Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers
Yingying Cong1, Franziska Kriegenburg1, Cornelis A. M. de Haan2 & Fulvio Reggiori1

Coronaviruses (CoV) are enveloped positive-stranded RNA viruses and Coronaviridae can be subdivided into four groups based on phylogenetic clustering: alpha-, beta-, gamma- and delta-CoV1,2. Members of this virus family infect the mammalian respiratory and gastrointestinal tracts by incompletely understood mechanisms2,3. The relevance of this virus family has considerably increased due to the recent emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS), which are caused by viruses belonging to the beta-CoV group4,5. The Mouse Hepatitis Virus (MHV) is closely related to SARS-CoV and MERS-CoV, and considered the prototype for the investigation of the CoV life cycle6.

The proteins encoded by the CoV genomic RNA (gRNA) can be divided into two major categories. The first entails the 15 or 16 nonstructural proteins (nsp1 to nsp15/16)1,2,7, which are synthesized in the host cell and assemble into the replicase-transcriptase complexes (RTCs). RTCs are associated with and/or are embedded into double-membrane vesicles (DMVs) and convoluted membranes, which are generated during CoV infection and very likely act as replication platforms8. The second category contains the structural and accessory proteins. A minimal set of 4 structural proteins is critically required for the efficient formation of infectious virions1,2,7. Those include the envelope (E), the membrane (M), the spike (S) and the nucleocapsid (N) proteins.

The N protein is the only structural protein that associates with RTCs9–11. It binds the gRNA and it is essential for the incorporation of the virus genetic material into CoV particles12,13. Moreover, it is the major component of ribonucleoprotein complex sitting in the virion cores2,7,14 and thus also plays an essential architectural role in the virus particle structural organization through a network of interactions with the gRNA, the M protein and other N molecules7,8,15. The MHV N protein has been divided into multiple domains based on genetic analyses and structural studies16–20. The two largest domains, the N-terminal domain (NTD), also N1b, and the C-terminal domain (CTD), also N2b, fold independently and have gRNA-binding properties16–18,21 (Fig. 1a). These two regions are flanked by the N-terminal N1a domain, the centrally located N2a domain, and the C-terminal B spacer and N3 domain21 (Fig. 1a).

It has been hypothesized that dimerization and possibly oligomerization of CoV N proteins plays an essential role in virus particle assembly21–25. The ability of SARS-CoV N protein to self-interact was first demonstrated using yeast two-hybrid and co-immunoprecipitation experiments26. The crystal structures of the N2b/CTD domain of SARS-CoV and MHV N proteins confirmed this observation, leading to the notion that N
protein dimers are the basic building blocks of the ribonucleoprotein complex. Subsequently, native gel electrophoresis, size exclusion chromatography and surface plasmon resonance revealed that recombinant SARS-CoV N protein forms oligomers in vitro, although it appears to predominantly exist as a dimer in solution in absence of gRNA. Size exclusion chromatography and chemical cross-linking assays were also used to unveil that the N2b/CTD domain of the SARS-CoV N protein, in particular the stretch of amino acids between positions 343–402, forms autonomously oligomers in solution. The N2b/CTD domain of the MHV N protein has also been shown to bind full length protein while the serine-rich (SR) region located within the N2a could be essential for SAR-CoV N protein self-interaction and oligomerization. Nonetheless, the current most commonly accepted working model is that CoV N protein constitutively dimerizes, primarily via the N2b/CTD domain, and subsequently oligomerizes during virion assembly through a mechanism that remains unclear. It is also unclear whether gRNA binding influences CoV N protein oligomerization.

