The Iron Age iron slags of Maastricht – Randwyck: processing or production?

Stijn Arnoldussen

Keywords: Iron production, smithing, Early/Middle Iron Age, slag, metalworking

Introduction: smelting versus smithing: the Netherlands’ earliest Iron working?

From the 8th century BC onwards, evidence for the presence of iron artefacts in the Netherlands is solid. In object classes such as weaponry, tools, ornaments and unidentifiable objects in funerary contexts (Table 1), iron from HaC onwards swiftly complements (and later replaces; cf. Lanting & Van der Plicht 2003, 174) bronze.

However, the increasingly abundant presence of iron artefacts in Early Iron Age urnfield contexts, is not matched by a similarly exhaustive dataset on (local) iron production. Rather, I have argued elsewhere (Arnoldussen & Brusgaard 2015, 117), that evidence for Iron Age primary iron production (i.e. smelting) in the Netherlands is as yet absent (cf. Brusgaard et al. 2015, 359). Smithing, in contrast, appears to be well documented from the Middle Iron Age (c. 600-250 cal. BC) onwards: particularly associated finds of tuyere or crucible fragments with slag fragments hint at local ironworking (e.g. at Velsen-Santpoort, Oss-Ussen and Oss-Schalkskamp; Van Heeringen 1992, 73(157); 75 (159); Schinkel 1998, 91-93; fig. 126; Brusgaard et al. 2015, 357).

Most of the local ironworking evidence, however, seems to pertain to the Middle and Late Iron Age periods (Arnoldussen & Brusgaard 2015, 117 table. 1, cf. Joosten 2004, 22-25) and it is generally assumed that prior to the Roman Period, no local smelting occurred (e.g. De Rijk 2003, 88; Joosten 2004, 30; Van den Broeke 2005, 688; Brusgaard et al. 2015, 359). If one wants to investigate

<table>
<thead>
<tr>
<th>Category</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gundlingen swords</td>
<td>Fontijn & Fokkens 2007, 369</td>
</tr>
<tr>
<td>socketed axes</td>
<td>Fontijn 2003, 164-165</td>
</tr>
<tr>
<td>rings</td>
<td>Desittere 1968, 122; Kortlang 1999, 154; Tol 2000, 110</td>
</tr>
<tr>
<td>pins</td>
<td>Fontijn 1995; 2003, App. 7.3; Roymans 1999, 80; Van Wijk et al. 2009, 95-96</td>
</tr>
<tr>
<td>unidentifiable gifts</td>
<td>Tol 1999, 100; Roymans 1999, Fontijn, Jansen & Van der Vaart 2013, 149-150; Van Wijk et al. 2009, 96</td>
</tr>
</tbody>
</table>

Table 1 Examples of Early Iron Age iron artefacts in the Netherlands.
the transition in ironworking technologies from (A) reworking imported iron billets or bars \((e.g.\) Verhart 2006, 103, Van As 2013, 26, \(cf.\) De Rijk 2003; 82-83; 2007, 164, \(cf.\) Brusgaard \textit{et al.} 2015, 359) to (B) local iron production (smelting), the ironworking evidence for the Early Iron Age (\(c.\) 800-600 cal BC) becomes of particular significance. For Oss-Ussen, six pits dated to the Early Iron Age have yielded slag fragments \(\text{(Schinkel 1998, 55-56)},\) that are unfortunately not yet studied in detail. For Maastricht – Randwijck, Dijkman (1989, 38) identified a series of slag fragments from an Early to Middle Iron Age ‘horseshoe-shaped feature’ as smelting debris. If this is correct, it would represent one of the earliest indications of local iron production \(\text{(Brusgaard \textit{et al.} 2015, 359, \(cf.\) Van den Broeke 1980, 108; 2012, 287)}.\) To investigate this claim, a set of slag fragments from the Maastricht – Randwyck feature has been restudied by the author in 2016.

