CHAPTER 6

SUMMARY

Fernando Guzmán-Chávez1, Roel A.L. Bovenberg2,3, Arnold J.M. Driessen1

1Molecular Microbiology and 2Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
3DSM Biotechnology Center, Delft, The Netherlands
Penicillium chrysogenum (also identified as P. rubens) is the most best studied member of more than 354 species that integrate the genus (Nielsen et al., 2017). Since the discovery of penicillin by Alexander Fleming, the fungus P. chrysogenum is typically known as a β-lactam producer. Accordingly, several pharmaceutical companies subjected this organism to a classical strain improvement program (CSI) to increase the penicillin titres (Gombert et al., 2011; Barreiro et al., 2012). This resulted in a massive increase in the capacity to produce β-lactams but also resulted in the silencing of several biosynthetic gene clusters (BGC), causing a reduction in the production of a broad arsenal of molecules. An example is the loss of sorbicillinoids production in industrial strains, due to a point mutation that was acquired in the sorA gene (Pc21g05080; polyketide synthase gene) (Salo et al., 2016). Recently, the interest in these compounds has emerged because of the broad range of pharmaceutical applications that have been previously described. For instance, sorbicillinoids act as inhibitors of the cytopathic effect induced by HIV-1 and influenza virus A (H1N1) in MDCK cells (Nicoletti and Trincone, 2016). Nevertheless, many BGCs were not affected during the CSI program (Salo et al., 2015), but their exact function remains to be shown in P. chrysogenum.

Chapter 1 presents the impact of CSI program on secondary metabolism of Penicillium chrysogenum. It describes and lists the polyketides of P. chrysogenum discovered so far. Regarding the enzymes involved in the synthesis of polyketides (polyketide synthases), a brief description of the domain structure and catalytic mechanisms of polyketide synthases is provided, which includes a classification of these enzymes and the most representative compounds derived from each of the types. This chapter focuses on fungal polyketide synthases. It also summarizes the best characterized regulation mechanisms of biosynthetic pathways, and how interference with regulation can be used as a strategy to activate or silence biosynthetic pathways.

A previous genomic mutational analysis performed in Penicillium chrysogenum indicated that two point mutations were acquired in the putative sorbicillinoid cluster (Pc21g05070, Pc21g05080) during the CSI (Salo et al., 2015). Using this information, Chapter 2 describes the identification of a polyketide synthase (SorA; Pc21g05080) involved in sorbicillinoids biosynthesis. Herein, the critical point mutation in the sorA gene was reversed via homologous recombination. This
SUMMARY

resulted in the production of sorbicillinoids by an industrial strain of \textit{P. chrysogenum}. This mutation abolished the functionality of the KS domain in SorA. Likewise, eight sorbicillinoid related compounds were detected using LC-MS and by NMR it was demonstrated that bisorbicillinol occurred in two tautomeric forms (Salo \textit{et al.}, 2016).

The sorbicillinoids restored strain was used as a chassis to elucidate the sorbicillinoids biosynthetic pathway, as described in Chapter 3. Herein, the enzymology of the sorbicillinoids biosynthetic pathway was elucidated through the individual deletion of each of the genes of the BGC (Pc21g05050- Pc21g05110) that was identified in Chapter 2. A metabolic profile analysis of the individual mutants was performed to resolve the biosynthetic pathway. Interestingly, we observed the coexistence of two mechanisms involved the conversion of dihydro-sorbicillinol and sorbicillinol from dihydrosorbicillin and sorbicillin, respectively. In an previous study, this chemical conversion was demonstrated for the monooxygenase SorC (Pc21g05060) (Fahad \textit{et al.}, 2014). However, another but independent mechanism of SorC was discovered in our study, since in the supernatant of the sorC deletion mutant, isomers forms of sorbicillinol and dihydrosorbicillinol were detected. The analysis further suggested that SorD (Pc21g05110) is an oxidase that converts sorbicillinol into oxosorbicillinol. Additionally, we proposed a novel auto induction mechanism that regulates the biosynthetic pathway. This regulation mechanism is orchestrated by sorbicillinoids and the two transcription factors (SorR1 and SorR2). SorR1 (Pc21g05050) acts as transcriptional activator of the sorbicillinoid cluster while a more complex role must be attributed to SorR2. SorR2 seems to inhibit the activity of SorR1, and this inhibition is relieved by the presence of sorcillinoids. We discovered new sorbicillinoids related compounds and molecule with m/z [H] of 304.1652 and a calculated empirical formula of C_{16}H_{21}O_{3}N_{3} that is not related product with the sorbicillinoids biosynthetic pathway but whose production level is influenced by the aforementioned regulatory proteins (Guzmán-Chávez \textit{et al.}, 2017).