Figure 1. Recombinant MHV N protein forms large oligomers. (a) Schematic structural organization of the MHV N protein and overview of the truncations generated in this study (modified from ref. 9). (b) Bacterial extract from E. coli expressing 6xHis-tagged MHV N protein (input) was incubated with immobilized GST or GST-N protein. Precipitated proteins were eluted in SDS-sample buffer and analyzed by western blot using an anti-His monoclonal antibody. Only part of the western blot images is shown in the figure. The GST and GST-N amount were assessed by staining the PVDF membrane with Ponceau Red. (c) Bacterial extract from E. coli expressing 6xHis-tagged MHV N protein was sedimented in a 5–20% glycerol gradient at 50,000g for 75 min. Eleven fractions were collected and protein content analysed using antibodies against the 6xHis tag. Gradient and centrifugation conditions were assessed by sedimenting a LR7 cell extract and probing the collected fractions with a GAPDH antibody. Only part of the western blot images is shown in the figure. (d) Quantification of the immunoblots presented in panel (c) plus standard deviation (SD) (n = 3).
In this study, we confirm that recombinant MHV and SARS-CoV N protein self-interact to form large oligomers. However, we could also show that, besides N2b/CTD, several domains of the N protein are involved in this process. Analysis of different MHV and SARS-CoV N protein truncations revealed that at least three regions of these proteins cross-interact between each other in an inter-changeable manner. Moreover, we show that two of these regions, i.e. N1 and N2b-N3, can oligomerize autonomously. Further, in infected cells, the MHV N protein forms oligomers already in the cytoplasm and its oligomerization does not require binding to gRNA. Altogether these findings indicate that CoV N proteins self-interact and oligomerize via discontinuous regions present in domains distributed over the entire protein to generate large supra-complexes. We hypothesize that these oligomers, which are formed constitutively, provide a larger binding surface for the gRNA, which will be thus optimally engaged at the RTCs and subsequently incorporated into forming viral particles.

Results

MHV N protein forms large oligomers in vitro. To gain insights into the self-assembly mechanism of the N protein, we decided to use an in vitro approach to exclude the eventual involvement of other factors in this event. Since order-disorder and secondary structure predictions coupled with sequence alignment has highlighted that all CoV N proteins have the modular organization as MHV N protein, we used this as a model first. Hence, MHV N protein was expressed in E. coli as a GST fusion construct and purified using glutathione Sepharose (GSH-beads). The immobilized GST fusion protein or GST was incubated with bacterial cell extract of E. coli expressing recombinant 6xHis-tagged full length MHV N protein. As illustrated in Fig. 1b, recombinant 6xHis-tagged N protein specifically bound GST-N protein but not GST alone, which is in agreement with previous reports19, 23, 24, 27–29 and further shows that N proteins self-interact directly.

Since it has been shown that CoV N proteins also bind non-viral RNA19, 21, 37–40, we also investigated the association between purified GST-tagged and 6xHis-tagged N proteins after RNase A treatment to exclude a role of bacterial RNA in the assayed interaction. As shown in Supplementary Fig. S1a, RNase A treatment removed large part of the RNA present in the bacterial extract and nucleic acids were not detected associated to the purified N protein even when this was not exposed to RNase A. Importantly, removal of RNA did not affect the binding between the two N protein fusions (Supplementary Fig. S1b). We concluded that the bacterial RNA does not participate in the in vitro interaction of MHV N protein.

To determine whether the N protein form homo-dimers or homo-oligomers, we sedimented recombinant 6xHis-tagged N protein on a continuous 5–20% glycerol gradient. For comparison sedimentation of the protein standards ovalbumin (44 kDa) and thyroglobulin (669 kDa) was analysed, which could be recovered in fractions 1–2 and 6–8, respectively (Fig. 1c and d). GAPDH, which is present in the cytoplasm as a monomer41, was found only in the low-density fractions such as whole cells or debris, nuclei and mitochondria. The resulting supernatant S13 was subsequently centrifuged at 110,000 × g to sediment organelles such as the Golgi apparatus but also virions that could have remained associated to the cell surface at the moment of the lysis43, 44. Successful fractionation of each step was followed by visualization of the membrane bound protein VAPA for P1345 as well as the cytoplasmic proteins GAPDH and tubulin for S45, which also contained soluble N protein (Fig. 2a). Thus, we concluded that the cytoplasmic pool of the N protein is enriched in the S45 supernatant.

The S45 supernatant was then applied on to the same continuous 5–20% glycerol gradient employed for the analysis of the size of recombinant N protein complexes. Interestingly, cytoplasmic N protein from MHV-infected cells was exclusively detected in the last fractions of the gradient similarly to recombinant N protein, while GAPDH was found only in the low-density fractions (Fig. 2b and c). A small difference in size between the MHV N protein oligomers formed in vitro and in vivo, however, was detected. This could be due to either a slight inhibition of recombinant N protein self-interaction caused by the 6xHis tag, or a better oligomerization in vivo because of cellular factors such as molecular chaperones. Moreover, it cannot be excluded that there are host proteins that associate to N protein oligomers.