\textbf{Context: the Maastricht – Randwyck excavations}

The site of Maastricht – Randwyck was excavated between May and September 1984, after local archaeologist B. Knippels discovered pottery sherds on the construction site of the westward expansion of the Maastricht hospital \(\text{(Dijkman 1989, 9)}.\) Subsequent excavation of 1952 m\(^2\) \(\text{(under the label MAZI.B)}\) uncovered six larger pits \(\text{(Fig. 1)},\) yet no smaller features such as postholes \(\text{– indicating that the later prehistoric surface level had been already disturbed considerably \(\text{(ibid).}\)}\) The excavations were published in 1989 by Dijkman, but for the present study the original documentation was consulted. The high quality of the excavation reports \(\text{of that time (in terms of detail and interpretation), as well as the overall exemplary documentation of the project merit a special mentioning here.}\)

\textbf{Figure 1. Extent and location of the 1984 MAZI.B (Maastricht Ziekenhuis) excavations in purple outline. The location of Iron Age pits 1 to 6 (brown polygons, black outlines) are indicated as well (after: Dijkman 1989, 11 fig. 3).}
A larger feature labelled ‘Pit-cluster 2’ represents the largest feature uncovered, although its central part was cut by a recent tap water trajectory (Dijkman 1989, 9). The features measured 5.6 by 3.6 m in plan and reached between 90 cm (eastern part) to 125 cm (western part) below the 1984 surface level (loc. cit.). The lithology of the pit fills is not described, but may be suspected to be silty sand (as the daily reports speak of a ‘zandige leem’ matrix). The recent water pipe trench obscures the part of the section that could have shown whether the western and eastern zones were once connected or – more likely considering the steep western profile in section C-C’ (Fig. 2) – once did cross-cut each other.

In the various sections cut across the pit cluster (fig. 2, A-A’, B-B’, C-C’) the distinguished fills are characterised by differences in quantities of burned clay, charcoal and sherds (Dijkman 1989, 38). At the time of excavation, interpretation shifted between an in situ oven, an in situ smelting furnace and a pit cluster in which refuse from a nearby oven was dumped (daily reports). Due to the (A) absence of burned clay that showed the differential firing temperatures typical of ovens, and (B) irregularity in plan of pit-cluster 2, the latter interpretation was ultimately favoured (daily report 2nd of August 1984; Dijkman 1989, 9).

The various layers of pit cluster 2 contained 1871 pottery fragments, ample (unspecified) quantities of burned clay, three spindle whorl fragments, seven flint artefacts (Dijkman 1989, 72 pl. 26), a copper strip (ring? fibula bow?; fig. 4, nos. 7-8; Dijkman 1989, 73 pl. 27 no. 4), various stones and 146 fragments of burned bone (Dijkman 1989, 12) and ‘tens of’ slag fragments (Dijkman 1989, 12). The original distribution of the slag fragments is difficult to reconstruct. The daily

![Figure 2. Plan view (top-left) and cross-sections (right, all to the same scale) of pit cluster 2. In the lower left corner a fieldwork photograph of section A-A’ is shown (after: Dijkman 1989, 13 fig. 4; 15 fig. 5 and Maastricht repository (photo).]
reports state that several slag fragments were recovered from the water pipe trench backfill (finds nr. 2-1-2) as well as in the undisturbed fill to the east of it (‘some slags’: finds nr. 2-1-1). The report of August the 16th states that the fill of 2-1-1 (section A-A’) consisted of five layers, of which the lowermost (‘e’) contained most pottery and ‘the slags’.

Dating: the associated finds

In 1984, P. van den Broeke classified the ceramic assemblage as dating to the start of the Middle Iron Age (c. 450-350 cal BC) and noted Marne-style pottery amongst the assemblage (Van den Broeke 1984, 1). The ample quartz-tempered sherds also recovered could, again according to Van den Broeke (*ibid.*), hint at an earlier Iron Age date. In the final report, the ceramic assemblage is assigned a slightly more constricted date-range: 450-400 cal. BC (*La Tène Ancienne* Ib; Dijkman 1989, 26; 36, cf. Lanting & Van der Plicht 2006, 271). If in a general sense the attribution to *La Tène* A is correct, the finds from pit cluster 2 presumably post-date 475 cal. BC and predate 370 cal. BC (Lanting & Van der Plicht 2006, 271; Van den Broeke 2012, 33, cf. Dijkman 1989, 40). The bronze fragment (ring or bow-fibula; fig. 4, nos. 7-8; Dijkman 1989, 73 pl. 27 no. 4) from pit-cluster 2 shows similarities to a bow fibula from Maastricht – Caberg, dated also to *La Tène Ancienne* I (Dijkman 1989, 39).