Chapter 4 evaluates the function of Pc21g14570 (hdaA) gene of \textit{Penicillium chrysogenum} in secondary metabolism. HdaA encodes an orthologue of a class 2-histone deacetylase (Tantwort \textit{et al.}, 1996). The corresponding gene was not affected during the CSI. A hdaA deletion mutant was generated in the chassis strain described in Chapter 2. The deletion
of hdaA induced a pleiotropic effect on the expression of a set of polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) encoding genes. Interestingly, the effects seemed to be restricted to chromosome 2 and the extremes of chromosome 1. The hdaA deletion resulted in an activation of the expression of the sorbicillinoid BGC and a massive production of sorbicillinoid related compounds. Conversely, a decrease in the chrysogine levels was observed, which is due to the down regulation of the corresponding BGC. Functionally, the hdaA gene deletion alters the surface structure of the spores and reduced green conidial pigmentation, which is related to a reduction of the expression levels of PKS gene Pc21g16000 (pks17). In addition, a new compound with a m/z [H]^+ of 369.0810 was detected under sorbicillinoids induction and the deletion strain, which suggests a novel crosstalk event between BGCs. Our results support the hypothesis that secondary metabolism in P. chrysogenum is epigenetically regulated by HdaA.

Recently, it has been suggested that membrane transporters function in secondary metabolism of fungi in a detoxification process in order to excrete some of the toxic metabolites into the medium (Keller, 2015). Chapter 5 presents an exploratory analysis of seven transporter proteins candidates involved in the mobilization of precursors, products and intermediates in the biosynthesis of penicillin V and G. A metabolite profile analysis was performed using the supernatants from the corresponding deletion mutants. Deletion of none of the seven candidate genes affected penicillin production. However, it was observed that deletion of the Pc22g00380 gene decreased the uptake of phenylacetic acid (PAA) and phenoxyacetic acid (POA), precursors involved in the biosynthesis of Penicillin G and V, respectively (Weber et al., 2012). However, the putative β-lactam transporter remains enigmatic.

Summarizing, this thesis describes the “awakening” of the sorbicillinoid gene cluster, which was silencing by mutation during the CSI program. It allowed the generation of an industrial strain able to produce sorbicillinoids at high levels and this strain was used to elucidate the biosynthetic pathway of these yellow compounds, as well as for unmasking a novel auto-regulatory mechanism that involves sorbicillinoids as inducers. Deletion of the histone deacetylase gene hdaA resulted in the epigenetic upregulation of various PKS genes, a technique that can be used in the future discover of novel secondary metabolites in filamentous fungi.
REFERENCES

