Structural characterization of glucosylated lactose derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes
Pham, Hien T T; Dijkhuizen, Lubbert; van Leeuwen, Sander S

Published in:
Carbohydrate Research

DOI:

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 23-04-2020
Structural characterization of glucosylated lactose derivatives synthesized by the *Lactobacillus reuteri* GtfA and Gtf180 glucansucrase enzymes

Hien T.T. Pham, Lubbert Dijkhuizen*, Sander S. van Leeuwen

Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands

A R T I C L E I N F O

Article history:
Received 3 April 2017
Received in revised form 22 June 2017
Accepted 6 July 2017
Available online 8 July 2017

Keywords:
Glucansucrase Gtf180-ΔN
Glucansucrase GtfA-ΔN
Trans-glycosylation
Lactose
1H NMR spectroscopy

A B S T R A C T

Glucansucrase enzymes from lactic acid bacteria are receiving strong interest because of their wide range of gluco-oligosaccharide and polysaccharide products from sucrose, some of which have prebiotic potential. Glucansucrases GtfA and Gtf180 from *Lactobacillus reuteri* strains are known to convert sucrose into α-glucans with different types of linkages, but also to use other molecules as acceptor substrates. Here we report that incubation of (N-terminally truncated versions of) these enzymes with lactose plus sucrose resulted in synthesis of at least 5 glucosylated lactose products of a degree of polymerization (DP) of 3–4. Only glucansucrase Gtf180-ΔN also produced larger lactose-based oligosaccharides (up to DP9). Structural characterization of the glucosylated lactose products DP3–4 revealed glycosidic bonds other than (α1→4)/(α1→6) typical for GtfA-ΔN and (α1→3)/(α1→6) typical for Gtf180-ΔN: Both GtfA-ΔN and Gtf180-ΔN now introduced a glucosyl residue (α1→3)- or (α1→4)-linked to the non-reducing galactose unit of lactose. Both enzymes also were able to introduce a glucosyl residue (α1→2)-linked to the reducing glucose unit of lactose. These lactose derived oligosaccharides potentially are interesting prebiotic compounds.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Glucansucrase enzymes (Gtfs) of glycoside hydrolase family 70 (GH70) are extracellular enzymes that only have been identified in lactic acid bacteria (LAB) [1]. They catalyze three types of reactions, depending on the nature of the acceptor substrate: hydrolysis when water is used as acceptor substrate, polymerization when the growing glucan chain is used as acceptor, and transglycosylation when other compounds including oligosaccharides are used as acceptor [2]. The currently known diversity of glucansucrases is capable of synthesizing α-glucans with all the possible glycosidic linkage types [(α1→2), (α1→3), (α1→4) and (α1→6)]. They are classified into dextran-, mutan-, reuteran-, and alternansucrases based on the (dominant) linkage type(s) in their products [2–5]. The catalytic mechanism of Gtfs is similar to that of the family GH13 enzymes, namely an α-retaining double displacement reaction [2]. The reaction starts with the cleavage of sucrose, resulting in the formation of a covalent β-gluco-syl-enzyme intermediate. This is followed by transfer of the glucosyl moiety to an acceptor substrate with retention of the α-anomeric configuration. In case of acceptor reactions, the orientation of the bound acceptor substrate towards the reaction center determines the type of linkages formed in the transglycosylation products [2]. Gtfs are able to transfer glucose to a wide variety of acceptors, either non-glycan compounds or oligosaccharide compounds, mostly disaccharides or disaccharide derivatives [4,5]. Maltose is a highly suitable acceptor substrate for Gtfs producing various products such as panose or other isomalto-oligosaccharides, while fructose is not a preferred acceptor for Gtfs [6]. Use of lactose as acceptor substrate has been previously studied for the dextransucrases from *Leuconostoc mesenteroides* and *Weissella confusa*, and the only transfer product that has been structurally identified is 2-α-D-gluco-pyranosyl-lactose [7,8]. The low cost of sucrose and lactose, combined with the broad acceptor substrate acceptance of glucansucrase enzymes, makes them useful tools in the synthesis of novel and potentially prebiotic oligosaccharides. This study explored the ability of glucansucrase enzymes Gtf180-ΔN and GtfA-ΔN from *L. reuteri* strains 180 and 121, respectively, to decorate lactose as acceptor substrate, using sucrose as donor...
substrate. While Gtf180-ΔN of L. reuteri 180 converts sucrose into a dextran with 69% (α1→6) linkages and 31% (α1→3) linkages [9], GtfA-ΔN catalyzes the synthesis of a reuteran consisting of 58% (α1→4) linkages and 42% (α1→6) linkages [10]. The transfer products synthetized by these two glucansucrases were structurally analyzed by high-pH anion-exchange chromatography (HPAEC), matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and 1D/2D 1H/13C nuclear magnetic resonance (NMR) spectroscopy (TOCSY, HSQC, ROESY). A total of five main structures were observed (DP3 and DP4) for both enzymes. Only in case of Gtf180-ΔN also longer oligosaccharides were observed.