Composition

Already during fieldwork, the presence of metallic iron in one of the slag fragments was attested by filing into a slag fragment and verifying that the filings stuck to a magnet, and also by noting the interference of a slag fragment on a magnetic compass (daily report 13th of July 1984). During a visit of H. Kars, preliminary visual identifications of chalcopyrite (CuFeS₂), brochantite (Cu(SO₄)(OH)₆) or bornite (Cu₅FeS₄) were given (daily report 2nd of August 1984). After fieldwork, an unspecified slag fragment was analysed with X-ray fluorescence (XRF) by J.P. de Warrimont at the Dutch State Mines (DSM) and reported to contain primarily iron, with additional occurrence of aluminium and silicon, and traces of manganese, zinc and copper (Fig. 4; Dijkman 1989, 20-21 note 4).

Moreover, four ‘half-fist-sized’ slag fragments were sent to A. Hauptmann of the Zollern institute in Dortmund (Dijkman 1989, 20; Hauptmann 1989; these are presently not in the Maastricht repository, presumably lost). For two fragments thin-sections were created to study the mineralogical composition, two other fragments were crushed into a powder and analysed with X-ray fluorescence (XRF; Hauptmann 1989, 78-80). Mineralogically, the studied fragments contained mostly fayalite (Fe₂SiO₄), with an addition of Wüstite (FeO) and minor occurrences of magnetite (Fe₃O₄) and goethite (α-FeO(OH); Hauptmann 1989, 78). The XRF analysis on the two fragments by Hauptmann indicated that the two slags studied contained 69.4-73.3 %wt of iron (oxides), 20.2-23.4 %wt of silicon oxide and 3.4 %wt aluminium oxide (see Hauptmann 1989, 80 table 1; Table 3). Hauptmann argued that the slags represented an initial (smelting) stage of bog iron ores (Dijkman 1989, 39).
pXRF analysis

A total of eight artefacts from the Maastricht-Randwijck feature were subjected in 2015 to pXRF analysis (Table 2; fig. 4). This was possible due to the kind cooperation of B. van Os, under whose supervision pXRF measurements could be taken at the Cultural Heritage Agency of the Netherlands at Amersfoort. Amongst these eight items are three slag fragments (items 1-3), three fragments of vitreous clay (items 4-6), and two fragments of a bronze item of hemi-circular cross-section (possibly fibula bow or ring fragments; items 7 and 8). Previous analysis of iron slag fragments from Hijken had already shown that the elemental composition
of outer surface and inner core of plano-convex bottom slag varies considerably (Arnoldussen & Brusgaard 2015, 119). Therefore, for the eight items, a total of eleven measurements was undertaken: slag fragments 1 and 2 were both cut open and measured twice and thrice respectively (Table 2). For items 1 and 8 a reading was taken on a surface area that was lightly cleaned with sanding paper, to reduce the influence of outside corrosion.

The instrument used was a Thermo Scientific NitonXL3t with the measurement of up to 25 simultaneous elements spanning the analytical range between atomic number 16 (sulphur) and 92 (uranium), but that is also capable of detecting light

