Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels

Peyronnet, Rémi; Sharif-Naeini, Reza; Folgering, Joost H A; Arhatte, Malika; Jodar, Martine; El Boustany, Charbel; Gallian, Claire; Tauc, Michel; Duranton, Christophe; Rubera, Isabelle

Published in:
Cell reports

DOI:
10.1016/j.celrep.2012.01.006

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels

Rémi Peyronnet,1 Reza Sharif-Naeini,1 Joost H.A. Folgering,1 Malika Arhatte,1 Martine Jodar,1 Charbel El Boustanly,1 Claire Gallian,1 Michel Tauc,2 Christophe Duranton,2 Isabelle Rubera,2 Florian Lesage,1 York Pei,4 Dorien J.M. Peters,4 Stefan Somlo,5 Frederick Sachs,6 Amanda Patel,1 Eric Honore,1,7,* and Fabrice Duprat1,7

1Institut de Pharmacologie Moleculaire et Cellulaire, UMR CNRS 7275, Universite de Nice Sophia Antipolis, 06560 Valbonne, France
2CNRS-FRE 3427, Transport Ionique, Aspects Normaux et Pathologiques Universite de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
3Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto, Toronto, Ontario M5G 2N2, Canada
4Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
5Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8056, USA
6Centre for Single Molecule Biophysics, SUNY at Buffalo, Buffalo, NY 14214, USA
7These authors contributed equally to this work

*Correspondence: honore@ipmc.cnrs.fr
DOI 10.1016/j.celrep.2012.01.006

SUMMARY

How renal epithelial cells respond to increased pressure and the link with kidney disease states remain poorly understood. Pkd1 knockout or expression of a PC2 pathogenic mutant, mimicking the autosomal dominant polycystic kidney disease, dramatically enhances mechanical stress-induced tubular apoptotic cell death. We show the presence of a stretch-activated K+ channel dependent on the TREK-2 K2P subunit in proximal convoluted tubule epithelial cells. Our findings further demonstrate that polycystins protect renal epithelial cells against apoptosis in response to mechanical stress, and this function is mediated through the opening of stretch-activated K2P channels. Thus, to our knowledge, we establish for the first time, both in vitro and in vivo, a functional relationship between mechanotransduction and mechanoprotection. We propose that this mechanism is at play in other important pathologies associated with apoptosis and in which pressure or flow stimulation is altered, including heart failure or atherosclerosis.

INTRODUCTION

Mechanical forces play a central role in early development, as well as in various important physiological functions, including hearing, touch, or the regulation of heart rate (Chalfie, 2009; Garcia-Anoveros and Corey, 1997; Lumpkin and Caterina, 2007; Pedersen and Nilius, 2007; Wozniak and Chen, 2009). Various organs have the ability to adapt and cope with high mechanical forces. For instance, resistance arteries reduce their diameter in response to hypertension so that, according to the law of Laplace, they maintain their wall tension constant (Mulvany, 2002). Failure to adapt to high mechanical forces (flow or pressure) results in cell death and contributes to pathological states, including atherosclerosis and cardiac hypertrophy (Hahn and Schwartz, 2009; Jaalouk and Lammerding, 2009). How cells sense mechanical forces and how they adapt to mechanical stress are not yet fully understood.

Stretch-activated ion channels (SACs) show an increase in open probability (Po) in response to pressure (Kung, 2005; Sachs and Morris, 1998). The TREK-1, TREK-2, and TRAAK two-pore potassium channel (K2P) subunits underlie the stretch-activated K+-selective channels (SAKs) (for review, see Honore, 2007). TREK-1, the most thoroughly studied SAK, is thought to be directly activated by tension in the lipid bilayer (Honore et al., 2006; Patel et al., 1998). Moreover, channel opening can also be reversibly induced, in the absence of mechanical stimulation, by a variety of anionic amphipathic molecules, including the long-chain polyunsaturated fatty acid docosahexaenoic acid (DOHA), as well as by intracellular acidosis (Honore, 2007). TREK-2 shares all the functional properties of TREK-1, besides its sensitivity to external pH (Bang et al., 2000; Lesage et al., 2000; Sandoz et al., 2009). Transcellular Na+/glucose or Na+/amino acid cotransports in amphibian renal proximal convoluted tubules (PCTs) have been associated with water influx and an increase in cellular volume resulting in the opening of basolateral SAKs sharing the functional properties of the cloned TREK/TRAALK2P channels (Beck and Potts, 1990; Cemerikic and Sackin, 1993; Sackin, 1989).