2. Results

2.1. Transglucosylation of lactose

Initial reactions were performed with sucrose and lactose concentrations of 0.5 M (ratio of 1:1), at 37 °C and pH 4.7 during 24 h, which is the catalytic optimum of the Gtf180-ΔN and GtfA-ΔN enzymes for α-glucan synthesis from sucrose [1,2]. Blank reactions used only sucrose as both acceptor and donor substrate, mostly resulting in α-glucan synthesis. The HPAEC-PAD profiles of the oligosaccharide fractions of reactions with only sucrose (Fig. 1, line a) showed only a few minor peaks (reflecting that mostly polymORIZATION occurred), besides clear peaks for glucose and fructose. The profiles of the oligosaccharide fractions of incubations with sucrose plus lactose of GtfA-ΔN (Fig. 1, line b) and Gtf180-ΔN (Fig. 1, line c) showed similar profiles, with five significant novel peaks F1-F5, besides minor peaks eluting later which are expected to be higher DP oligosaccharides with lactose (DP5-DP9).

2.2. Structural analysis of transglucosylation products

Five major glucosylation products corresponding to peaks F1-F5 (Fig. 1) were isolated from the incubation mixture of Gtf180-ΔN for structural analysis by MALDI-TOF-MS and 1D/2D 1H and 13C NMR spectroscopy. The purity and retention time of each fraction was confirmed by reinjection on an analytical CarboPac PA-1 (4 × 250 mm) column. The fragment size distribution of each fraction was determined by MALDI-TOF MS. The data showed that three major products corresponded to trisaccharides, as evidenced by a pseudo-molecular sodium adduct ion at m/z 527 (F1-F3) and two products were tetrasaccharides, as evidenced by a pseudo-molecular sodium adduct ion at m/z 689 (F4 and F5) (Fig. S1). Each product fraction was analyzed by 1D 1H NMR, as well as 2D 1H-1H and 13C-1H NMR spectroscopy.

2.2.1. Mono-glucosylated lactose compounds

2.2.1.1. Fraction F1. Trisaccharide F1 includes 3 hexose residues, namely A, B (glucosyl and galactosyl residues from original lactose, respectively) and C (transferred glucosyl residue from sucrose) (Table 1). The 1D 1H NMR spectrum of F1 displayed four anomeric 1H signals at δ 5.225 (A H-1, 3J1,2 7.43 Hz), 4.667 (AB H-1, 3J1,2 8.28 Hz), 4.510 (B H-1, 3J1,2 8.03 Hz) and 4.914 (C H-1, 3J1,2 4.49 Hz) (Fig. S2). All the 1H and 13C chemical shifts of these three residues were assigned by 2D 1H-1H TOCSY and 1H-13C HSQC spectra (Table 2). The data showed that resonances of non-anomeric protons of glucosyl residue AA and AB were not shifted compared to those values of the glucosyl residue observed in lactose (Table 2). Residue B, however, showed significant downfield shifts for H-3 and H-4 at δ 3.75 (Δδ + 0.09 ppm) and 4.027 (Δδ + 0.10 ppm), respectively. The position of residue B C-4 at δ 78.4 ppm (Δδ - 8.4 ppm), is indicative for substitution on the O4 of residue B. This is further supported by the 2D ROESY inter-residual cross-peak between CH-1 and BH-4 (Fig. S2). Residue C showed a 1H and 13C chemical shift pattern fitting a terminal residue [11]. Combining all data, the structure of trisaccharide compound F1 is determined to be α-α-Glcβ-(1→4)-β-α-Galp-(1→4)-α-Glc (Table 1).