Table 2 Treatment of samples and locations of pXRF readings.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Item</th>
<th>Description</th>
<th>Treatment</th>
<th>Location</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4842</td>
<td>1</td>
<td>Slag</td>
<td>sawed in half, lightly sanded</td>
<td>inside</td>
<td></td>
</tr>
<tr>
<td>4843</td>
<td>1</td>
<td>Slag</td>
<td>sawed in half</td>
<td>outside</td>
<td></td>
</tr>
<tr>
<td>4844</td>
<td>2</td>
<td>Slag</td>
<td>sawed in half</td>
<td>inside</td>
<td>Charcoal-like textures on outside surface</td>
</tr>
<tr>
<td>4845</td>
<td>2</td>
<td>Slag</td>
<td>sawed in half</td>
<td>inside</td>
<td>other half; Charcoal-like textures on outside surface</td>
</tr>
<tr>
<td>4846</td>
<td>2</td>
<td>Slag</td>
<td>sawed in half</td>
<td>inside</td>
<td>Charcoal-like textures on outside surface</td>
</tr>
<tr>
<td>4847</td>
<td>3</td>
<td>Slag</td>
<td>unpolished</td>
<td>outside</td>
<td></td>
</tr>
<tr>
<td>4848</td>
<td>4</td>
<td>Vitrified</td>
<td>sawed in half</td>
<td>inside</td>
<td>Glassy vitreous material, light weight</td>
</tr>
<tr>
<td>4849</td>
<td>5</td>
<td>Vitrified</td>
<td>sawed in half</td>
<td>inside</td>
<td>Glassy vitreous material, light weight</td>
</tr>
<tr>
<td>4850</td>
<td>6</td>
<td>Vitrified</td>
<td>none</td>
<td>outside</td>
<td>Porous material, lightweight</td>
</tr>
<tr>
<td>4851</td>
<td>7</td>
<td>Fibula/Ring</td>
<td>none</td>
<td>outside</td>
<td>Ring or fibula fragment</td>
</tr>
<tr>
<td>4852</td>
<td>8</td>
<td>Fibula/Ring</td>
<td>lightly sanded</td>
<td>outside</td>
<td>Ring or fibula fragment</td>
</tr>
</tbody>
</table>

Figure 4. A selection of slag fragments (nos. 1-3; nos. 4-6 proved vitreous clay fragments rather than slags proper; infra) and two fragments of a bronze ring (nos. 7-8; or fibula-bow?), all to the same scale.
Results and interpretation

There is a significant difference in iron content for the objects classified as ‘slags’ from context 2-1-1 (objects 1-3) versus the items listed as ‘slags’ from context 3-1-0 (items 4-6). Whereas iron oxides make up 63-72% in weight of the former, the latter range between 4 and 6.5 %wt in iron oxides. The latter group of low-iron slags are also consistently higher in silicium, aluminium and titanium, which suggests that they represent vitrified clay (Dutch: verglaasde leem) rather than slags proper. Such fragments could originate from ovens, hearths and smithies, particularly in locations close to the tuyere where temperatures rise quickly (cf. Teylecote 1987, 292; De Rijk 2007, 119) or on crucibles (Teylecote 1987, 321-322). Two Early Iron Age crucible slags from Meare and Craighywarren (UK) show similarly high values for aluminium- and silicon oxides (Table 3; Teylecote 1987, 322-323 Tab. 8.13). Such values serve as comparanda in a general sense (vitrified clay in smithing contexts) rather than as exact parallels to Maastricht items 4-6 (for which morphological arguments as well as compositional arguments (e.g. addition of copper and lead from repeated general purpose use) for a use as crucible are lacking). Rather, Maastricht items 4-6 represent parts of an oven, furnace or hearth lining originating from an ironworking smithy.

The elevated values for all oxides – save for iron oxides – for the outside of slag 1 versus its inside, indicates that the silty loam (either as part of the original natural substrate, later fills or as part of the original oven or hearth lining) has been encrusted into the outer corrosion layer of the slag. Removal of the outer oxidation layer of the fibula or ring fragments (measurement 4851 vs. 4852) similarly explain the differences in composition: the highest copper content was measured for the cleaned surface.

Maastricht fragments 1 to 3 contain a high percentage of total iron (64-72 %wt). As experimental smelting has indicated a reduction factor of c. 0.2 for iron oxides between ore and smelting slag (Heimann et al. 1998, 1032 tab 5 vs. 1033 tab. 8, cf. Joosten 2004, 42 tab. 4), Maastricht fragments 1 to 3 could have originally contained between 82 to 92 %wt of iron oxides, which is above the 80% (%wt Fe₂O₃ - 56 %wt Fe³⁺) deemed necessary for bloomery process in prehistory (Heimann et al. 1998, 1026). If one therefore accepts that fragments 1-3 are indeed slags in strictest sense, a comparison to recently similarly analysed Iron Age ironworking slags is beneficial. To this end, two slag fragments from postholes of a well-dated Iron Age house at Hijken – Hijkerveld (c. 360-109 cal. BC; Arnoldussen & Brusgaard 2015, 119) and eight slags from Oss – Schalkskamp (c. 200-100 cal. BC; Brusgaard et al. 2015, 348) have been added to Table 3.