Multiple domains mediate N protein oligomerization. Previous studies have shown that the N2b/CTD domain is required for the dimerization of N proteins of different CoVs12, 23, 24, 27, 28. Our consistent finding that the N protein forms oligomers suggested that there might be several domains involved in the self-interaction. We thus generated three 6xHis-tagged truncations, i.e. N1 (which contains the NTD), N2a and N2b-N3 (which contains the CTD), which collectively cover the full length of the N protein (Fig. 1a). These constructs were expressed in E. coli and the resulting bacterial extracts were incubated with either immobilized GST or GST-N protein. Interestingly, all three analyzed N protein truncations specifically bound GST-N protein but not GST
alone (Fig. 3, top panel), further revealing that in addition to the reported N2b/CTD region, the N protein possesses binding domains for the self-interaction in the N1 and N2a parts as well.

Next we explored whether there was any putative redundancy in binding between the different domains of the N protein to mediate N protein oligomerization. For this, bacterial cell extracts from *E. coli* expressing 6xHis-tagged N1, N2a or N2b-N3 were incubated with immobilized GST or GST-N protein as well as the truncations GST-N1, GST-N2a and GST-N2b-N3. Interestingly, all constructs were able to specifically bind both the N1 and N2b-N3 truncations suggesting that each domain within the N protein could interact with at least two different regions from another N protein molecule (Fig. 3). Further, 6xHis-tagged N1 and 6xHis-tagged N2b-N3 displayed a binding with immobilized GST-N2a. However, there was no binding between 6xHis-tagged N2a and immobilized GST-N2a indicating that the N2a domain might participate to the oligomer formation without being one of the critical determinants. 6xHis-tagged N2b-N3 was pulled down by GST-tagged N1 protein irrespectively of RNase A treatment confirming that the studied bindings do not depend on bacterial RNA (Supplementary Fig. S1d).

To determine whether the analyzed truncations also form oligomers, we sedimented bacterial extract from *E. coli* expressing 6xHis-tagged N1, N2a or N2b-N3 truncations on a continuous 5–20% glycerol gradient. As shown in Supplementary Fig. S2a,b, the 6xHis-tagged N1 and 6xHis-tagged N2b-N3 truncations are both forming oligomers. In contrast, however the 6xHis-tagged N2a sediments at lower molecular weight fractions. The presence of the 6xHis-tagged N2a fusion protein in fraction 3–4 also suggest that the N2a fragment might be able
to multimerize through probably a weak interaction that could not be detected by pull-down experiments. From these findings we concluded that MHV N protein oligomerizes via multiple discontinuous regions.

SARS-CoV N protein is also forming oligomers in vitro. To determine whether other CoV N proteins have the same characteristic, we analyzed the SARS-CoV N protein. First, recombinant 6xHis-tagged SARS-CoV N protein was incubated with immobilized GST, GST-N protein, GST-N1, GST-N2a and GST-N2b-N3. Precipitated proteins were eluted in SDS-sample buffer and analyzed by western blot using the anti-6xHis monoclonal antibody. A260/280 ratios < 0.1 indicated the absence of nucleic acids in the samples.

Figure 3. Multiple domains mediate N protein oligomerization. Bacterial extracts from *E. coli* expressing the 6xHis-tagged N1, N2a and N2b-N3 truncations were incubated with immobilized GST, GST-N protein, GST-N1, GST-N2a and GST-N2b-N3. Precipitated proteins were eluted in SDS-sample buffer and analyzed by western blot using the anti-6xHis monoclonal antibody. A260/280 ratios < 0.1 indicated the absence of nucleic acids in the samples.
showed that this truncation forms high molecular weight oligomers (Fig. 4d and e). Similarly to MHV, however, SARS-CoV-N2a was unable to self-interact and form oligomers (Supplementary Fig. S3). Altogether our results confirm that the SARS-CoV N protein oligomerizes but the oligomerization process involves not only the CTD domain but also the N-terminal area of the N protein, which contains the NTD domain.