2.2.1.2. Fraction F2. Trisaccharide F2 includes 3 hexose residues, namely A, B (glucosyl and galactosyl residues from original lactose, respectively) and C (transferred glucosyl residue from sucrose) (Table 1). The 1H anomeric signals of fraction F2 were revealed by 500-MHz 1D 1H NMR spectrum as following δ 5.433 (A H-1, 3J1,2 3.49 Hz), δ 4.816 (A B H-1, 3J1,2 8.00 Hz), δ 4.465 (B H-1, 3J1,2 7.43 Hz), δ 5.355 (D H-1, 3J1,2 3.82 Hz) and 5.094 (D B H-1, 3J1,2 3.75 Hz) (Fig. S3). Using 2D 1H-1H TOCSY and 2D 1H-13C HSQC, all non-anomeric proton resonances were assigned (Table 2). The anemic resonance value at δ 5.433 ppm of A H-1 is the structural-
Table 1
Structures of the characterized oligosaccharide products F1-F5 of Gtf180-ΔN and GtfA-ΔN obtained with lactose and sucrose.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Structures</th>
<th>Graphical presentation</th>
<th>Catalytic activity by</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>α-α-GlcP-(1→4)-β-α-Galp-(1→4)-α-GlcP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1→4B1→4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>α-α-GlcP-(1→2)-β-α-Galp-(1→4)-β-Glcp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1→2[B1→4]A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>α-α-GlcP-(1→3)-β-α-Galp-(1→4)-α-GlcP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1→3B1→4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>α-α-GlcP-(1→4)-β-α-Galp-(1→4)-α-α-GlcP(1→2)-β-Glcp</td>
<td>C1→4B1→4[D1→2]A</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>α-α-GlcP-(1→3)-β-α-Galp-(1→4)-α-α-GlcP(1→2)-β-Glcp</td>
<td>C1→3B1→4[D1→2]A</td>
<td></td>
</tr>
</tbody>
</table>

Elongated glucosyl lactose derivatives

Table 2
1H and 13C chemical shifts of the glucosylated lactose derivatives, measured at 300 K in D2O. Chemical shifts that are key in the structural determination are underlined.

