Evidence for Exotic Hadron Contributions to Lambda(0)(b) -> J/psi p pi(-) Decays

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.117.082003

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Evidence for Exotic Hadron Contributions to $\Lambda_b^0 \to J/\psi p\pi^-$ Decays

R. Aaij et al.*
(LHCb Collaboration)

(Received 22 June 2016; published 18 August 2016; corrected 8 March 2017)

A full amplitude analysis of $\Lambda_b^0 \to J/\psi p\pi^-$ decays is performed with a data sample acquired with the LHCb detector from 7 and 8 TeV pp collisions, corresponding to an integrated luminosity of 3 fb$^{-1}$. A significantly better description of the data is achieved when, in addition to the previously observed nucleon excitations $N \to p\pi^-$, either the $P_c(4380)^+$ and $P_c(4450)^+$ states, previously observed in $\Lambda_b^0 \to J/\psi pK^-$ decays, or the $Z_c(4200)^+ \to J/\psi\pi^+$ state, previously reported in $B^0 \to J/\psi K^+\pi^-$ decays, or all three, are included in the amplitude models. The data support a model containing all three exotic states, with a significance of more than three standard deviations. Within uncertainties, the data are consistent with the $P_c(4380)^+$ and $P_c(4450)^+$ production rates expected from their previous observation taking account of Cabibbo suppression.

DOI: 10.1103/PhysRevLett.117.082003

From the birth of the quark model, it has been anticipated that baryons could be constructed not only from three quarks, but also four quarks and an antiquark [1,2], hereafter referred to as pentaquarks [3,4]. The distribution of the $J/\psi p$ mass ($m_{J/\psi p}$) in $\Lambda_b^0 \to J/\psi pK^-$, $J/\psi \to \mu^+\mu^-$ decays (charge conjugation is implied throughout the text) observed with the LHCb detector at the LHC shows a narrow peak suggestive of $uudc\bar{c}$ pentaquark formation, amidst the dominant formation of various excitations of the Λ [uds] baryon (Λ^*) decaying to K^-p [5,6]. It was demonstrated that these data cannot be described with K^-p contributions alone without a specific model of them [7]. Amplitude model fits were also performed on all relevant masses and decay angles of the six-dimensional data [5], using the helicity formalism and Breit-Wigner amplitudes to describe all resonances. In addition to the previously well-established Λ^* resonances, two pentaquark resonances, named the $P_c(4380)^+$ (9σ significance) and $P_c(4450)^+$ (12σ), are required in the model for a good description of the data [5]. The mass, width, and fractional yields (fit fractions) were determined to be $4380 \pm 8 \pm 29$ MeV, $205 \pm 18 \pm 86$ MeV, (8.4 $\pm 0.7 \pm 4.3$)%$, and $4450 \pm 2 \pm 3$ MeV, $39 \pm 5\pm 19$ MeV, (4.1 $\pm 0.5 \pm 1.1$)%$, respectively. Observations of the same two P_c^+ states in another decay would strengthen their interpretation as genuine exotic baryonic states, rather than kinematical effects related to the so-called triangle singularity [8], as pointed out in Ref. [9].