HOOFDSTUK 6

NEDERLANDSE SAMENVATTING

Fernando Guzmán-Chávez¹, Roel A.L. Bovenberg²,³, Arnold J.M. Driessen¹

¹Molecular Microbiology and ²Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
³DSM Biotechnology Center, Delft, The Netherlands
Penicillium chrysogenum, ook wel P. rubens genoemd, is de meest bestudeerde schimmel van de 354 soorten van het geslacht (Nielsen et al., 2017) sinds de ontdekking van penicilline door Alexander Fleming in 1928. P. chrysogenum is een industrieel producent van β-lactam antibiotica, ook wel bekend als penicilline. Verschillende farmaceutische bedrijven hebben dit organism onderworpen aan langdurige klassieke stamverbeteringsprogramma’s (CSI) om de productie van penicilline te verhogen (Gombert et al., 2011; Barreiro et al., 2012). Hiertoe werd de schimmel uitgebreid blootgesteld aan ultraviolet licht en chemische geïnduceerde mutagenese en middels selectie konden stammen verkregen worden met een enorm verhoogde capaciteit om β-lactam antibiotica te produceren. Een bijwerking van het programma was dat verschillende ongerelateerde biosynthese genenclusters (BGC) door de mutagenese werden stilgelegd, waardoor de grote diversiteit aan niet aan penicilline gerelateerde moleculen sterk afnam. Een voorbeeld hiervan is de productie van sorbicillinoids dat werd stilgelegd middels een punt mutatie in het sorA gen (Pc21g05080) dat codeert voor een polyketide synthase (Salo et al., 2016) waardoor de ongewenste gele verontreiniging van β-lactam antibiotica voorkomen kon worden. Onderaan is de interesse in sorbicillinoids enorm toegenomen doordat deze groep van verbindingen deze over een breed scala aan farmaceutische activiteiten beschikt. Bijvoorbeeld kunnen sorbicillinoids fungeren als remmers van het HIV-1 en het influenza virus (H1N1) in MDCK cellen (Nicoletti and Trincone, 2016). Toch zijn er ook vele biosynthese genenclusters gedurende het stamverbeteringsprogramma onaangetast gebleven (Salo et al., 2015), maar de exacte functies van deze genenclusters in P. chrysogenum zijn tot dusver onbekend.

Hoofdstuk 1 beschrijft de invloed van het stamverbeteringsprogramma op het secondaire metabolisme van P. chrysogenum. Het beoekt alle polyketiden van P. chrysogenum die tot nu toe ontdekt zijn met de daarbij behorende polyketide synthases. Daarnaast zijn er een groot aantal genenclusters die niet tot expressie komen en waarvan het polyketide product nog onbekend is. Tevens wordt er in dit hoofdstuk een korte beschrijving gegeven van de domeinstructuur en het katalytische mechanisme van de polyketide synthases. Deze eiwitten worden in drie groepen geclassificeerd al naar gelang de mate waarin het product gereduceerd is. Daarnaast worden diverse mechanismen
van regulatie van de biosynthese genenclusters beschreven en synthetisch biologische methoden om de expressie van biosynthese genenclusters te moduleren waarmee niet tot expressie komende, ofwel slapende, genenclusters geactiveerd kunnen worden.

Genoomanalyse van een aantal *P. chrysogenum* stammen uit de lijn van stamverbetering gaf aan dat er gedurende de mutagenese, twee punt mutaties ontstaan zijn in twee sleutelenzymen van de vermoedelijke sorbicilline genencluster (Pc21g05070, Pc21g05080) (Salo et al., 2015). Deze informatie is gebruikt in Hoofdstuk 2 voor de identificatie van de sorbicillinoids biosynthese genencluster. In β-lactam productie stammen van *P. chrysogenum* heeft het polyketide synthase (*sorA*; Pc21g05080) een essentiële puntmutatie opgelopen in het katalytische ketosynthase domein. Door deze mutatie terug te draaien middels homologe recombinatie, kon de productie van sorbicillinoids door een industriële stam van *P. chrysogenum* weer tot stand gebracht worden. Door een metabool profiel op te maken van deze stam met behulp van massaspectroscopie konden er acht andere sorbicillinoid ge-relateerde producten gedetecteerd worden in het groei medium. Uit verdere NMR analyse kwam naar voren dat bisorbicillinol in twee tautomeer vormen voorkomt (Salo et al., 2016).