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 (85% of the patients) or PKD2 (15% of the patients) genes, encoding the polycystins PC1 and PC2 (Delmas, 2004; Harris and Torres, 2009; Patel and Honore, 2010; Wilson, 2004; Zhou, 2009). PC1 includes a prominent extracellular amino-terminal domain, 12 transmembrane segments, and a short intracellular carboxy-terminal domain. PC2 is a member of the TRP family of calcium channels containing a pore sequence between transmembrane segments 5 and 6. Both proteins interact through their cytosolic...
carboxy-terminal coiled-coil domains. The polycystin complex has been previously shown to act as a flow sensor in the primary cilium of both renal epithelial and endothelial cells (Nauli et al., 2003, 2008). Moreover, polycystin dosage was recently demonstrated to regulate arterial pressure sensing (Sharif-Naeini et al., 2009). In arterial myocytes we have shown that polycystins regulate the activity of the SACs responsible for the myogenic tone, but the molecular identity of these channels was not defined (Sharif-Naeini et al., 2009).

Although less than 1% of the tubules become cystic in ADPKD, a gradual decrease in glomerular filtration rate (GFR) ultimately leads to kidney failure (Grantham et al., 2011). Why so few cysts impair the function of so many nephrons (about 1 million) in the kidney is still an open question. Although cystogenesis results from an increase in cell proliferation, apoptosis of both cystic and noncystic tubular cells is also documented in ADPKD (Boca et al., 2006; Boletta et al., 2000; Edelstein, 2005; Gollav, 2011; Tao et al., 2005; Woo, 1995). In an experimental model of ADPKD, up to 50% of the glomeruli become atubular, with loss of the glomerulotubular junction cells (Tanner et al., 2002). Compression/obstruction of noncystic “healthy” tubules by growing cysts and/or fibrosis was proposed to result in an upstream tubular dilation (Grantham et al., 2011; Power et al., 2004). Moreover, abnormal fluid accumulation causes the cyst wall to stretch (Derezic and Cecuk, 1982). Thus, an increase in intrarenal mechanical stress leading to apoptosis is also proposed to be associated with kidney failure in ADPKD (Grantham et al., 2011).

In the present report we demonstrate that polycystins play a key role in protecting renal epithelial cells against apoptosis in response to mechanical stress, and this function is mediated through the opening of stretch-activated K_{2P} channels.

RESULTS

Mechanical Stress-Induced PCT Cell Death Is Influenced by Polycystins

In order to study the effect of mechanical stress on cultured PCT cells, we developed an in vitro assay based on centrifugal force. Mouse PCT cells plated on glass coverslips were spun for 4 hr at 2,800 × g, and after a recovery period of 3 hr, early apoptosis was quantified by detecting the externalization of phosphatidylserine (annexin V assay) and a later event of cell death by visualizing DNA condensation (Hoechst staining) (Figure 1A). To examine the role of PC1, we used an immortalized mouse PCT $Pkd1^{lox/-}$ cell line derived from a parental $Pkd1^{lox/-}$ clone following transfection with Cre recombinase (Wei et al., 2012 plates with 19,000 cells analyzed) and $Pkd1^{-/-}$ PCT cells (n = 18 plates with 36,000 cells analyzed).

(C) Histogram showing the amount of late apoptosis (Hoechst staining) induced by mechanical stress in both mock (n = 12 plates with 1,300 transfected cells analyzed) and PC2-740X (n = 11 plates with 250 transfected cells analyzed) transiently transfected cultured PCT cells. Transfected cells were visualized by EGFP fluorescence (green), and nuclear fragmentation was evaluated by Hoechst staining. Cell death was determined 3 hr after mechanical stress.