In this Letter, $\Lambda_b^0 \to J/\psi p\pi^-$ decays are analyzed, which are related to $\Lambda_b^0 \to J/\psi pK^-$ decays via Cabibbo suppression. LHCb has measured the relative branching fraction $B(\Lambda_b^0 \to J/\psi p\pi^-)/B(\Lambda_b^0 \to J/\psi pK^-) = 0.0824 \pm 0.0024 \pm 0.0042$ [10] with the same data sample as used here, corresponding to 3 fb$^{-1}$ of integrated luminosity acquired by the LHCb experiment in pp collisions at 7 and 8 TeV center-of-mass energy. The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, described in detail in Refs. [11,12]. The data selection is similar to that described in Ref. [5], with the K^- replaced by a π^- candidate. In the preselection a larger significance for the Λ_b^0 flight distance and a tighter alignment between the Λ_b^0 momentum and the vector from the primary to the secondary vertex are required. To remove specific B^0 and \bar{B}^0 backgrounds, candidates are vetoed within a 3σ invariant mass window around the corresponding nominal B mass [13] when interpreted as $B^0 \to J/\psi \pi^- K^-$ or as $\bar{B}^0 \to J/\psi K^+ K^-$. In addition, residual long-lived $\Lambda \to p\pi$ background is excluded if the $p\pi^-$ invariant mass ($m_{p\pi}$) lies within ± 5 MeV of the known Λ mass [13]. The resulting invariant mass spectrum of Λ_b^0 candidates is shown in Fig. 1. The signal yield is 1885 ± 50, determined by an unbinned extended maximum likelihood fit to the mass spectrum. The signal is described by a double-sided crystal ball function [14]. The combinatorial background is modeled by an exponential function. The background of $\Lambda_b^0 \to J/\psi pK^-$ events is described by a histogram obtained from simulation, with yield free to vary. This fit is used to assign weights to the candidates using the sPlot technique [15], which allows the signal component to be projected out by weighting each event depending on the $J/\psi p\pi^-$ mass. Amplitude fits are performed by minimizing a six-dimensional unbinned negative log likelihood, $-2\ln L$, with the background subtracted using these.
weights and the efficiency folded into the signal probability density function, as discussed in detail in Ref. [5].

Amplitude models for the $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ decays are constructed to examine the possibility of exotic hadron contributions from the $P_c(4380)^+$ and $P_c(4450)^+ \rightarrow J/\psi p$ states and from the $Z_{c}(4200)^- \rightarrow J/\psi\pi^-$ state, previously reported by the Belle Collaboration in $B^0 \rightarrow J/\psi K^+\pi^-$ decays [16] (spin parity $J^P = 1^+$, mass and width of $4196^{+31}_{-29}^{+17}_{-13}$ MeV and $370 \pm 70^{+170}_{-132}$ MeV, respectively). By analogy with kaon decays [17], $p\pi^-$ contributions from conventional nucleon excitations (denoted as N^*) produced with $\Delta I = 1/2$ in Λ_b^0 decays are expected to dominate over $\Delta I = 3/2$, where I is isospin. The decay matrix elements for the two interfering decay chains, $\Lambda_b^0 \rightarrow J/\psi N^*, N^* \rightarrow p\pi^-$ and $\Lambda_b^0 \rightarrow P_c^+ \pi^-, P_c^+ \rightarrow J/\psi p$ with $J/\psi \rightarrow \mu^+\mu^-$ in both cases, are identical to those used in the $\Lambda_b^0 \rightarrow J/\psi pK^-$ analysis [5], with K^- and Λ^* replaced by π^- and N^*. The additional decay chain, $\Lambda_b^0 \rightarrow Z_{c}^- p, Z_{c}^- \rightarrow J/\psi\pi^-$, is also included. Helicity couplings, describing the dynamics of the decays, are expressed in terms of LS couplings [5], where L is the decay orbital angular momentum, and S is the sum of spins of the decay products. This is a convenient way to incorporate parity conservation in strong decays and to allow for reduction of the number of free parameters by excluding high L values for phase-space suppressed decays.

Table I lists the N^* resonances considered in the amplitude model of $p\pi^-$ contributions. There are 15 well-established N^* resonances [13]. The high-mass and high-spin states (9/2 and 11/2) are not included, since they require $L \geq 3$ in the Λ_b^0 decay and therefore are unlikely to be produced near the upper kinematic limit of $m_{p\pi}$. Theoretical models of baryon resonances predict many more high-mass states [18], which have not yet been observed. Their absence could arise from decreased couplings of the higher N^* excitations to the simple production and decay channels [19] and possibly also from experimental difficulties in identifying broad resonances and insufficient statistics at high masses in scattering experiments. The possibility of high-mass, low-spin N^* states is explored by including two very significant, but unconfirmed, resonances claimed by the BESIII Collaboration in $\psi(2S) \rightarrow p\bar{p}p^0$ decays [20]: $1/2^+ N(2300)$ and $5/2^- N(2570)$. A nonresonant $J^P = 1/2^- p\pi^-$ S-wave component is also included. Two models, labeled “reduced” (RM) and “extended” (EM), are considered and differ in the number of resonances and of LS couplings included in the fit as listed in Table I. The reduced model, used for the central values of fit fractions, includes only the resonances and L couplings that give individually significant contributions. The systematic uncertainties and the significances for the exotic states are evaluated with the extended model including all well-motivated resonances and the maximal number of LS couplings for which the fit is able to converge.