Discussion

Using pull-down experiments and density glycerol gradients, our study provides additional evidence that CoV N proteins oligomerize. Several structural biology studies have indicated that SARS-CoV N protein dimerizes through the N2b/CTD domain and it is generally accepted that the dimerization of N2b/CTD domain

Figure 4. SARS-CoV N protein is also forming oligomers. (a) Bacterial extract from *E. coli* expressing 6xHis-tagged SARS-CoV N protein (input) was incubated with immobilized GST or GST-SARS-CoV-N protein. Precipitated proteins were eluted in SDS-sample buffer and analyzed by western blot using an anti-His monoclonal antibody. The amounts of GST and GST-N were assessed by staining the PVDF membrane with Ponceau Red. A260/280 ratios <0.1 indicated the absence of nucleic acids in the samples. Only part of the western blot images is shown in the figure. (b) Bacterial extracts from *E. coli* expressing 6xHis-tagged SARS-CoV N1-N2a were processed and analyzed as in panel (a). A260/280 ratios <0.1 indicated absence of nucleic acids in the samples. Only part of the western blot images is shown in the figure. (c) Bacterial extracts of *E. coli* expressing 6xHis-tagged SARS N protein and N1-N2a truncation were sedimented in a 5–20% glycerol gradient at 50,000 g for 75 min. Eleven fractions were collected and protein content analyzed using antibodies against the 6xHis tag. Gradient and centrifugation conditions were assessed by sedimenting a LR7 cell extract and probing the collected fractions with a GAPDH antibody. Only part of the western blot images is shown in the figure. (d) Quantification of the immunoblots presented in panel (c) plus standard deviation (SD) (n = 3).
serves as the basic building block for CoV ribonucleoprotein virion core formation through multimerization15,46,47. We and others, however, have already pointed out that the N-terminal N1b/NTD and N3 regions could also interact with full length of MHV N protein21,29. Our data extends and completes the information acquired by these investigations as we found that at least three areas of MHV N protein, i.e. N1\textsubscript{a}-N1b, N2a and N2b-N3, mediate its self-interaction. Importantly, those domains can bind reciprocally between themselves (Fig. 3) and our findings provide a possible model for MHV N protein oligomerization, i.e. a single N molecule appears to have several binding sites that allow the association of multiple N protein units to a single oligomer. However, we cannot exclude that binding promiscuity and affinity of the various N protein domains, which we have investigated using truncated proteins, are more limited and different, respectively, in the context of the full-length protein.

Although N1\textsubscript{a}-N1b and N2b-N3 regions are able to oligomerize independently, N2a is not and therefore this domain probably only contributes to and/or reinforces MHV N protein self-interaction (Fig. 3 and Supplementary Figs S2 and S3). This is in agreement with a report indicating that the N2a domain, in particular the SR region within it, could play a role for SARS-CoV N protein self-interaction and oligomerization31. Further, the N2a domain is known to interact with the nonstructural protein nsp3 via a serine and arginine rich stretch within that domain34-37. Therefore, one can speculate that N2a is more important for the association of the N protein to the RTCs rather than providing another oligomerization platform.

Our attempts to narrow down the specific binding area within the various regions have been unsuccessful since it appears that the amino acids crucial for the N protein self-interaction are discontinuously distributed (Fig. 3). The results obtained with the N2a truncation indirectly support this notion as a short domain will possess less key binding amino acids and consequently it will interact less pronouncedly compared to longer parts such as the N1 and N2b-N3 domains. Previous efforts to localize the residues essential to mediate SARS-CoV N protein oligomerization22,30,31,34,35 further underscoring the notion that discontinues binding regions, distributed over the entire N molecule, are responsible for the self-association. During the preparation of this manuscript, a cryo-EM analysis of ribonucleoprotein complexes isolated MHV virions was published and the model emerging from this work is consistent with our findings48. This study suggested that the N protein form octamers mainly via its CTD domain, which then further assembles into larger oligomeric structures that can acquire either a loose or a more compact intertwined filament shape48. In the proposed model, multiple surfaces of the N protein participate in the multimerization of the N protein octamer and this is coherent with our conclusion that several domains in the N protein mediate self-interaction.

One important finding of our study is that cytoplasmic MHV N protein forms high molecular weight oligomers in infected cells. Similarly to the recombinant protein, we could not detect monomers, dimers or small multimers on glycerol gradients (Fig. 2b) suggesting that after synthesis, MHV N protein rapidly assembles into oligomers. It is easy to imagine that, based on our results, this is very likely also the case for the SARS-CoV N protein. Since all CoV N proteins have an identical modular organization21 and have the N1b, N2a and N2b domains, oligomerization could be a characteristic that all of them possess. It has been suggested that gRNA promotes MHV N protein self-interaction because the association process was partially or largely susceptible to RNase A treatment11,35. Another study, however, reached the opposite conclusion19, which is also supported by structural biology studies where N protein multimers have been detected and analyzed in preparations that do not contain RNA22-24,27,29,32,36,49. Our data showing that both in vivo and in vitro N protein oligomerization does not depend on its binding to gRNA are in agreement with this latter conclusion. It cannot be excluded, however, that association to gRNA could promote further N protein oligomerization. This could explain the partial discrepancy with the study showing that RNase A treatment interferes with the binding between the N protein and full-length N protein or N1b/NTD domain, but not with the N2b/CTD region41.