Data represent mean ± SEM. ***p < 0.001.
2008) (Figures 1A and 1B). Homozygote inactivation of Pkd1 significantly increased PCT cell death induced by mechanical stress, which was absent in the control condition (Figures 1A and 1B). In subsequent experiments we studied the effect of the pathogenic mutant PC2-740X expressed in wild-type (WT) mouse PCT cells (Figure 1C). Similarly, PC2-740X expression dramatically increased the level of PCT cell death induced by mechanical stress (Figure 1C). These findings indicate that polycystins greatly influence the sensitivity of PCT cells to mechanical stress and associated cell death.

The Stretch Sensitivity of SAKs/K$_{2P}$ Channels Is Conditioned by Polycystins

We next examined whether SACs might be involved in the response of renal cells to mechanical stimulation. Using the cell-attached patch-clamp configuration coupled to a fast-pressure clamp system, we identified SAKs in mouse PCT epithelial cells (Figure 2A). These channels were recorded at a holding potential of 0mV in the presence of TEA (10 mM), 4-aminopyridine (3 mM), and glibenclamide (10 μM) in the pipette medium in order to minimize possible contamination by BK, K$_v$, or K$_{ATP}$ channels. The single-channel conductance of SAKs recorded in the presence of 5 mM extracellular K$^+$ was 49.7 ± 0.2 pS ($n = 5$), and a reversal potential was extrapolated to be about -80 mV, indicating K$^+$ selectivity (see Figure S1 available online). SAKs were recorded in tubular epithelial cells either maintained in primary culture or following immortalization (Figure 2A, and see later Figure S3C). Channel openings gradually and reversibly increased with applied negative pressure and eventually reached saturation (Figure 2A).

Interestingly, SAK activity was significantly reduced in the Pkd1$^{lox/-}$ cells, as compared to the heterozygote parental Pkd1$^{lox/+}$ cells (Figure 2B). Next, we studied the effect of the pathogenic mutant PC2-740X transiently expressed in WT PCT cells (Figure 2C). PC2-740X expression similarly induced a dramatic inhibition of SAK activity at all pressures studied (Figure 2C). The single-channel current amplitude (i) of SAKs measured at 0mV was not altered by PC2-740X (4.1 \pm 0.1 pA, $n = 35$ and 4.1 \pm 0.1 pA, $n = 82$, respectively), indicating that either the number of active channels (n) or the Po is decreased by PC2-740X (as $I = n \times Po \times i$; with I being the mean current). PCT cells also express a constitutively active K$^+$ channel resistant to TEA, 4AP, and glibenclamide and which is not modulated by membrane stretch (Figures 2D and 2E). This channel has previously been documented to be responsible for volume regulation of PCT cells and shown to be encoded by the alkaline-activated K$_{2P}$ channel subunit TASK-2 (Barriere et al., 2003; L’Hoste et al., 2007). Importantly, the native TASK-like channels in PCT cells were not affected by expression of PC2-740X, although SAKs were inhibited in the same cells (Figures 2C–2E). These findings indicate that polycystins specifically modulate native SAK activity in PCT cells.
Because SAKs in PCT cells share the functional properties of the cloned TREK/TRAAK K_{2p} channels (Honoré, 2007), we investigated whether these recombinant channels might similarly be regulated by polycystins. The TREK-1, TREK-2, and TRAAK K_{2p} channel subunits were expressed transiently in COS cells, and stretch-induced activity was recorded in the cell-attached patch configuration as previously described (Figures 3A and 3B). No endogenous SAKs were present in this mock-transfected cell line (Patel et al., 1998). Coexpression with the mutant PC2-740X significantly reduced the stretch-induced TREK-1, TREK-2, or TRAAK currents (Figures 3A and 3B). Stretch activation of TREK-1 was also significantly impaired by PC2-D509V coexpression, another pathogenic mutant reported to exert a dominant-negative effect (Bai et al., 2008; Ma et al., 2005; Sammels et al., 2010) (Figure 3B). In contrast, TREK-1 channel activity was not altered by coexpression with TRPC1, a PC2-interacting TRP subunit (Tsikas et al., 1999) (Figure 3B). Notably, PC2-740X failed to affect exogenous TASK-2 channels coexpressed in COS cells (Figure 3C).

