Characterisation of the M-locus and functional analysis of the male-determining gene in the housefly
Wu, Yanli

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
English summary
The housefly, *Musca domestica* is particularly suited to investigate the evolution of sex determination and sex chromosomes because it has a polymorphic sex determination system. The male-determining *M*-locus, typically located on the Y-chromosome, can also be present on any of the five autosomes or even the X-chromosome. Recently, based upon differential expression analysis, a male-determining gene was identified and termed *Mdmd* for *Musca domestica* male determiner. *Mdmd* appears to have arisen as a duplication of the splicing regulatory gene *CWC22*, called *nucampholin* (*ncm*) in insects. To further characterise the *M*-loci in terms of genomic organisation and function, I addressed several questions about *Mdmd* structure and function: What is the genomic organisation of *M*-loci on different chromosomes? What is the coding sequence of *Mdmd*? To what extent are the different *M*-loci conserved? What is the evolutionary relationship between *Mdmd* and its paralog *CWC22/ncampholin*? When and where is *Mdmd* expressed? Is *Mdmd* sufficient for male function?

Although *Mdmd* was identified as the male-determining gene in the housefly, the complete sequence of *Mdmd* and its embedding in the *M*-locus remained unknown. In Chapter 2, I investigated the complex nature of *M*-loci in two autosomal *M* strains, *M iii*(M-locus on autosome III) and *M v*(M-locus on autosome V). I found that the *M*-loci contain multiple copies of different sequences of *Mdmd* sequences, with various levels of homology to each other. Interestingly, the *M iii*-locus and the *M v*-locus share common sequences. On the basis of these common sequences, I identified an open reading frame (ORF) that is part of the *Mdmd* gene (Chapter 3). Sequences with high similarity to the *Mdmd* ORF were also detected in *M ii* (M-locus on autosome II) and *M y* (M-locus on Y-chromosome) strains, but not in the *M i*(M-locus on autosome I) strain, which probably has a different male-determining gene (s). This ORF is assumed to be the coding sequence of *Mdmd*, the functional male-determining gene.

The liability and turnover of sex chromosomes is a remarkable aspect of sex determination evolution. Sex chromosomes are believed to evolve from ordinary autosomes that lost recombination after having acquired a sex-determining role. What drives the evolution of new sex chromosomes is not yet well understood. My results in *M. domestica* provide support for the birth-decay-rebirth model of sex chromosome evolution. The high sequence similarity of *Mdmd ii*, *Mdmd iii*, *Mdmd v* and *Mdmd v* suggests that all *Mdmd* genes originated from a common ancestral sequence. A comparison of *Mdmd* protein sequences and its paralog *CWC22/ncampholin* in Chapter 3 suggests a scenario of *M*-locus evolution, whereby the male-determining gene *Mdmd* evolved after a single duplication event of *Md-ncm* generating a proto-Y chromosome. Whether this happened on the ancestral Y or on an autosomal pair that was not yet involved in sex determination cannot be
answered at this moment.

The next stage of Y-chromosome evolution would be the reduction of recombination in the surrounding *Mdmd* region, followed by accumulation of repetitive sequences and transposons due to the lack of recombination on the proto-sex chromosome. Consistent with this model, I found that *M*-loci in the *MIII* and *MV* strain contain transposable elements and repetitive sequences (Chapter 2). Subsequent amplification of *Mdmd* appears to have led to the complex structure of the *M*-locus, as multiple tandemly repeated copies of *Mdmd* are found in *MIII* and *MV* males in Chapter 2. After amplification, the *M*-locus may have translocated multiple times as a cluster from the Y to an autosome and/or subsequently between autosomes, generating novel Y-chromosomes. In addition, the data presented in Chapter 2 revealed that to some extent different sequences exist in different autosomes, indicating that after translocation, the *M*-locus underwent further independent genomic changes on each autosome. The existence of multiple different autosomal *M* variants in the housefly provides a unique opportunity for further study of early stages of sex chromosome evolution.

As *Mdmd* is a crucial gene for male development, localising *Mdmd* mRNA in different embryonic developmental stages is needed to understand its regulation in the sex determination pathway. In Chapter 4, I demonstrate the ubiquitous expression of *Mdmd* mRNA throughout embryonic development. This suggests that *Mdmd* acts at a very early embryonic stage and that it needs to be continuously active in embryos to sustain male development. Sharma et al. (2017) showed that targeted disruption of *Mdmd* turns genotypic males into females. Although this indicated that *Mdmd* plays a crucial role in male development, it did not proof that *Mdmd* is sufficient for male determination. To test whether *Mdmd* is solely sufficient to perform the male-determining function, in Chapter 4, I introduced *MdmdV* mRNA into early blastoderm stage embryos from the *MIII* strain and tested for sex-reversal. Transient expression of *MdmdV* mRNA in female embryos did not yield any masculinised flies, although an insignificant bias towards more males was observed in injected offspring. These results either indicate that expression of *MdmdV* alone is not sufficient to turn genotypic females into males, or alternatively, it is caused by an experimental shortcoming, i.e. insufficient translation of *MdmdV* mRNA. An alternative approach to determine whether expression of *Mdmd* is sufficient to turn genotypic females into males, would be to use *piggyBac* germline transformation to repeatedly express *MdmdV* during development. In Box 4.1, I describe how I constructed a pBac[3×P3-EGFP, hsp70-*MdmdV*] transgene. This transgene will be used in future experiments to assess the masculinising activity of *MdmdV*.
My work has shed light on the complex structure of the M-loci in the housefly and on the evolution of sex chromosomes in the housefly and in insects in general.