<table>
<thead>
<tr>
<th>Lac</th>
<th>1H</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>4.447</td>
<td>104.4</td>
<td>4.510</td>
<td>104.0</td>
<td>4.465</td>
<td>103.6</td>
<td>4.525</td>
<td>103.9</td>
<td>4.523</td>
<td>104.4</td>
<td>4.525</td>
<td>103.9</td>
</tr>
<tr>
<td>B2</td>
<td>3.54</td>
<td>72.3</td>
<td>3.58</td>
<td>72.2</td>
<td>3.54</td>
<td>72.1</td>
<td>3.66</td>
<td>70.6</td>
<td>3.58</td>
<td>71.8</td>
<td>3.66</td>
<td>70.6</td>
</tr>
<tr>
<td>B3</td>
<td>3.66</td>
<td>73.7</td>
<td>3.75</td>
<td>72.8</td>
<td>3.66</td>
<td>73.2</td>
<td>3.76</td>
<td>78.6</td>
<td>3.76</td>
<td>72.8</td>
<td>3.76</td>
<td>78.6</td>
</tr>
<tr>
<td>B4</td>
<td>3.92</td>
<td>69.8</td>
<td>4.027</td>
<td>78.2</td>
<td>3.920</td>
<td>69.4</td>
<td>4.161</td>
<td>66.7</td>
<td>4.019</td>
<td>78.1</td>
<td>4.161</td>
<td>66.7</td>
</tr>
<tr>
<td>B5</td>
<td>3.72</td>
<td>76.4</td>
<td>3.78</td>
<td>76.1</td>
<td>3.96</td>
<td>75.9</td>
<td>3.71</td>
<td>76.0</td>
<td>3.67</td>
<td>76.4</td>
<td>3.71</td>
<td>76.0</td>
</tr>
<tr>
<td>B6a</td>
<td>3.80</td>
<td>62.2</td>
<td>3.80</td>
<td>62.2</td>
<td>3.77</td>
<td>61.7</td>
<td>3.80</td>
<td>62.2</td>
<td>3.83</td>
<td>61.5</td>
<td>3.80</td>
<td>62.2</td>
</tr>
<tr>
<td>B6b</td>
<td>3.75</td>
<td></td>
<td>3.74</td>
<td></td>
<td>3.70</td>
<td></td>
<td>3.75</td>
<td></td>
<td>3.78</td>
<td></td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>4.914</td>
<td>101.1</td>
<td>5.103</td>
<td>96.7</td>
<td>4.908</td>
<td>101.0</td>
<td>5.103</td>
<td>96.7</td>
<td>4.908</td>
<td>101.0</td>
<td>5.103</td>
<td>96.7</td>
</tr>
<tr>
<td>C2</td>
<td>3.55</td>
<td>72.6</td>
<td>3.56</td>
<td>72.2</td>
<td>3.54</td>
<td>72.7</td>
<td>3.54</td>
<td>72.2</td>
<td>3.54</td>
<td>72.7</td>
<td>3.54</td>
<td>72.2</td>
</tr>
<tr>
<td>C3</td>
<td>3.75</td>
<td>73.9</td>
<td>3.80</td>
<td>79.8</td>
<td>3.75</td>
<td>73.9</td>
<td>3.80</td>
<td>79.8</td>
<td>3.75</td>
<td>73.9</td>
<td>3.80</td>
<td>79.8</td>
</tr>
<tr>
<td>C4</td>
<td>3.466</td>
<td>69.8</td>
<td>3.466</td>
<td>69.8</td>
<td>3.466</td>
<td>69.8</td>
<td>3.47</td>
<td>70.2</td>
<td>3.47</td>
<td>70.2</td>
<td>3.47</td>
<td>70.2</td>
</tr>
<tr>
<td>C5</td>
<td>4.145</td>
<td>72.9</td>
<td>3.96</td>
<td>72.8</td>
<td>4.151</td>
<td>72.8</td>
<td>3.96</td>
<td>72.8</td>
<td>4.151</td>
<td>72.8</td>
<td>3.96</td>
<td>72.8</td>
</tr>
<tr>
<td>C6a</td>
<td>3.80</td>
<td>61.2</td>
<td>3.80</td>
<td>61.2</td>
<td>3.80</td>
<td>61.2</td>
<td>3.80</td>
<td>61.2</td>
<td>3.82</td>
<td>61.2</td>
<td>3.84</td>
<td>61.2</td>
</tr>
<tr>
<td>C6b</td>
<td>3.75</td>
<td></td>
<td>3.74</td>
<td></td>
<td>3.70</td>
<td></td>
<td>3.75</td>
<td></td>
<td>3.78</td>
<td></td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>Dx1</td>
<td>5.094</td>
<td>97.1</td>
<td>5.097</td>
<td>97.4</td>
<td>5.097</td>
<td>97.4</td>
<td>5.097</td>
<td>97.4</td>
<td>5.097</td>
<td>97.4</td>
<td>5.097</td>
<td>97.4</td>
</tr>
<tr>
<td>Dx2</td>
<td>3.54</td>
<td>72.1</td>
<td>3.56</td>
<td>72.7</td>
<td>3.54</td>
<td>72.7</td>
<td>3.54</td>
<td>72.7</td>
<td>3.54</td>
<td>72.7</td>
<td>3.54</td>
<td>72.7</td>
</tr>
<tr>
<td>Dx3</td>
<td>3.80</td>
<td>73.6</td>
<td>3.80</td>
<td>73.6</td>
<td>3.80</td>
<td>73.6</td>
<td>3.80</td>
<td>73.6</td>
<td>3.80</td>
<td>73.6</td>
<td>3.80</td>
<td>73.6</td>
</tr>
<tr>
<td>Dx4</td>
<td>3.46</td>
<td>69.8</td>
<td>3.46</td>
<td>69.8</td>
<td>3.46</td>
<td>69.8</td>
<td>3.46</td>
<td>69.8</td>
<td>3.46</td>
<td>69.8</td>
<td>3.46</td>
<td>69.8</td>
</tr>
<tr>
<td>D5</td>
<td>3.88</td>
<td>60.8</td>
<td>3.88</td>
<td>60.8</td>
<td>3.88</td>
<td>60.8</td>
<td>3.88</td>
<td>60.8</td>
<td>3.81</td>
<td>61.2</td>
<td>3.88</td>
<td>61.2</td>
</tr>
<tr>
<td>D5a</td>
<td>3.52</td>
<td>60.8</td>
<td>3.52</td>
<td>60.8</td>
<td>3.52</td>
<td>60.8</td>
<td>3.52</td>
<td>60.8</td>
<td>3.80</td>
<td>61.2</td>
<td>3.80</td>
<td>61.2</td>
</tr>
<tr>
<td>D5b</td>
<td>3.80</td>
<td></td>
<td>3.75</td>
<td></td>
<td>3.78</td>
<td></td>
<td>3.77</td>
<td></td>
<td>3.77</td>
<td></td>
<td>3.77</td>
<td></td>
</tr>
</tbody>
</table>
2.2.1.3. Fraction F3. Trisaccharide F3 includes 3 hexose residues, namely A, B (glucosyl and galactosyl residues from original lactose, respectively) and C (transferred glucosyl residue from sucrose) (Table 1). The 1D 1H NMR spectrum of fraction F3 found four anomeric signals at δ 5.225 (A H-1), δ 3.76 (B H-1), δ 4.525 (B H-1), δ 3.98 (C H-1) ppm, indicating the occurrence of a 3-substitution at residue B. Moreover, the chemical shift patterns of residues A and C, as illustrated in Fig. S4, are nearly identical to those found in compound F2, suggesting the same structural element. Combining all data together, the structure of disaccharide compound F3 was determined to be α-α-GlcP-(1 → 2)-β-β-Galp-(1 → 4)-β-β-Galp, as illustrated in Table 1.