With regards to iron content, the Maastricht slags (63-72%) compare well to the slag inside measurements for Hijken (61-80%) and Oss (52-81%; Table 3). The presence of silicon oxides (25-31% for the Maastricht slags, 16-26% for the Oss slags and 14-24% for the Hijken slags; Table 3) in the slags’ inner cores is, in combination with iron oxides, held typical for both smelting and smithing
![Table 3: Analysis results for the composition of the Maastricht – Randwyck slags (after: Hauptmann 1989, 80 tab. 1) and several national (Hijken, Oss) and international comparanda.](image)

slags (Tylecote 1987, 312; Serneels & Perret 2003; Selskienė 2007, 23; Brusgaard et al. 2015, 355). In some occasions, the fact that smithing slags were formed in multi-purpose hoards, means that they picked-up quantities of non-ferrous metals (particularly copper, lead and tin) not typical for primary smelting slags (Tylecote 1987, 316; Arnoldussen & De Vries 2014, 119-120). Tin and copper do...
not surpass 0.4 %wt on the inside readings of Maastricht slags 1 to 3 (Table 3), indicating that they originated from a pyrotechnical process that focussed on iron exclusively (unlike Hijken slag v57, with 0.47 %wt copper, and the Meare crucible slag; Table 3). In comparison to the Hijken and Oss slags, the Maastricht slags are consistently high in zinc (0.2-0.24%wt versus < 0.01 %wt) and manganese oxide (1.3-1.55 %wt versus < 0.18%wt).
Zinc is an uncommon element of ironworking slags, yet in sparse quantities (<0.02 %wt) it has been documented in smithing slags from Oss and Hijken (Table 3) as well as in modern limonite ores (Heimann et al. 1998, 1023 tab. 1; Joosten 2004, 56 tab. 13) and rattlestone ores (Dutch: klappersteen; Joosten 2004, 79 tab. 20; 106 tab. 33). For the Maastricht fragments, the more substantial presence of zinc (0.2-0.24%wt) in items 1 to 3 and its absence (below detection limit) in items 4-6 again confirms their different nature (i.e. ironworking slags versus vitrified clay) of items 1-3 versus 4-6. Possibly, increased levels of aluminium, nickel and zinc hint at incorporation of clayey elements (cf. Heimann et al. 1998, 1022-1023) through either the ore (weathering/transport of clayey natural embedding of bog ore), or through the smelting or smithing process (incorporation of oven, hearth, flux, or crucible material), but for Maastricht items 1 to 3 moderate values for clay proxies such as aluminium, calcium and titanium (Table 3) argue against such an interpretation. Most probably, the zinc observed in Maastricht items 1 to 3 is related to contact with wood ash, which can be rich in zinc (e.g. up to 260 mg/kg; Joosten 2004, 43-44).

Manganese can be a part of Limonitic bog iron ores, that may contain several percent manganese Mn (in rare cases up to 20%; e.g. Heimann et al. 1998, 1022 fig. 4). Generally, the amount of manganese is reduced in the smithing stage compared to the smelting stage, but occurrences of manganese oxide in the range of 0.2 to 2.6 %wt in smithing slags have been reported (Selskiené 2007, 24; Heimann et al. 1998, 1027). Smelting experiments suggest an increase in manganese oxide concentration of factor 5 between ore and smelting slag (Heimann et al. 1998, 1032 tab 5 vs. 1033 tab. 8, cf. Coustures et al. 2003, 603 tab. 1), and a reduction of factor 0.3 from smelting to smithing slag (Selskiené 2007, 24). The manganese content of the Maastricht slags could therefore imply ores with an original manganese oxide content of 0.3 %wt (if the Maastricht slags are smelting slags) or 0.43 %wt (if the Maastricht slags are smithing slags), which aligns with documented values of up to 5.8 %wt manganese oxide in Dutch bog iron ores (Reinders 1896, 10; Tilley 1936, 341; Joosten 2004, 42 tab. 4; 56 tab. 13) and rattlestone ores (Joosten 2004, 79 tab. 20; 106 tab. 33).