All N^* resonances are described by Breit-Wigner functions [5] to model their line shape and phase variation as a function of $m_{p\pi}$, except for the $N(1535)$, which is described by a Flatté function [21] to account for the threshold of the $n\bar{n}$ channel. The mass and width are fixed to the values determined from previous experiments [13]. The couplings to the $n\bar{n}$ and $p\pi^-$ channels for the $N(1535)$ state are determined by the branching fractions of the two channels [22]. The nonresonant S-wave component is described with a function that depends inversely on $m_{p\pi}^2$, as this is found to be preferred by the data. An alternative description of the $1/2^- p\pi^-$ contributions, including the $N(1535)$ and nonresonant components, is provided by a K-matrix model obtained from multichannel partial wave

![FIG. 1. Invariant mass spectrum for the selected $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ candidates.](image-url)

<table>
<thead>
<tr>
<th>State</th>
<th>J^P</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>RM</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NR p\pi$</td>
<td>$1/2^-$</td>
<td>...</td>
<td>...</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$N(1440)$</td>
<td>$1/2^+$</td>
<td>1430</td>
<td>350</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$N(1520)$</td>
<td>$3/2^-$</td>
<td>1515</td>
<td>115</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$N(1535)$</td>
<td>$1/2^-$</td>
<td>1535</td>
<td>150</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$N(1650)$</td>
<td>$1/2^-$</td>
<td>1655</td>
<td>140</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>$N(1675)$</td>
<td>$5/2^+$</td>
<td>1675</td>
<td>150</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>$N(1680)$</td>
<td>$5/2^+$</td>
<td>1685</td>
<td>130</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$N(1700)$</td>
<td>$3/2^-$</td>
<td>1700</td>
<td>150</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$N(1710)$</td>
<td>$1/2^+$</td>
<td>1710</td>
<td>100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$N(1720)$</td>
<td>$3/2^+$</td>
<td>1720</td>
<td>250</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>$N(1875)$</td>
<td>$3/2^-$</td>
<td>1875</td>
<td>250</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$N(1900)$</td>
<td>$3/2^+$</td>
<td>1900</td>
<td>200</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$N(2190)$</td>
<td>$7/2^-$</td>
<td>2190</td>
<td>500</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$N(2300)$</td>
<td>$1/2^+$</td>
<td>2300</td>
<td>340</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$N(2570)$</td>
<td>$5/2^-$</td>
<td>2570</td>
<td>250</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Free parameters: 40 106
analysis by the Bonn-Gatchina group [22,23] and is used to estimate systematic uncertainties.

The limited number of signal events and the large number of free parameters in the amplitude fits prevent an open-ended analysis of $J/\psi p$ and $J/\psi \pi^-$ contributions. Therefore, the data are examined only for the presence of the previously observed $P_c(4380)^+$, $P_c(4450)^+$ states [5] and the claimed $Z_c(4200)^-$ resonance [16]. In the fits, the mass and width of each exotic state are fixed to the reported central values. The LS couplings describing $P_c^+ \rightarrow J/\psi p$ decays are also fixed to the values obtained from the Cabibbo-favored channel. This leaves four free parameters per P_c^+ state for the $\Lambda_b^0 \rightarrow P_c^+ \pi^-$ couplings. The nominal fits are performed for the most likely $(3/2^-, 5/2^+)$ J^P assignment to the $P_c(4380)^+$, $P_c(4450)^+$ states [5]. All couplings for the 1^+ $Z_c(4200)^-$ contribution are allowed to vary (ten free parameters).