A possible mechanism for TREK/TRAAK inhibition by PC2 mutation may involve an effect on the biosynthesis and/or trafficking of the TREK/TRAAK channels. However, biotinylation experiments performed in transiently transfected COS cells demonstrate that the plasma membrane expression of the TREK-1 subunits is not altered by overexpression of PC2-740X, suggesting that instead channel gating might be altered (Figure 3D). Biotinylation experiments also confirm that WT PC2 is mostly retained in the endoplasmic reticulum, whereas the PC2-740X mutant is targeted to the plasma membrane (Chen et al., 2001) (Figure 3D). These results indicate that stretch sensitivity of the cloned TREK/TRAAK K_{2p} channels is impaired by expression of PC2 pathogenic mutants.

Are the General Gating Properties of SAKs Modulated by Polycystins?

Because TREK/TRAAK channels are polymodal, activated by both physical and chemical stimuli, we next investigated whether the general gating properties of SAKs/TREK/TRAAK channels might be affected by PC2-740X. Besides activation by membrane stretch, native SAKs are also opened by intracellular acidosis, either induced by addition of 90 mM extracellular HCO₃− in the cell-attached patch configuration or directly by lowering intracellular pH in the inside out configuration (Maingret et al., 1999) (Figures 4A, S2A, and S2B). Remarkably, the activation by HCO₃− was not affected by PC2-740X (Figures 4A and 4B). However, in the same patches and in the absence of HCO₃−, pressure activation of native SAKs in PCT cells was strongly inhibited by PC2-740X (Figure 4B). In TREK-1 transfected COS cells, PC2-740X expression similarly failed to affect HCO₃− current stimulation in the cell-attached patch.
configuration (Figure 4C). Intracellular acidosis has been previously shown to protonate the residue E306 in the cytosolic carboxy-terminal domain of TREK-1, resulting in constitutive channel opening (Honore´ et al., 2002). Substitution of E306 by an alanine mimics protonation and locks the channel in the open conformation. The E306A mutant expressed in COS cells, which shows a background activity resistant to membrane stretch, was again not altered by coexpression with PC2-740X (Figure S2 C).

Native SAKs in PCT cells, as well as TREK-1 expressed in transfected COS cells, were also reversibly stimulated by external addition of the long-chain polyunsaturated fatty acid DOHA (Figures 4 D–4F). Again, the DOHA-induced activity was not significantly altered by expression of PC2-740X (Figures 4D–4F).

These results show that although the stretch sensitivity of the SAKs/TREK/TRAAK channels is strongly inhibited by PC2-740X, activation by intracellular acidosis or polyunsaturated fatty acids is resistant. Thus, these findings indicate that polycystins specifically regulate SAK/TREK/TRAAK mechanogating.

Figure 4. Stimulation of SAK/TREK-1 Activity by Intracellular Acidosis or DOHA Is Not Altered by PC2-740X

(A) Addition of 90 mM HCO$_3^-$ in the bath solution induced SAK activity in the cell-attached patch configuration at a holding potential of 0mV in mock-transfected PCT cells (top) or in PC2-740X transfected PCT cells (bottom).

(B) Changes in mean SAK current amplitude in mock (empty bars; n = 5) or PC2-740X (filled bars; n = 5) expressing PCT cells induced in the same patches by stretch (−40 mm Hg) or HCO$_3^-$ addition (0 mm Hg).

(C) Changes in TREK-1 mean current amplitude in mock (empty bars; n = 28) or PC2-740X (filled bars; n = 21) co-expressing COS cells induced by HCO$_3^-$ addition (0 mm Hg) or stretch (−40 mm Hg).

(D) Cell-attached patch recording of SAKs in a mock-transfected PCT cell at a holding potential of 0mV in control condition (0 mm Hg) including 0.01% ethanol (vehicle; top trace) or after extracellular addition of 10 μM DOHA (second trace). Same with expression of PC2-740X (bottom two traces).

(E) Changes in mean SAK current amplitude (0 mm Hg) in the absence or in the presence of DOHA (10 μM) in PCT cells transfected either with a mock empty plasmid (empty bars; n = 8) or together with PC2-740X (black bars; n = 8).

(F) Changes in mean TREK-1 current amplitude (0 mm Hg) in the absence or in the presence of DOHA (10 μM) in coexpressing COS cells transfected either with a mock empty plasmid (empty bars; n = 12) or together with PC2-740X (black bars; n = 13).

Data represent mean ± SEM. *p < 0.05.

