
The relatively low number of embryos in this study could have
an impact on the results, and this is particularly true for the
blastocyst formation and the number of high-quality embryos in
each treatment group. However, we noted more than 40 proteins
uniquely expressed in fluoxetine-exposed embryo, and also
changes in protein expression in the embryo culture medium.
Obviously, with a greater sample size, more fluoxetine-induced
differences could have been uncovered. The analysis method used
for the proteomics has been used in several previous studies
within reproductive medicine (Nilsson et al., 2004; Naessen
et al., 2010; Hambiliki et al., 2013), but the complexity of the
method should be taken into consideration when interpreting
and analyzing the results. The embryos used were at a very early
stage of development and would in the normal course of events
not have implanted in the uterus yet. This means that the placenta

has not yet been developed and there is no amniotic fluid or
umbilical cord through which fluoxetine could reach and affect
the embryo. However, both the oocyte and the embryo could be
exposed to fluoxetine, both by the follicular fluid in the ovaries
or during the pre-implantation period by secretions in the tuba.
Indeed, previous research has indicated that serotonin is found
in the follicular fluid and fallopian tubes, at least in female rats
(Amenta et al., 1992; Bodis et al., 1993).

Another limitation is that our study cannot elucidate whether
the proteins expressed is due to fluoxetine exposure, or the
slightly enhanced embryo development, or both. At present, the
embryo development proteomics is not known to its full extent,
and for that reason, we cannot single out the proteins that would
be normally expressed and the ones that are due to toxic effects.

In conclusion, we have studied the effects of fluoxetine on
human early embryonic development. We found that fluoxetine
has marginal effects on the timing of developmental stages in
embryos, but induces expression and secretion of several proteins
in a manner that depends on dose. For these reasons, and in
line with current guidelines, the lowest possible dose of SSRI
should be used in pregnant women who need to continue
treatment.
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