The fits show a significant improvement when exotic contributions are included. When all three exotic contributions are added to the EM N^*-only model, the $\Delta(-2\ln \mathcal{L})$ value is 49.0, which corresponds to their combined statistical significance of 3.9σ. Including the systematic uncertainties discussed later lowers their significance to 3.1σ. The systematic uncertainties are included in subsequent significance figures. Because of the ambiguity between the $P_c(4380)^+$, $P_c(4450)^+$ and $Z_c(4200)^-$ contributions, no single one of them makes a significant difference to the model. Adding either state to a model already containing the other two, or the two P_c^+ states to a model already containing the $Z_c(4200)^-$ contribution, yields significances below 1.7σ [0.4σ for adding the $Z_c(4200)^-$ after the two P_c^+ states]. If the $Z_c(4200)^-$ contribution is assumed to be negligible, adding the two P_c^+ states to a model without exotics yields a significance of 3.3σ. On the other hand, under the assumption that no P_c^+ states are produced, adding the $Z_c(4200)^-$ to a model without exotics yields a significance of 3.2σ. The significances are determined using Wilks’ theorem [24], the applicability of which has been verified by simulation.

A satisfactory description of the data is already reached with the RM N^* model if either the two P_c^+, or the Z_c^-, or all three states, are included in the fit. The projections of the full amplitude fit onto the invariant masses and the decay angles reasonably well reproduce the data, as shown in Figs. 2–5. The EM N^*-only model does not give good descriptions of the peaking structure in $m_{J/\psi p}$ observed for $m_{p\pi} > 1.8$ GeV [Fig. 3(b)]. In fact, all contributions to $\Delta(-2\ln \mathcal{L})$ favoring the exotic components belong to this $m_{p\pi}$ region. The models with the P_c^+ states describe the $m_{J/\psi p}$ peaking structure better than with the $Z_c(4200)^-$ alone (see Supplemental Material [25]).

The model with all three exotic resonances is used when determining the fit fractions. The sources of systematic uncertainty are listed in Table II. They include varying the masses and widths of N^* resonances, varying the masses and widths of the exotic states, considering N^* model
dependence and other possible spin parities J^P for the two P_\pm states, varying the Blatt-Weisskopf radius $[5]$ between 1.5 and 4.5 GeV$^{-1}$, changing the angular momenta L in Λ_b^0 decays that are used in the resonant mass description by one or two units, using the K-matrix model for the S-wave $p\pi$ resonances, varying the fixed couplings of the P_\pm decay by their uncertainties, and splitting Λ_b^0 and J/ψ helicity angles into bins when determining the weights for the background subtraction to account for correlations between the invariant mass of $J/\psi p\pi^-$ and these angles. A putative $Z_c(4430)^-$ contribution $[16,26,27]$ hardly improves the value of $-2\ln L$ relative to the EM N^{*+}-only model, and thus is considered among systematic uncertainties. Exclusion of the $Z_c(4200)^-$ state from the fit model is also considered to determine the systematic uncertainties for the two P_\pm states.

The EM model is used to assess the uncertainty due to the N^{*} modeling when computing significances. The RM model gives larger significances. All sources of systematic uncertainties, including the ambiguities in the quantum number assignments to the two P_\pm states, are accounted for in the calculation of the significance of various contributions, by using the smallest $\Delta(-2\ln L)$ among the fits representing different systematic variations.

The fit fractions for the $P_\pm(4380)^{+}$, $P_\pm(4450)^{+}$ and $Z_c(4200)^-$ states are measured to be $(5.1 \pm 1.5^{+2.6}_{-1.6})\%$.

![FIG. 4](image)

FIG. 4. Background-subtracted data and fit projections onto $m_{J/\psi}$ for (a) all events and (b) the $m_{P_{\pm}} > 1.8$ GeV region. See the legend and caption of Fig. 2 for a description of the components.