Which could be the relevance of constitutive N protein oligomerization? RNA chaperones are nonspecific nucleic acid binding proteins with long disordered regions that help RNA molecules to adopt its functional conformation50-52. In agreement with this notion, which has already been proposed for CoV N proteins46,53, our hypothesis is that recruitment of already formed N protein oligomers to the RTCs at DMVs and convoluted membranes via the interaction with nsp339,40 allows efficient and tight loading of the exceptionally large gRNA via numerous binding sites into a ribonucleoprotein complex (Fig. 5). This RNA chaperone role of N protein oligomers would assure the efficient incorporation of the gRNA into the assembling virions, other scenarios, however, are also possible and further investigations will help to decipher the functional relevance of CoV N protein oligomerization.

Materials and Methods

Cell culture and virus. LR7 cells were maintained in Dulbecco's Modified Eagle Medium (DMEM; Cambrex Bioscience, Walkersville, MD) supplemented with 10% fetal calf serum (Bodinco Alkmaar, The Netherlands), 100 IU of penicillin/ml and 100 µg/ml of streptomycin (both from Life Technologies, Rochester, NY). Wild type MHV-A59 was propagated in LR7 cells in DMEM.

Plasmids. The sequences coding for either full-length MHV N protein or its truncations, i.e. N1 (amino acids 1 to 194), N2a (amino acids 195 to 257) and N2b-N3 (amino acids 258 to 454), were amplified by PCR from MHV gRNA and cloned into pET32c (EMD Millipore, Amsterdam, The Netherlands) and pGEX (GE Healthcare, Little Chalfont, United Kingdom) vectors using BamHI and Xhol, creating the pET32c-N, pET32c-N1, pET32C-N2a, pET32C-N2b-N3, pGEX-N, pGEX-N1, pGEX-N2a and pGEX-N2b-N3 constructs. The SARS-CoV N protein coding sequence or its truncations N1-N2a (amino acids 1 to 260) and N2a (amino acids 189 to 260) were also amplified by PCR and cloned into pET32c and pGEX vectors using Xhol and NotI to create pET32c-SARS-CoV-N, pET32c-SARS-CoV-N1-N2a, pGEX-SARS-CoV-N, pGEX-SARS-CoV-N1-N2a and pGEX-SARS-CoV-N2a.
Bacterial extracts. Transformed Escherichia coli BL-21 were grown in 125 ml of LB medium (0.5% yeast extract, 1% tryptone, 1% NaCl) to late exponential phase and after inducing protein expression by addition of 0.5 mM isopropyl-β-D-thiogalactopyranoside, cells were grown at 37 °C or 20 °C for 4 h or 16 h, respectively. Bacteria were harvested, resuspended in 4 ml lysis buffer (PBS, 5 mM DTT, 1 mg/ml lysozyme, 1 mM PMSF, 10% glycerol, 1% Triton X-100 and complete protease inhibitor (Roche) and lysed by two sonication rounds of 10 sec using a Branson sonicator (Danbury, Connecticut, United States). The bacterial lysates were cleared by centrifugation at 15,000 × g for 10 min at 4 °C and passed through a 0.45 µm filter. For purification of GST fusion proteins, lysates were incubated with 125 µl of glutathione (GSH) Sepharose (4B, GE Healthcare), which had been pre-washed in PBS. Where indicated, lysates were incubated with 40 mg/ml RNase A (Invitrogen, Carlsbad, CA) for 30 min on ice prior to addition to the GSH Sepharose. Cell extracts from bacteria expressing the 6xHis-tagged proteins were used either directly for pull-down experiments or for the purification of the fusion proteins with nickel Sepharose (6 Fast Flow, GE Healthcare) after incubation in presence or absence of 40 mg/ml RNase A for 30 min on ice. Complete hydrolysis of RNA was verified by sample analysis on an agarose gel followed by nucleic acid staining with Midori Green (GC Biotech, Netherlands) or determination of the A260/A280 ratio through measurement of A260 and A280 using a NanoDrop Spectrophotometer (Implen, Germany)54–56.