2.2.2. Fraction F5. Tetrasaccharide F5 includes 4 hexose residues, namely A, B (glucosyl and galactosyl residues from original lactose, respectively), C and D (transferred glucosyl residues from sucrose) (Table 1). All NMR chemical shifts of compound F4 were assigned by 1D 1H NMR, 2D 1H-1H TOCSY NMR, 2D 1H-13C HSQC NMR. The 1D 1H NMR spectrum of fraction F5 found six anomeric signals at δ 5.437 (A H-1), δ 3.76 (δ 5.19 ppm, δ 7.88 ppm), δ 5.095 (δ 4.82 ppm) compared to those of the galactosyl residue found in lactose [12], showing the occurrence of a 3-substitution at residue B. This substitution was verified by 2D 1H-1H ROESY NMR measurements (Fig. S6), showing inter-residual cross-peaks between C H-1 and B H-3. Moreover, the chemical shift patterns of residues B and C are nearly identical to those found in compound 3, suggesting the same structural element. Combining all data together, the structure of tetrasaccharide compound F5 was determined to be β-β-Galp-(1 → 3)-β-β-Galp-(1 → 4)-α-α-GlcP-(1 → 2)-β-β-Galp, as illustrated in Table 1.

2.3. High DP transglycosylation products of lactose

The reaction mixtures of Gtf180-ΔN and GtfA-ΔN incubated with lactose as acceptor substrate and sucrose as donor substrate were subjected to precipitation with 20% ethanol, followed by BioGel-P2 gel filtration (50 mL x 1.5 cm). The fraction size distribution in each pool was analyzed by MALDI-TOF-MS (Fig. S7). Subpool 1 contained structures of 3 and 4 hexose units (DP3-4; m/z 527 and 689). Subpool 2 consisted of structures of 5 and 6 hexose units (DP5-6; m/z 851 and 1013). Subpool 3 contained structures with 6 and 7 hexose units (DP6-7; m/z 1013 and 1175). Subpool 4 consisted of structures of 7 and 8 hexose units (DP7-8; m/z 1175 and 1337). Finally, subpool 5 contained structures of 8 and 9 hexose units (m/z 1337 and 1499). These fractions were subjected to 1D 1H NMR analysis. The 1D 1H NMR spectra of all fractions synthesized by Gtf180-ΔN revealed anomeric signals at δ 4.523 ppm, δ 4.510 ppm and δ 4.465 ppm (Fig. 2). These NMR resonances are indicative for a (−)β-β-Galp-(1 → 4)-β-β-Galp-4 Glucan related signals were observed. These data suggest that GtfA-ΔN elongated lactose with only one or two glucosyl residues.