![FIG. 5](image)

FIG. 5. Background-subtracted data and fit projections of decay angles describing the N^{*} decay chain, which are included in the amplitude fit. The helicity angle of particle P, θ_P, is the polar angle in the rest frame of P between a decay product of P and the boost direction from the particle decaying to P. The azimuthal angle between decay planes of Λ_b^0 and N^{*} (of J/ψ) is denoted as ϕ_x (ϕ_P). See Ref. $[5]$ for more details.

<table>
<thead>
<tr>
<th>Source</th>
<th>$P_\pm(4450)^{+}$</th>
<th>$P_\pm(4380)^{+}$</th>
<th>$Z_c(4200)^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^{*} masses and widths</td>
<td>±0.05</td>
<td>±0.23</td>
<td>±0.31</td>
</tr>
<tr>
<td>P^{+}, Z_c^- masses and widths</td>
<td>±0.32</td>
<td>±1.27</td>
<td>±1.56</td>
</tr>
<tr>
<td>Additional N^{*}</td>
<td>$+0.08$</td>
<td>$+0.59$</td>
<td>$+0.71$</td>
</tr>
<tr>
<td>Inclusion of $Z_c(4430)^-$</td>
<td>-0.23</td>
<td>-0.55</td>
<td>-0.92</td>
</tr>
<tr>
<td>Exclusion of $Z_c(4200)^-$</td>
<td>$+0.01$</td>
<td>$+0.97$</td>
<td>$+2.87$</td>
</tr>
<tr>
<td>Other J^P</td>
<td>-0.15</td>
<td>$+1.61$</td>
<td>\cdots</td>
</tr>
<tr>
<td>Blatt-Weisskopf radius</td>
<td>$+0.38$</td>
<td>$+0.92$</td>
<td>$+0.00$</td>
</tr>
<tr>
<td>$L_{\Lambda_b^0}^{N^{*}}$</td>
<td>$+0.06$</td>
<td>$+0.46$</td>
<td>$+0.04$</td>
</tr>
<tr>
<td>$L_{\Lambda_b^0}^{P^{+}\pi^-}$</td>
<td>-0.05</td>
<td>-0.17</td>
<td>$+0.09$</td>
</tr>
<tr>
<td>$L_{\Lambda_b^0}^{K}$</td>
<td>$+0.07$</td>
<td>$+0.22$</td>
<td>$+0.53$</td>
</tr>
<tr>
<td>K-matrix model</td>
<td>-0.03</td>
<td>$+0.11$</td>
<td>-0.02</td>
</tr>
<tr>
<td>P^{+} couplings</td>
<td>$+0.14$</td>
<td>$+0.31$</td>
<td>$+0.36$</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>-0.07</td>
<td>-0.13</td>
<td>-0.39</td>
</tr>
<tr>
<td>Total</td>
<td>$+0.55$</td>
<td>$+2.61$</td>
<td>$+3.43$</td>
</tr>
</tbody>
</table>

Λ_b^0 and J/ψ coupling is denoted as ϕ_x (ϕ_P). See Ref. $[5]$ for more details.
(1.6^{+0.8}_{-0.6}^{+0.6})\%, and (7.7 \pm 2.8^{+3.4}_{-4.0})\% respectively, and to be less than 8.9\%, 2.9\%, and 13.3\% at 90\% confidence level, respectively. When the two \(P_c^+\) states are not considered, the fraction for the \(Z_c(4200)^-\) state is surprisingly large, (17.2 \pm 3.5)\%, where the uncertainty is statistical only, given that its fit fraction was measured to be only (1.9^{+0.7}_{-0.5}^{+0.4})\% in \(B^0 \to J/\psi K^+\pi^-\) decays [16]. Conversely, the fit fractions of the two \(P_c^+\) states remain stable regardless of the inclusion of the \(Z_c(4200)^-\) state. We measure the relative branching fraction \(R_{Zc} = B(\Lambda_b^0 \to \pi^- P_c^+) / B(\Lambda_b^0 \to K^- P_c^-)\) to be 0.050 \pm 0.016 \pm 0.026 \pm 0.025 for \(P_c(4380)^+\) and 0.033 \pm 0.014 \pm 0.001 \pm 0.009 for \(P_c(4450)^+\), respectively, where the first error is statistical, the second is systematic, and the third is due to the systematic uncertainty on the fit fractions of the \(P_c^+\) states in \(J/\psi pK^-\) decays. The results are consistent with a prediction of (0.07–0.08) [28], where the assumption is made that an additional diagram with internal \(W\) emission, which can only contribute to the Cabibbo-suppressed mode, is negligible. Our measurement rules out the proposal that the \(P_c^+\) state in the \(\Lambda_b^0 \to J/\psi pK^-\) decay is produced mainly by the charmless \(\Lambda_b^0\) decay via the \(b \to u\bar{u}s\) transition, since this predicts a very large value for \(R_{Zc} = 0.58 \pm 0.05\) [29].