Cell extracts. For the preparation of cell extracts, LR7 cells grown on 10 cm dishes were mocked-treated or inoculated with MHV at a MOI of 1 and after 8h, they were lysed by 5 min sonication in 1.2 ml of PBS buffer supplemented as described above. Supernatants were then cleared by centrifugation at 15,000 × g for 10 min at 4 °C and passed through a 0.45 µm filter. RNase A treatments were carried out by incubating 200 µl of cell extract with 40 mg/ml of enzyme for 30 min on ice, immediately prior to pull-downs.

Pull-down experiments. For the pull-down experiments, GSH-Sepharose bound GST fusion protein were incubated with 200 µl of bacterial extract or 200 µl of LR7 cell extracts on a rotatory wheel for 2 h at 4 °C, subsequently washed at 4 °C three times in PBS supplemented with 5 mM DTT, 10% glycerol, 1% Triton X-100 and one time in PBS buffer. Proteins bound to the Sepharose beads were eluted in 20 µl of sample buffer by boiling and subjected to SDS-PAGE, blotted onto PVDF membranes and visualized by either membrane staining with Ponceau Red or western blot analysis using anti-6xHis antibody (HIS H8, Thermo, Waltham, MA) or anti-N protein monoclonal antibodies11. Bound primary antibodies were detected using the Alexa680-conjugated goat polyclonal anti-mouse IgG antibody (Life Technologies) and signals visualized with an Odyssey system (LI-COR, Lincoln, NE).

Subcellular fractionation and glycerol gradient sedimentation. Cell extracts (Ext) from MHV-infected LR7 cells were centrifuged at 15,000 × g for 10 min (4 °C) to obtain a pellet (P13) and a supernatant (S13), which was further centrifuged at 110,000 × g for 60 min (4 °C) to also get a pellet (P45) and a supernatant (S45). Proportional aliquots of Ext, P13, P45 and S45 fractions were examined by resolving them by SDS-PAGE and then by probing western blot membranes with monoclonal antibodies against MHV N protein and polyclonal antisera against GAPDH (Fitzgerald, North Acton, MA), tubulin (Sigma-Aldrich, St. Louis, MO) or VAPA (Santa Cruz, Dallas, TX).

For glycerol gradient sedimentation, 100 µl of either the S45 fraction or bacterial extracts expressing 6xHis-tagged full-length or truncated proteins were loaded on the top of a 2.2 ml continuous 5–20% glycerol gradient in lysis buffer (w/v) prepared using the Gradient Master machine (Biocomp, New Brunswick, Canada).

Figure 5. Models for the role of CoV N proteins over the course of an infection. After synthesis, CoV N proteins constitutively assemble into oligomers with loose or more compact intertwined filament shapes48, which are recruited to the RTCs localized on double-membrane vesicles (DMVs) and convoluted membranes via their interaction with nsp3. At these replication platforms, newly synthesized gRNA is engaged by N protein oligomers, which co-operate with the rest of the structural proteins to form the viral particles at the ERGIC/GoGolgi compartments.
After centrifugation at 135,000 × g for 75 min at 4 °C in a TLS55 rotor (Beckman Coulter, Brea, CA), 11 fractions of 200 μl were collected from the top to the bottom of the gradient. After precipitation by addition of 20 μl of tri-chloroacetic acid (final concentration 10%), proteins were resolved by SDS-PAGE and analyzed by western blot using antibodies against the N protein, GAPDH and the 6xHis tag. Thyglobulin (669 kDa) and ovalbumin (44 kDa) (Bio-Rad, Berkeley, CA) were used as molecular weight protein standards to determine the gradient resolution.

References

Acknowledgements

The authors thank Stuart Siddell (University of Bristol) for the anti-N protein monoclonal antibody. F.R. is supported by ALW Open Program (822.02.014), DFG-NWO cooperation (DN82-303), SNF Sinergia (CRSII3_154421) and ZonMW VICI (016.130.606) grants. Y.C. is supported by a Chinese Scholarship Council PhD fellowship.

Author Contributions

Y.C., F.K. and F.R. designed the study, Y.C. performed all the experiments, quantifications and prepared the manuscript with contributions from all the authors. All authors read and approved the manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-06062-w

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017