3. Discussion and conclusions

As previously reported for dextran sucrases from L. mesenteroides and W. confuse [78] the glucansucrases from L. reuteri strains 121 and 180 also exhibit the ability to decorate
lactose with glucose. These dextranases were apparently only able to transfer a single glucose unit to lactose to form 2-α-L-glucopyranosyl-lactose (F2 in Table 1). At least five glucosylated lactose products with DP3 and DP4 were synthesized by GtfA-ΔN and Gtf180-ΔN and structurally characterized. In contrast to earlier findings that the linkage specificity of glucansucrases is conserved in oligosaccharide synthesis [13,14], new types of linkages were observed in the synthesized lactose glucosylation products. When using sucrose as donor and acceptor substrate, GtfA-ΔN synthesizes glucan with mainly (α1→4)/(α1→6) glucosidic linkages [10]; with lactose as acceptor substrate this enzyme introduced (α1→4) but also (α1→3) and (α1→2) glucosidic linkages. Similarly, Gtf180-ΔN produces an α-glucan with 69% (α1→6) and 31% (α1→3) linkages from sucrose [9], but with lactose as acceptor substrate it synthesized (α1→3) but also (α1→2) and (α1→4) glucosidic linkages. A most interesting finding was that GtfA-ΔN and Gtf180-ΔN synthesized the same set of DP3 and DP4 oligosaccharides from lactose as acceptor (F1 to F3, Table 1). Only glucansucrase Gtf180-ΔN, however, produced larger oligosaccharides with a lactose core, most likely elongating the F2 structure further from its non-reducing end. These unexpected results reflect the regiospecificity of these glucansucrases in binding the lactose acceptor substrate in the active site. The structural features determining the product specificity of these Gtf enzymes acting on lactose as acceptor substrate remain to be elucidated.

In this study, the NMR spectral data of compound α-o-GlcP-(1→2)-β-o-Galp-(1→4)-β-o-GlcP (F2) are consistent with data obtained from previous studies [78]. The full assignment of NMR spectra of two other trisaccharides (F1 and F3) and two tetrasaccharides (F4 and F5) are reported here for the first time. Lactose derivatives are interesting potential prebiotic compounds, especially those containing (α1→2)-linkages. These compounds are known to be highly resistant to the digestive enzymes in the human gut [15,16], and selectively stimulate the growth of health-beneficial microbiota [7,13]. The studied glucansucrases are able to elongate α-o-GlcP-(1→2)-β-o-Galp-(1→4)-β-o-GlcP (F2) with various types of linkages, such as α-o-GlcP-(1→4)-β-o-GalP-(1→4)-β-o-GlcP (1→2)-β-o-Galp and α-o-GlcP(1→3)-β-o-Galp (1→4)-β-o-GlcP(1→2)-β-o-GlcP. Moreover, Gtf180-ΔN is able to produce glucosylated-lactose derivatives with a higher DP than 4. These results thus show that glucansucrases Gtf180-ΔN and GtfA-ΔN produce novel oligosaccharides (and putative prebiotic compounds) from cheap materials like lactose and sucrose. In our future research we will investigate the prebiotic properties of these glucosylated-lactose derivatives.

4. Experimental

4.1. Glucansucrase enzymes

Escherichia coli BL21 (DE3) (Invitrogen) carrying plasmid pET15b with the gtf180 and gtfA genes from Lactobacillus reuteri strains 180 and 121 was used for expression of the N-terminally truncated glucansucrase enzymes (Gtf180-ΔN and GtfA-ΔN). The expression and purification of these glucansucrases have been described previously [17].

4.2. Transglucosylation reaction

The total activity of Gtf180-ΔN or GtfA-ΔN was measured as initial rates by methods described previously by Van Geel-Schutten et al. [18]. The products of the transglucosylation reaction were prepared by incubating a mixture of 0.5 M sucrose (donor) and 0.5 M lactose (acceptor) with 3 U mL$^{-1}$ glucansucrase at 37 °C in 50 mM sodium acetate buffer with 0.1 mM CaCl$_2$ at pH 4.7. The reaction was stopped after 24 h of incubation by heating at 100 °C for 10 min, followed by 400 times dilution of the inactivated sample with DMSO 95% and analyzed by High-pH anion-exchange chromatography (HPAEC-PAD).