In conclusion, we have performed a full amplitude fit to \(\Lambda_b^0 \to J/\psi p\pi^-\) decays allowing for previously observed conventional \((p\pi^-)\) and exotic \((J/\psi p\) and \(J/\psi \pi\)) resonances. A significantly better description of the data is achieved by either including the two \(P_c^+\) states observed in \(\Lambda_b^0 \to J/\psi pK^-\) decays [5], or the \(Z_c(4200)^-\) state reported by the Belle Collaboration in \(B^0 \to J/\psi \pi^- K^-\) decays [16]. If both types of exotic resonances are included, the total significance for them is 3.1\sigma. Individual exotic hadron components, or the two \(P_c^+\) states taken together, are not significant as long as the other(s) is (are) present. Within the statistical and systematic errors, the data are consistent with the \(P_c(4380)^+\) and \(P_c(4450)^+\) production rates expected from their previous observation and Cabibbo suppression. Assuming that the \(Z_c(4200)^-\) contribution is negligible, there is a 3.3\sigma significance for the two \(P_c^+\) states taken together.

We thank the Bonn-Gatchina group who provided us with the \(K\)-matrix \(p\pi\) model. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the following national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); FOM and NWO (Netherlands); MNIŚW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland), and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS, and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal, and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851, and the Leverhulme Trust (United Kingdom).

Deutsches Elektronen-Synchrotron

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
Yandex School of Data Analysis, Moscow, Russia
Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
Institute for High Energy Physics (IHEP), Protvino, Russia
ICCCUB, Universitat de Barcelona, Barcelona, Spain
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Cincinnati, Cincinnati, Ohio, USA
University of Maryland, College Park, Maryland, USA
Syracuse University, Syracuse, New York, USA
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil (associated with Institution Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
University of Chinese Academy of Sciences, Beijing, China (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia (associated with Institution LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France)
Institut für Physik, Universität Rostock, Rostock, Germany (associated with Institution Physikalisches Institut, Rappecht-Karls-Universität Heidelberg, Heidelberg, Germany)
National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain (associated with Institution ICCUB, Universitat de Barcelona, Barcelona, Spain)
Van Swinderen Institute, University of Groningen, Groningen, Netherlands (associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

Also at Università di Ferrara, Ferrara, Italy.
bAlso at Università di Milano Bicocca, Milano, Italy.
cAlso at Università di Modena e Reggio Emilia, Modena, Italy.
dAlso at Novosibirsk State University, Novosibirsk, Russia.
eAlso at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
fAlso at Università di Bologna, Bologna, Italy.
gAlso at Università di Roma Tor Vergata, Roma, Italy.
hAlso at Università di Genova, Genova, Italy.
iAlso at Scuola Normale Superiore, Pisa, Italy.
jAlso at Università di Cagliari, Cagliari, Italy.
kAlso at Laboratoire Leprince-Ringuet, Palaiseau, France.
lAlso at Università degli Studi di Milano, Milano, Italy.
Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at Università di Padova, Padova, Italy.

Also at Iligan Institute of Technology (IIT), Iligan, Philippines.

Also at Hanoi University of Science, Hanoi, Viet Nam.

Also at Università di Bari, Bari, Italy

Also at Università di Roma La Sapienza, Roma, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.