Inhibition of SAK Mechanogating by PC2-740X Involves the Actin Cytoskeletal Network

Our previous findings have established that TREK-1 channel activity induced by stretch is repressed by F-actin (Lauritzen et al., 2005). We explored the possibility that polycystins may affect pressure-dependent TREK/TRAAK channel activity through the F-actin cytoskeleton network.

The actin cytoskeleton can be mechanically disrupted by excision of the patches in the inside-out configuration (Lauritzen et al., 2005). When Pkd1 is inactivated or when PC2-740X is expressed in PCT cells, SAK inhibition, which is observed in the cell-attached patch configuration, disappeared upon excision of the patches in the inside-out configuration (Figures 5A and 5B). Similarly, when transfected in FLNA +/+ cells (A7 cells), which express the PC2 interactor filamin A, an actin-crosslinking protein, again TREK-1 inhibition is reversed by patch excision (Figure 5C). By contrast in the FLNA−/− cells (M2 cells), inhibition was absent in both cell-attached and inside-out patch configurations (Figure 5C). Rescue of channel activity upon patch excision suggests that the cytoskeleton is involved in the downregulation of SAKs/TREK/TRAAK by polycystins. Indeed,
treating FLNA+/+ cells with latrunculin A, which disrupts the F-actin cytoskeleton, also reversed TREK-1 inhibition in the cell-attached patch configuration, although it failed to affect channel activity in the FLNA−/− cells lacking filamin A (Figure 5D). These findings indicate that F-actin and filamin A are critically required for the regulation of SAK/TREK/TRAALK mechanogating by polycystins.

SAK Knockout Enhances Tubular Cell Death Induced by Mechanical Stress

Native SAKs recorded in PCT cells share the functional properties of both TREK-1 and TREK-2 subunits, which are similarly activated by stretch, DOHA, and intracellular acidosis, unlike TRAAK, which is activated by intracellular alkalosis. In subsequent experiments we aimed to identify which TREK subunit encodes for the native SAKs in PCT cells. The TREK-2 subunit has previously been shown to be expressed in the kidney (Bang et al., 2000; Lesage et al., 2000). Indeed, we detected expression of TREK-2 in whole tubules and in cultured immortalized PCT cells by qPCR (Figures S3A and S3B). Although TRAAK was also found in whole tubules (including distal tubules), it was very low in PCT cells (Figures S3A and S3B). SAK activity was lost in TREK-2−/− PCT cells either maintained in primary culture or after immortalization, recorded both in the cell-attached and excised inside out patch configurations (Figure S3C). The TASK-like channel activity was, however, still present in the TREK-2−/− cells (Figure S3D).

We next hypothesized that a loss of SAK activation may influence PCT cell death induced by mechanical stress. We compared the sensitivity to centrifugal force (as described earlier) of WT PCT cells with those of SAK KO PCT cells in which the stretch-activated K_{2P} channels at the same time, in subsequent experiments we used a mouse model in which the genes encoding TREK-1, TREK-2, and TRAAK have been knocked out altogether (SAK KO) (Guyon et al., 2009). Again, no kidney structural defect was visible in adult SAK KO mice (Figure S4).

We reasoned that a loss of SAK stretch sensitivity may influence tubular cell death in a high intrarenal pressure condition. We used a mouse model of ureteral obstruction that is associated with increased intrarenal pressure and wall stress (Power et al., 2004; Quinlan et al., 2008; Rohatgi and Flores, 2010; Wyker et al., 1981). We performed unilateral ureteral ligation for 3 days in 10-day-old mice (Figures 6C–6G). The dimension of the obstructed kidneys after 3 days of obstruction significantly increased to a similar extent in both WT and SAK KO mice (Figures 6C and S5). A close-up view of the kidney structure demonstrates that tubules were significantly dilated upon ureteral obstruction, irrespective of the genotype (Figures 6D and 6E). Obstructive uropathy is associated with apoptosis of epithelial cells and tubular atrophy (Power et al., 2004; Quinlan et al., 2008; Rohatgi and Flores, 2010). We measured apoptosis by a double Hoechst and TUNEL staining in the obstructed, in the unligated contralateral, as well as in the sham-operated kidneys from both WT and SAK KO mice. No apoptosis was detected in sham-operated kidneys (n = 9; data not shown) or in the
contralateral kidneys (Figures 6G and S6). By contrast about 1% of the tubular cells were found apoptotic in the WT obstructed kidneys, in agreement with previous reports (Power et al., 2004; Quinlan et al., 2008; Rohatgi and Flores, 2010; Wyker et al., 1981) (Figures 6F and 6G). Remarkably, the number of apoptotic cells almost doubled in the obstructed kidneys from SAK KO mice lacking the stretch-activated K2P channels (Figure 6G). These findings demonstrate that TREK/TRAAK K2P channels are protective against tubular epithelial cell death induced by mechanical stress both in vitro and in vivo.

