Visual adaptation and microhabitat choice in two closely related cichlid species from Lake Victoria
Mameri, Daniel; van Kammen, Corina; Groothuis, Ton; Seehausen, O; Maan, Martine

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Introduction

When different genotypes choose different habitats to better match their phenotypes, adaptive differentiation and reproductive isolation may be promoted. In cichlid fish, visual adaptation to alternative visual environments is hypothesised to contribute to speciation. Here, we investigated whether variation in visual sensitivity causes variation in visual habitat preference, in the context of the sensory drive hypothesis (Endler 1992, Boughman 2002). We use two closely related cichlid species that occur at different water depths in Lake Victoria, experiencing different light conditions and showing genetic differences in visual perception (Pundamilia pundamilia – inhabiting shallow waters; and Pundamilia nyererei – found in deeper waters, Seehausen et al 2008, Figure 1). We also explore potential effects of visual plasticity, taking advantage of captive fish artificially reared in two different light conditions, mimicking either shallow-water or deep-water light environments.

Material and methods

• 120 fish tested in groups of 4 (fixed group composition across trials)
• 2 species: P. pundamilia (P) and P. nyererei (N); and hybrids (H)
• P and N were tested 3 times, and hybrids twice
• fish reared in either ‘shallow’ or ‘deep’ light conditions
• Food odour cues spread prior to trials, in both sides of the tank
• Time spent on each side recorded in 1-hour trials (at group level)

Main results and discussion

NO DIFFERENCES BETWEEN SPECIES

There was no significant difference in light preference between species (P-N-H; T =1.21, d.f. = 76, P = 0.23; GLMM model with species, light environment and trial number as predictors) – Figure 3.

EFFECTS OF THE REARING LIGHT ENVIRONMENT

Fish spent more time in the light environment they were reared in (T=2.49, df= 76, p=0.015), particularly in the first trial - Figure 4. The interaction effect of rearing environment and trial number was marginally significant (T=-1.98, df=38, p=0.051).

• Contrary to predictions, P. pundamilia and P. nyererei did not differ in visual habitat preference
• The effect of rearing light environment that we observed is consistent with the result of Wright et al. (2017), who found that the same two light regimes affected female mate preference in Pundamilia
• While we provided food chemical cues to stimulate exploration, the testing paradigm did not provide an actual reward. This should be addressed in future experiments.

References