De voorheen genoemde chassis stam waarin de sorbicillinoid productie is hersteld is gebruik om de biosynthese route van sorbicillinois op te holderen (Hoofdstuk 3). Hiertoe zijn er individuele gendeleties uitgevoerd voor de genen die vermoedelijk behoren tot de biosynthese genencluster (Pc21g05050 – Pc21g05110). Doormiddel van een analyse van het metabole profiel van de individuele mutanten kon de biosynthese route geconstrueerd worden. Verrassend genoeg, werden voor de omzetting van dihydrosorbiciline en sorbicilline naar dihydrosorbicillinol en sorbicillinol twee naast elkaar bestaande mechanismen gevonden. In een voorgaande studie werd deze reactie toegekend aan het monooxygenase SorC (Pc21g05060) (Fahad et al., 2014). Echter, in de gendeletie studie werd een tweede SorC onafhankelijk mechanisme gevonden, doordat de *sorC* deletie mutant nog steeds in staat is om sorbicillinol en dihydrosorbicillinol te isomeriseren. SorD (Pc21g05110) is een oxidase en verantwoordelijk voor de omzetting van sorbicillinol naar oxosorbicillinol. Tevens bleek uit deze studie dat de sorbicilline biosynthese route onderhevig is aan een auto-inductie mechanisme. In dit proces zijn twee transcriptie
factoren (SorR1 en SorR2) betrokken. SorR1 (Pc21g05050) gedraagt zich als een transcriptionele activator van de sorbicilline cluster, terwijl SorR2 een meer complexe rol vervult. SorR2 lijkt te fungeren als een remmer van de activiteit van SorR1, terwijl de aanwezigheid van sorbicillinoïds deze remming opheft waardoor de sorbicilline genencluster tot expressie komt. In deze studie zijn twee nieuwe sorbicillinoïds gerelateerde componenten gevonden en een molecuul met m/z [H]+ van 304,1652 met een berekende formule van C_{16}H_{21}O_{3}N_{3} dat niet gerelateerd aan de sorbicillinoïds maar waarvan de productie wel beïnvloed wordt door de eerder genoemde transcriptiefactoren (Guzmán-Chávez et al., 2017).

Hoofdstuk 4 evalueert de rol van Pc21g14570 (hdaA gen) in het secundaire metabolisme van *P. chrysogenum*. HdaA is een ortholog van de klasse-2 histone deacetylases (Taunton et al., 1996) en kan middels epigenetische mechanismen de expressie van biosynthese genenclusters beïnvloeden. Om de rol van HdaA verder te onderzoeken is het hdaA gen in de eerder beschreven sorbicillinoïds productie stam genetisch geïnactiveerd. Dit had een pleiotroop effect op de expressie van een aantal polyketide synthases (PKS) en non-ribosomal peptide synthetase (NRPS) genen. Dit betrof met name genenclusters gelegen in de chromosoom 2 en de extremen van chromosoom 1. De deletie van het hdaA gen veroorzaakte de activatie van de expressie van de sorbicillinoïds biosynthese genencluster en had tot gevolg dat de productie van sorbicillinoïds sterk verhoogd werd. Daarintegen werd in deze stam een verlaging van de chrysogine-gerelateerde componenten waargenomen wat overeenkomt met een verlaging van de expressie van de corresponderende biosynthese genencluster. In de mutant werd tegens een verandering van de oppervlaktestructuur van de sporen en een vermindering van de groene pigmentatie van de conidia. Dit laatste fenomeen wordt veroorzaakt door verlaagde expressie Pc21g16000 gen dat codeert voor een polyketide synthase (Pks17). In de hdaA gendeletie mutant werd teven nieuwe verbinding gedetecteerd maar alleen als de stam ook in staat was om sorbicillinoïds te produceren. Mogelijk is hier sprake van cross-regulatie echter de bij de gevonden verbinding behorende biosynthese genencluster is vooralsnog onbekend. De resultaten in dit hoofdstuk tonen aan dat het secundaire metabolisme in *P. chrysogenum* epigenetisch gereguleerd wordt door hdaA.
Onlangs werd gesuggereerd dat membraantransporters van secon-
daire metabolieten in schimmels helpen met het ontgiften van voor
de cel toxische verbindingen door deze in het medium uit te scheiden
(Keller, 2015). **Hoofdstuk 5** presenteert een analyse van zeven kandi-
daat transporteiwitten welke mogelijk betrokken zouden kunnen zijn
bij het uitscheiden van precursors, tussenproducten en eindproduc-
ten van de penicilline biosynthese route. Van de individuele transpor-
tergenen zijn deletiemutanten gemaakt en het groeimedium van de
corresponderende stammen werden geanalyseerd middels metaboliet
profielanalyse. Deletie van geen van de zeven kandidaat genen bleek
een effect te hebben op de productie van penicillines. Echter de de-
letie van het Pc22g00380 gen resulteerde in een verlaagd transport
van de precursors fenylazijnzuur en fenoxyazijnzuur die benodigd zijn
voor de biosynthese van respectievelijk penicilline G en V (Weber et al.,
2012). Echter, ook na deze studie blijft de identiteit van de vermeende
β-lactam membraan transporter onbekend. Mogelijk wordt de secre-
tie van penicillines veroorzaakt voor meerdere transporters met een
overlappende substraat specificiteit.