DISCUSSION

The present study shows that when SAKs are inactivated, similarly to Pkd1 KO or PC2 pathogenic mutant expression mimicking ADPKD, PCT cells in vitro become highly sensitive to mechanical stress and undergo apoptosis. Moreover, our in vivo findings further indicate that the opening of the TREK/TRAAK channels is protective against apoptosis associated with high intrarenal pressure. We identify, and demonstrate at the molecular level, the regulation of SAKs (K2P channels) by polycystins in the kidney. Altogether, these findings show that mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels. These molecular findings are significant to better understand how polycystins regulate pressure sensing in the kidney.

Is the regulation of SAKs by polycystins specific? Native or exogenous TASK-2 channels (another K2P channel) are not altered by PC2-740X expression, whereas in the same PCT cells, SAKs are inhibited. PC2-740X also fails to affect other types of ion channels such as voltage-gated K+ channels or ASICS (Sharif-Naeini et al., 2009). In addition, PC2-740X does not influence the E306A TREK-1 gain-of-function mutant. SAK inhibition is not seen with TRPC1, another TRP channel subunit. Importantly, we provide evidence using biotinylation experiments, that the plasma membrane expression of TREK-1 is not altered by PC2-740X. Remarkably, when we excise patches in the inside out configuration, SAK activity is fully rescued, demonstrating

Figure 6. SAK KO Increases Mechanical Stress-Induced PCT Cell Death Both In Vitro and In Vivo

(A) Early apoptosis visualized by annexin V labeling (panels in green on the right) induced by mechanical stress (centrifugal force) in both WT (top) and SAK KO (TREK-1−/−/TREK-2−/−/TRAAK−/−) (bottom) cultured PCT cells. Total number of nuclei and late apoptosis is detected by a Hoechst staining (panels in black and white on the left).

(B) Histogram showing the amount of early (annexin V) and late (Hoechst) apoptosis induced by mechanical (mecha) stress in both WT (n = 11) and SAK KO PCT cells (n = 12). Cell death was determined 3 hr after mechanical stress (centrifugation of plated cells at 2,800 × g for 4 hr).

(C) Sections of WT and SAK KO (TREK-1−/−/TREK-2−/−/TRAAK−/−) mouse contralateral (contra; left panel) or obstructed (right panel) kidneys stained with hematoxylin and eosin.

(D) Effect of ureteral ligation on the tubular diameter of a WT kidney from a 10-day-old mouse ligated for 3 days (bottom), as compared to the contralateral (contra) kidney (top). Kidney sections were stained with hematoxylin and eosin.

(E) Tubular area cross section of contralateral (contra) and obstructed kidneys from WT (white bars; n = 7) and SAK KO (black bars; n = 6) mice. ns, nonsignificant.

(F) Ureteral ligation increases the number of apoptotic cells as detected by a double Hoechst (left panels) and TUNEL staining (right panels in red).

(G) Effect of ureteral ligation on apoptotic cell death (TUNEL staining) in kidneys from WT (white bars; n = 14) and SAK KO (black bars; n = 13) mice. contra, contralateral. Data represent mean ± SEM. **p < 0.01; ***p < 0.001.
that channels are still present at the plasma membrane, but their stretch sensitivity is specifically repressed by PC2-740X expression in the cell-attached configuration. Moreover, low pH, or DOHA activation of SAKs in the cell-attached configuration is not altered, again demonstrating that channels are functional at the plasma membrane when PC2-740X is expressed, although their stretch activation is strongly repressed. These findings indicate that the pathogenic mutant PC2-740X selectively inhibits the stretch sensitivity of K_{SP} channels. Our previous study demonstrated that polycystins also regulate the stretch sensitivity of nonselective SACs in arterial myocytes (Sharif-Naeini et al., 2009). Because the loss-of-function PC2 D509V mutant similarly inhibits SAK mechanogating, PC2 permeation is unlikely to be involved in this effect.