The presence of (otherwise soluble) chlorine in Maastricht items 1-3 is most likely related to the formation of akaganeite ($\text{Fe}^{3+}\text{Ni}^{2+}_8\text{(OH,O)}_{16}\text{Cl}_{1.25} \cdot n\text{H}_2\text{O}$) in the ironworking slags. Akaganeite is an iron/nickel hydroxide-chloride mineral formed by the weathering of pyrrhotite (iron sulphide oxide) in the slags. Chlorine therefore is found with all ironworking slag with Fe %wt above 50% (at Maastricht, Hijken and Oss; Table 3). Measurement 4822 (the outside of Hijken slag v.57) moreover shows the strong correlation between (in this case, reduced) iron content and chlorine presence.

Conclusions: smelting or smithing slags?

As a first conclusion, pXRF analysis has clearly shown that Maastricht items 1 to 3 and 4 to 6 respectively have markedly different compositions. Fragments 1 to 3 have a composition that is typical for ironworking slags, although their exact interpretation (smelting or smithing slag) merits additional discussion below.
Fragments 4 to 6 have a low iron content, higher aluminium and potassium, and no discernible zinc and chlorine, which suggest that they are vitrified clay elements rather than ironworking slags proper. This being said, it is evident that during ironworking there are ample opportunities for such vitrification of clay (e.g. clay linings of ovens, hearths, tuyeres, or crucibles) to occur. It is consequently not possible to confirm or refute a relation to ironworking for fragments 4-6. Fragments 7-8 are part of a, possibly Late Iron Age, bronze (high copper, high tin) artefact incorporated into the pit cluster's fill. Based on their high iron and silicon oxide content and porous nature, Maastricht items 1-3 do appear to be ironworking slags in the strictest sense.

Due to innate heterogeneity (cf. Joosten 2004, 17), telling smelting slags apart from smithing slags remains difficult (Tylecote 1987, 318; Joosten 2004, 18; Selskienė 2007, 24). In distinguishing smelting from smithing slags, their morphological characteristics can hold vital clues (Tylecote 1987, 310-311; De Rijk 2003, 26-30; Joosten 2004, 16-17; Selskienė 2007, 22). Unfortunately, none of the preserved slag fragments of Maastricht is large enough to have preserved such morphological clues (e.g. flow structures, imprints).

Heimann (et al. 1998, 1025) have argued that zinc, nickel and copper migrate to the iron sponge during smelting (as do cobalt and arsenic; Joosten 2004, 11; Navasaitis, Selskienė & Žaldarys 2010, 115), which accounts for discrepancies between high ore/smelting slag values and low smithing slag values. Relatively high values for zinc do apply to Maastricht slags 1 to 3, yet their levels of nickel and copper are matched by those of confirmed smithing slags from Oss and Hijiken (Table 3).

Dutch bog iron ores may contain up to 8.8 %wt of phosphorus pentoxide (P$_2$O$_5$; Joosten 2004, 42 tab. 4; 43; 56 tab. 13; 117). Moreover, in the process of smelting a significant uptake of phosphorus occurs (derived mainly from the charcoal, that can range from 4.2-16.7 %wt P$_2$O$_5$; Navasaitis, Selskienė & Žaldarys 2010, 113; Tylecote 1962, 348; Buchwald & Wivel 1998, 82, but see Joosten 2004, 43 tab. 5 for much lower values), amounting to values above 2% P$_2$O$_5$ (Tylecote 1987, 310-312; Joosten 2004, 57 tab. 14; Selskienė 2007, 24) and up to 5 %wt P$_2$O$_5$; Navasaitis, Selskienė & Žaldarys 2010, 115 tab. 1) in smelting slags. None of the Maastricht items contain values above 0.75 %wt of P$_2$O$_5$ on the slag's insides, which suggest an interpretation as smithing, rather than smelting slags (cf. De Rijk 2003, 32). On the outside of Maastricht slag item 2, a wood-structure has been preserved through limonisation – suggesting contact with wood or charcoal – but such impressions are unfortunately not specific for smelting or smithing slags (De Rijk 2003, 28-29).