Samenvattend beschrijft dit proefschrift “het ontwaken van” het
sorbicilinoids gen cluster, dat door een mutatie tijdens het stamver-
beteringsprogramma was stilgelegd. Door het terug draaien van de
mutatie kon een industriële stam worden gemaakt die in staat is grote
hoeveelheden sorbicillinoids te produceren. Deze stam werd ook ge-
bruikt om de biosynthese route van deze gele componenten op te hel-
deren, maar resulteerde ook in het ontrafelen van een nieuw auto-
regulatie mechanisme waarbij de eindproducten van de biosynthese
route, de sorbicillinoids fungeren als inducerende componenten. Ten-
slotte is middels de deletie van het histone deacetylase gen hdaA evi-
dentie verkregen voor de epigenetische regulatie van de expressie van
verschillende polyketide synthase genen. Deze techniek kan mogelijk
in de toekomst gebruikt kan worden voor de genoomwijde activatie
van “slapende” secondaire metaboliet biosynthese genenclusters in fi-
lamenteuze schimmels.
CAPÍTULO 6

RESUMEN

Fernando Guzmán-Chávez¹, Roel A.L. Bovenberg²³, Arnold J.M. Driessen¹

¹Molecular Microbiology and ²Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
³DSM Biotechnology Center, Delft, The Netherlands
Penicillium chrysogenum (también identificado como P. rubens) es el miembro mejor estudiado de más de 354 especies que integran el género (Nielsen et al., 2017). Desde el descubrimiento de la penicilina por Alexander Fleming, el hongo filamentoso P. chrysogenum es típicamente conocido como un productor de β-lactámicos. En consecuencia, varias compañías farmacéuticas sometieron a este microorganismo al programa de mejoramiento clásico de las cepas (CSI, por sus siglas en inglés) con el fin de incrementar los niveles en la producción de penicilina (Gombert et al., 2011; Barreiro et al., 2012). Esto resultó no sólo en un incremento masivo en su capacidad para producir β-lactámicos, sino que además varios de los clusters de genes biosintéticos (BGC, por sus siglas en inglés) fueron silenciados, lo que causó el decremento en la producción de un amplio arsenal de moléculas. Un ejemplo de ello, fue la pérdida de la capacidad de producción de sorbicilinoides en las cepas industriales, debido a que el gen sorA (Pc21g05080; gene de una policétido sintasa) adquirió una mutación puntual (Salo et al., 2016). Recientemente, el interés en estos compuestos surgió debido a que se ha demostrado que poseen un amplio rango de aplicaciones farmacéuticas. Por ejemplo, los sorbicilinoides actúan como inhibidores de los efectos citopáticos inducidos por los virus VIH-1 e influenza tipo A (H1N1) en células MDCK (Nicoletti and Trincone, 2016). No obstante, a pesar de que varios BGCs no fueron afectados durante el programa CSI (Salo et al., 2015), su función exacta en P. chrysogenum permanece por ser descubierta.