Potassium channel activity has been shown to be proapoptotic in both neuronal and non-neuronal cells (for review, see Patel and Lazdunski, 2004). For instance the TASK-2 K_{SP} channels play a key role in PCT cell apoptotic volume decrease (AVD) (L’Hoste et al., 2007). By contrast in the present study we demonstrate a protective role for SAKs (i.e., TREK/TRAAK K_{SP} channels) against mechanical stress-induced cell death. Failure to repolarize could be an important factor in the initiation of stretch-induced cell death (Kainulainen et al., 2002). Opening of SAKs in PCT cells during mechanical stimulation is anticipated to protect cells from excessive depolarization. Another possible explanation for mechanoprotection by SAKs might be related to cell swelling associated with Na$^{+}$/solute cotransport, previously shown to be coupled to SAK activity at the basolateral membrane of PCT cells (Beck and Potts, 1990; Cemerikic and Sackin, 1993; Sackin, 1989). Although the present findings suggest that stretch activation of SAKs during mechanical stress protects PCT cells from apoptosis, constitutive TREK/TRAAK channel activity is anticipated to have an opposite effect. Indeed, our previous work indicates that constitutive (or leak) K_{SP} channel activity such as TREK-1 E306A is proapoptotic, unlike WT TREK-1 (Lauritzen et al., 2003). These results indicate that SAK mechanogating is probably central to its protective effect. Cells will hyperpolarize during mechanical stress because of the opening of SAKs. Is the hyperpolarization, or the change in intracellular K$^{+}$ resulting from the K$^{+}$ efflux, or both, linked with cellular mechanoprotection? We have performed in vitro mechanical stimulation of PCT cells for 4 hr (centrifugal force) and subsequently measured intracellular K$^{+}$ concentration. No significant difference is seen between control and SAK KO cells before or after mechanical stress (data not shown). Thus, it is unlikely that K$^{+}$ itself is involved in the protective effect of SAKs. We propose that cell hyperpolarization is a key parameter in mechanoprotection by SAKs.

Urinary tract obstruction, which is the leading cause of pediatric end-stage renal failure, notably provokes tubular cell apoptosis (Chevalier, 2008). In line with this clinical observation, previous experimental findings indicate that there is a close association between tubular distension and apoptosis in the kidney (Grantham et al., 2011; Power et al., 2004; Quinlan et al., 2008; Wyker et al., 1981). In the present study, inactivation of SAK K_{SP} channel subunits significantly enhances tubular cell apoptosis in an experimental model of ureteral obstruction in the newborn mouse. These results show that opening of SAKs exerts a protective effect on tubular epithelial cells subjected to chronic stretch. It would be interesting to stimulate SAK opening during ADPKD, with an expected protection of renal cells. Unfortunately, to our knowledge, because neither a specific opener nor a SAK gain-of-function mouse model is yet available, this experiment cannot be performed at the present time.

Thus, resistance to apoptosis induced by high intrarenal pressure involves mechanotransduction (i.e., opening of mechanogated potassium channels). To our knowledge, this is the first time that a functional link is established between mechanotransduction and mechanoprotection. TREK and TRAAK channels are broadly expressed, including in cardiac and arterial myocytes, as well as in endothelial cells (Blondeau et al., 2007; Garry et al., 2007; Terrenoire et al., 2001). Thus, our findings may be extended to other pathologies associated with apoptosis and in which pressure or flow stimulation is altered, including cardiac hypertrophy/heart failure or atherosclerosis (Hahn and Schwartz, 2009; Jaalouk and Lammerding, 2009).