4.3. Isolation and purification of oligosaccharide products

The reactions were carried out in a volume of 100 mL with the conditions described in section 4.2. Afterwards the reaction mixtures were mixed with two volumes of cold ethanol 20% and stored at 4 °C overnight to precipitate the polysaccharides. After centrifugation at 10,000 g for 10 min, the supernatant was applied to a rotary vacuum evaporator to remove ethanol. The aqueous fraction was then absorbed onto a CarboGraph SPE column (Alltech, Breda, The Netherlands) using acetonitrile:water = 1:3 as eluent, followed by evaporation of acetonitrile under an N$_2$ stream before being freeze-dried. This was followed by fractionation HPAEC on a Dionex ICS-5000 workstation (Dionex, Amsterdam, the Netherlands), equipped with a CarboPac PA-1 column (250 × 9 mm; Dionex) and an ED40 pulsed amperometric detector (PAD). The gradient used for this fractionation is described in 4.4. The collected fractions were neutralized by acetic acid 20% and then desalted using a CarboGraph SPE column as described earlier.
4.4. HPAEC-PAD

The profiles of the oligosaccharides products were analyzed by HPAEC-PAD on a Dionex ICS-3000 work station (Dionex, Amsterdam, the Netherlands) equipped with an ICS-3000 pulse amperometric detection (PAD) system and a CarboPac PA-1 column (250 x 4 mm; Dionex). The analytical separation was performed at a flow rate of 1.0 mL min\(^{-1}\) using a complex gradient of effluents A (100 mM NaOH); B (600 mM NaOAc in 100 mM NaOH); C (Milli-Q water); and D: 50 mM NaOAc. The gradient started with 10% A, 85% C, and 5% D in 25 min—40% A, 10% C, and 50% D, followed by a 35-min gradient to 75% A, 25% B, directly followed by 5 min washing with 100% B and reconditioning for 7 min with 10% A, 85% B, and 5% D. External standards of lactose, glucose, fructose were used to calibrate for the corresponding sugars. For the determination of glucosylated lactose compounds with a degree of polymerization (DP) of 3, maltotriose was used as external standard.

4.5. MALDI-TOF mass spectrometry

Molecular mass of the compounds in the reaction mixture was determined by MALDI-TOF mass spectrometry on an Axima™ Performance mass spectrometer (Shimadzu Kratos Inc., Manchester, UK), equipped with a nitrogen laser (337 nm, 3 ns pulse width). Ion-gate cut-off was set to m/z 200 and sampling resolution was software-optimized for m/z 1500. Samples were prepared by mixing 1 μL with 1 μL aqueous 10% 2,5-dihydroxybenzoic acid as matrix solution.

4.6. NMR spectroscopy

The structures of oligosaccharides of interest were elucidated by 1D and 2D \(^1\)H NMR, and 2D \(^13\)C NMR. A Varian Inova 500 Spectrometer and 600 Spectrometer (NMR center, University of Groningen) were used at probe temperatures of 300 K with acetone as internal standard (chemical shift of δ 2.225). The aliquot samples were exchanged twice with 600 μL of 99.9 atom D\(_2\)O (Cambridge Isotope Laboratories, Inc., Andover, MA) by freeze-drying, and then dissolved in 0.65 mL D\(_2\)O, containing internal acetone. In the 1D \(^1\)H NMR experiments, the data was recorded at 8 kHz complex data points, and the HOD signal was suppressed using a WET1D pulse. In NMR experiments, the data was recorded at 8 kHz complex data points, and the HOD signal was suppressed using a WET1D pulse. In the 2D \(^1\)H-\(^1\)H NMR ROESY spectra were recorded with 4800 Hz at a mixing time of 300 ms in 256 increments of 4000 complex data points. MestReNova 5.9 (Mestrelabs Research SL, Santiago de Compostela, Spain) was used to process NMR spectra, using Whittaker Smoother baseline correction.

Acknowledgments

This work was financially supported by The Campus Fryslân, FrieslandCampina and The University of Groningen.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jcarres.2017.07.002.

References