El Capítulo 1 presenta el impacto del programa CSI sobre el metabolismo secundario de Penicillium chrysogenum. En éste se describe y se enlistan los policétidos descubiertos hasta el momento en P. chrysogenum. Respecto a las enzimas involucradas en la síntesis de policétidos (policétido sintasas), se proporciona una breve descripción estructural de los dominios y los mecanismos catalíticos de las policétidos sintasas, la cual incluye además la clasificación de estas enzimas y los compuestos más representativos que se derivan de cada tipo, con un enfoque particular en las policétido sintasas de los hongos. Asimismo, el capítulo también resume los mecanismos de regulación mejor caracterizados en las rutas biosintéticas, y cómo la interferencia sobre la regulación puede ser utilizada como una estrategia para activar o silenciar rutas de biosíntesis.

RESUMEN
Un análisis genómico mutacional realizado previamente en *Penicillium chrysogenum*, reveló que dos mutaciones puntuales en el cluster putativo de sorbicilinoides fueron adquiridas (Pc21g05070, Pc21g05080) durante el programa CSI (Salo et al., 2015). Con base en esta información, el Capítulo 2 describe la identificación de una policétido sintasa (SorA; Pc21g05080) involucrada en la biosíntesis de sorbicilinoides donde una mutación puntual crítica fue revertida en el gen sorA mediante recombinación homóloga. Resultando en la restauración de la capacidad para la producción de sorbicilinoides en una cepa industrial de *P. chrysogenum*, debido a que dicha mutación abolió la funcionalidad del dominio KS en SorA. Asimismo, ocho compuestos relacionados con los sorbicilinoides fueron detectados usando LC-MS y se demostró vía NMR que el bisorbicilinol se encuentra presente en dos formas tautoméricas (Salo et al., 2016).

La cepa restaurada en su capacidad para producir sorbicilinoides fue usada como chasis para elucidar la ruta de biosíntesis de los sorbicilinoides, la cual se describe en el Capítulo 3. En éste, la enzimología de la ruta biosintética de los sorbicilinoides fue elucidada a través de la delección de cada uno de los genes que integran el BGC (Pc21g05050-Pc21g05110), que fue identificado en el Capítulo 2. Se realizó un análisis del perfil metabólico de las mutantes individuales generadas para resolver la vía de biosíntesis. Interesantemente, se observó la coexistencia de dos mecanismos involucrados en la conversión de dihidrosorbicilinol y sorbicilinol a partir de dihidrosorbicilina y sorbicilina respectivamente. En un estudio previo, se demostró que el responsable de esta conversión química es SorC (Pc21g05060) (Fahad et al., 2014). Sin embargo, en este estudio se descubrió un mecanismo independiente de SorC, ya que en los sobrenadantes de la mutante de delección para SorC, se detectaron isómeros de sorbicilinol y dihidrosorbicilinol. Además, el análisis sugirió que SorD (Pc21g05110) es una oxidasa que convierte sorbicilinol en oxosorbicilinol. Adicionalmente, se propuso un novedoso mecanismo de autoinducción que regula la ruta de biosíntesis, donde el mecanismo regulatorio es orquestado por los sorbicilinoides y dos factores de transcripción (SorR1 and SorR2). SorR1 (Pc21g05050) actúa como activador transcripcional del cluster de los sorbicilinoides, mientras que un rol más complejo es atribuido para SorR2, el cual parece inhibir la actividad de SorR1 que es a su vez es liberada por la presencia de sorbicilinoides. De igual forma,
se descubrieron nuevos compuestos relacionados con sorbicilinoides y una molécula con una m/z [H]+ de 304.1652 cuya fórmula empírica calculada es C_{16}H_{21}O_3N_3, que si bien no es un producto relacionado con la síntesis de los sorbicilinoides, su producción se encuentra influenciada por las proteínas reguladoras antes mencionadas (Guzmán-Chávez et al., 2017).