Here, we demonstrate that upon Pkd1 inactivation or expression of a PC2 pathogenic mutant, mimicking ADPKD, inhibition of the stretch sensitivity of SAKs is deleterious and contributes to increased tubular apoptosis. In ADPKD a “two hit” mechanism was put forward to explain focal cystogenesis, slow progression of the disease, and the interfamilial phenotypic variability (Qian et al., 1996; Wu et al., 1998). However, several observations also suggest that an additional dosage mechanism may be at play in the disease (Lantinga-van Leeuwen et al., 2004; Pei, 2001). If polycystin dosage is indeed involved, it is anticipated that SAK activity will be decreased in both cystic and noncystic tubules of ADPKD kidneys where apoptosis is detected (Woo, 1995).

The present results also demonstrate the critical role of the F-actin/filamin A network in the regulation of SAKs by polycystins in kidney epithelial cells. We previously introduced the “Upholstery Model” to explain how polycystins may affect the conversion of intraluminal pressure to local bilayer tension (Sharif Naeini et al., 2009). We proposed that PC2 through interaction with filamin A and crosslinking of F-actin may influence the radius of membrane curvature in microdomains and thus, according to Laplace’s Law, control membrane tension (Sharif Naeini et al., 2009). The PC2/filamin A interaction is predicted to occur whether PC2 is in the endoplasmic reticulum or at the plasma membrane because in both cases the C-terminal domain of PC2 will be facing the cytosol (Sharif Naeini et al., 2009). The deletion of the carboxy-terminal domain of PC2 at position 690, analogous to the PC2-740X mutant similarly inhibits SAK mechanogating, PC2 permeation is unlikely to be involved in this effect.

In conclusion we put forward a mechanism whereby a loss of mechanoprotection by SAKs (i.e., TREK/TRAAK K_{SP} channels)
enhances tubular cell death and contributes to kidney failure in ADPKD. Altogether, these results allow a better understanding of the molecular basis of renal mechanotransduction, mechanosensitive transport, and involvement in disease states.

EXPERIMENTAL PROCEDURES

Electrophysiology

Electrophysiological procedure has been previously described elsewhere (Sharif Naeini et al., 2009). Briefly, single-channel cell-attached patch-clamp recordings were performed on primary cultures or immortalized PCT cells, as well as on transiently transfected COS-7, M2, or A7 cells. The pipette medium contained 150 mM NaCl, 5 mM KCl, 1 mM CaCl2, and 10 mM HEPES (pH 7.4) and contained 10 mM TEA, substituted with 90 mM KHCO3. Membrane patches were stimulated with brief medium containing 155 mM KCl, 5 mM EGTA, 5 mM 4AP, and 10 mM glibenclamide to inhibit eventual contaminating potassium channels. The bath medium contained 155 mM KCl, 5 mM EGTA, 3 mM MgCl2, and 10 mM HEPES (pH 7.2 with KOH). The osmolarity of all solutions was adjusted to 310 mOsm. For HCO3- stimulation, 90 mM KCl was substituted with 90 mM KHCO3. Membrane patches were stimulated with brief negative pressure pulses of ~10 mm Hg increments, through the recording electrode using a pressure-clamp device (ALA High Speed Pressure Clamp-1 system; ALA Scientific). The holding voltage for all experiments was 0 mV for SAQ recordings. Detailed information is available in the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and seven figures and can be found with this article online at doi:10.1016/j.celrep.2012.01.006.

LICENSING INFORMATION

This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License (CC-BY-NC-ND; http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode).

ACKNOWLEDGMENTS

We are grateful to the ANR 2008 du gène à la physiopathologie, the Fondation de la recherche médicale, EEC Marie-Curie fellowship 039328 (to J.H.A.F.), the Fondation de recherche sur l’hypertension artérielle, the Fédération de recherche sur le cerveau, Human Frontier Science Program long-term fellowship LT-00555 (to R.S.-N.), the Fondation de France, the Association Française contre les Myopathies (to R.P.), the Association pour l’information et la recherche sur les maladies rénales génétiques France, the Recherche sur les maladies rénales génétiques France, and the Recherche sur les maladies rénales génétiques France. We are grateful to Drs. Boris Martinac and Ardem Patapoutian for helpful suggestions. We thank Drs. L. Tsoikas and T.P. Stossel for providing the mouse Pkd2 clones and the M2 and A7 cell lines, respectively.

Received: November 23, 2011
Revised: December 27, 2011
Accepted: January 30, 2012
Published online: March 8, 2012

REFERENCES