With respect to their manganese content, De Rijk (2003, 32) argues that in smithing slags, values of manganese oxide above 0.5 %wt are unknown (following Fröhlich et al. 1987, 60; McDonnell 1988, 288). For the Maastricht items 1 to 3, I have however argued that the observed values align well with manganese oxide values established for known Dutch bog and rattlestone iron ores.

In conclusion, there is insufficient evidence to suggest Early Iron Age smelting of iron at Maastricht – Randwyck. First, with regard to the dating of the context from which the ironworking debris was recovered, a dating in the later part of the
5th and start of the 4th century BC seems most likely (i.e. post-dating the Early Iron Age of 800-600 cal. BC). Second, whereas the recovered remains unambiguously indicate ironworking, smelting could not be proven, nor is there evidence that the pit cluster 2 accurately relates to the location of such an ironworking workshop or smithy. Rather, in pit cluster 2 an assemblage was recovered that fits best our present knowledge of smithing processes, but pit-cluster 2 may in itself have served altogether primary functions (of which a possible kiln location merits more study). From pit-cluster 2, an assemblage was recovered that could very well represent what remained of a cleaned, cleared or dismantled ironworking workshop (i.e. charcoal, burned clay, smithing slags) was deposited. There are, however, insufficient clues to suggest that the pit-cluster itself was the locus of such activities. Ideally, the pit’s lowermost (primary) fill would have been investigated for the presence of hammerscale fragments to pin-point metalworking to that particular feature (as hammerscale is generally too small to recover and gets trodden into smithy workshop floors). The Maastricht metalworking debris may therefore also have been cleared from elsewhere and deposited in the in-fill of pit-cluster 2 (cf. Brusgaard et al. 2015). Thus, whereas smelting (i.e. primary processing of ores) could not be proven, metalworking (smithing) is well documented – albeit that its exact location remains unknown. Nevertheless, in the 5th century BC, certain Maastricht individuals had acquired both base materials (bloom and/or billets) and knowledge to craft iron object. In hindsight, retention of the largest slag fragments (now missing) and scrutiny for hammerscale in the pit’s sediments, could have enriched our view of the types and variability of tasks undertaken in the smithy from which debris ended-up in Maastricht pit cluster 2. While it turned out that Maastricht – Randwyck (MAZI.B) is not ‘the smoking gun’ for the Dutch earliest iron production, it still represents an important stepping stone into our narratives of metalworking craft in the Netherlands.

References

Deze bundel vormt de neerslag van de 4e Nederlandse metaaltijendag gehouden op 7 oktober 2016. Op die dag werden lezingen over diverse onderwerpen aangaande de brons- en ijzertijdgemeenschappen van de Lage landen gecombineerd met een groot aantal bijdragen over het centrale thema van dat jaar “Huis en huishouden: de mens achter de plattegrond”. Veel van de sprekers van die dag waren bereid hun boeiende verhalen op schrift te stellen, zodat in deze bundel diverse bijdragen over nederzettingen uit de metaaltijden zijn opgenomen.

U kunt ook lezen over ontdekkingen van bronstijdbijlen en een dolkkling van bronst die mogelijk depositielocaties in het landschap aanduiden, opgravingen van Belgische en Nederlandse ijzertijdnederzettingen, isotopen-analyses van ijzertijdindividuen en een rol van archeologie – maar ook dierlijke resten – als grafgift in de ijzertijd. Ook zijn er bijdragen over vondsten die wijzen op de kleinschalige productie van aardewerk en het bewerken van ijzer. Tezamen bieden deze bijdragen een kijkje in de keuken van het onderzoek naar huishoudens uit de brons- en ijzertijd.

De Metaaltijendag is een initiatief van de Stichting Metaaltijdenonderzoek Nederland (SMON), die zo een brede platform wil bieden aan ieder met belangstelling voor de laat-prehistorische samenlevingen. Om de verhalen zoveel mogelijk toegankelijk te maken, biedt de Stichting de gelegenheid de gehouden lezingen te publiceren in een bundel. In die zin vormt deze publicatie de verslaglegging van het jaarlijkse congres, maar ook andere bijdragen over de metaaltijden zijn welkom. Samengebracht in deze bundel raken de verhalen over, en interpretaties van, laat-prehistorische samenlevingen verbonden.