El Capítulo 4 evalúa la función del gen Pc21g14570 (hdaA) en el metabolismo secundario de *Penicillium chrysogenum*. HdaA codifica para un ortólogo de una histona deacetilasa clase 2 (Taunton et al., 1996). El gen correspondiente no fue afectado durante el programa CSI. Para evaluar su función, se generó una mutante de delección para el gen hdaA usando la cepa chasis que se describe en el Capítulo 2. La delección de hdaA indujo un efecto pleiotrópico sobre la expresión de un grupo de genes que codifican para policétido sintasas (PKS, por sus siglas en ingles) y sintetasas de péptidos no ribosomales (NRPS, por sus siglas en ingles). Interesantemente, los efectos observados parecen restringirse al cromosoma 2 y a los extremos del cromosoma 1. Particularmente, la delección de hdaA resultó en la activación de la expresión del BGC de los sorbicilinoides y en una masiva producción de compuestos relacionados a sorbicilinoides. Contrariamente, se observó una disminución en los niveles de crisogina, la cual coincide con la disminución en la expresión del correspondiente BGC. Funcionalmente, la delección de hdaA alteró la estructura de la superficie de los conidios y redujo la pigmentación verde de los mismos, lo que se relaciona con la reducción de la expresión del gen Pc21g16000 (pks17). Adicionalmente, un compuesto nuevo cuya m/z [H]+ es 369.0810 fue detectado bajo la inducción por sorbicilinoides y en la cepa mutante, lo cual sugiere un evento de comunicación cruzada entre BGCs. Los resultados soportan la hipótesis de que el metabolismo secundario en *P. chrysogenum* es epigenéticamente regulado por HdaA.

Recientemente, se ha sugerido que las proteínas transportadoras de membrana están involucradas en el metabolismo secundario de los hongos, dentro de los procesos de desintoxicación con el fin de excretar algunos de los metabolitos tóxicos al medio extracelular (Keller, 2015). El Capítulo 5 presenta un análisis exploratorio de siete proteínas transportadoras candidatas involucradas en la movilización de precursores, productos e intermediarios en la biosíntesis de penicilina V y G. Un perfil metabólico fue realizado a partir de los sobrenadantes
generados por las correspondientes mutantes de deleción. Ninguno de los siete genes putativos que fueron eliminados afectaron la producción de las penicilinas. Sin embargo, se observó que la eliminación del gen Pc22g00380 disminuyó la toma de ácido fenilacético (PAA, por sus siglas en inglés) y ácido fenoxiacético (POA, por sus siglas en inglés), precursores involucrados en la biosíntesis de penicilina G y V respectivamente (Weber et al., 2012). No obstante, el transporte de β-lactámicos continua siendo un enigma.

En resumen, esta tesis describe el “despertar” del cluster de genes de los sorbicilinoides, el cuál fue silenciado durante el programa CSI. Esto permitió la generación de una cepa industrial capaz de producir altos niveles de sorbicilinoides, la que a su vez fue utilizada para elucidar la ruta biosintética de estos compuestos amarillos, así como para desenmascarar un nuevo mecanismo de auto-regulación que implica el uso de sorbicilinoides como inductores. Por su parte, la deleción del gen hdaA, que codifica para una histona deacetilasa, resultó en una regulación epigenética positiva de varios genes de PKS, técnica que podría emplearse en un futuro para descubrir de nuevos metabolitos secundarios en hongos filamentosos.